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Abstract  
The article deals with the problem of the approximate solution of variational inequalities. A 

novel iterative algorithm for solving variational inequalities in a real Banach space is 

proposed and studied. The proposed algorithm is an adaptive variant of the forward-reflected-

backward algorithm (Malitsky, Tam, 2020), where the used rule for updating the step size 

does not require knowledge of the Lipschitz continuous constant of the operator. In addition, 

the Alber generalized projection is used instead of the metric projection onto the feasible set. 

For variational inequalities with monotone and Lipschitz continuous operators, acting in a 2-

uniformly convex and uniformly smooth Banach space, a theorem on the weak convergence 

of the method is proved.  

 

Keywords  1 
Variational inequality, monotone operator, Lipschitz continuous operator, forward-reflected-

backward algorithm, 2-uniformly convex Banach space, uniformly smooth Banach space, 

convergence  

1. Introduction 

Many problems of operations research and mathematical physics can be written in the form of 
variational inequalities [1–5]. The development and study of variational inequalities is an actively 

developing area of applied nonlinear analysis [4, 6–23, 25–32]. Note that often non-smooth 

optimization problems can be effectively solved if they are reformulated as saddle point problems and 
algorithms for solving variational inequalities are applied [7]. With the advent of generative 

adversarial networks (GANs), a steady interest in algorithms for solving variational inequalities arose 

among specialists in the field of machine learning [8–10]. 

The classical variational inequality problem (in real Hilbert space H ) has the form  

find x С :   , 0Ax y x    y С  , 

where C H  is convex and closed, operator :A C H  is monotone, Lipschitz continuous. The 

most famous method for solving variational inequalities is the Korpelevich extra-gradient algorithm 

[11] 
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where CP  is metric projection onto C . Many publications are devoted to the study of the extra-

gradient algorithm and its modifications [6, 7, 12–23]. An efficient modern version of the extra-

gradient method is the proximal mirror method of Nemirovski [7]. This method can be interpreted as 
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a variant of the extra-gradient method with projection understood in the sense of Bregman divergence 
[24]. Also, an interesting method of dual extrapolation for solving variational inequalities was 

proposed by Yu. Nesterov [25]. Adaptive variants of the Nemirovski mirror-prox method were 

studied in [19–23].  

In the early 1980s, L. D. Popov proposed an interesting modification of the classical Arrow-

Hurwitz algorithm for finding saddle points of convex-concave functions [26]. Let X  and Y  are 

closed convex subset of  spaces 
dR  and 

pR , respectively, and :L X Y R   be a differentiable 

convex-concave function. Then, the algorithm [26] approximation of saddle points of L  on X Y  

can be written as 
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where 
XP  and 

YP  are metric projection onto X  and Y , respectively, 
1L  and 

2L  are partial 

derivatives. Under some suitable assumptions, L. D. Popov proved the convergence of this algorithm. 

A modification of Popov's method for solving variational inequalities with monotone operators 
was studied in [27]. And in the article [27], a two-stage proximal algorithm for solving the 

equilibrium programming problem is proposed, which is an adaptation of the method [26] to the 

general Ky Fan inequalities. The mentioned equilibrium problem (Ky Fan inequality) has the form  

find x С :   , 0F x y    y С  , 

where С is nonempty subset of vector space H  (usually Hilbert space), :F C C R   is function 

such that  , 0F x x   x С   (called bifunction). And the two-stage proximal algorithm is written 

like this  
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where  0,n   , prox  is proximal operator for function : C R   is defined by 

  21
2

prox arg min y Cx y y x    . 

In [28, 29], the two-stage proximal mirror method was studied, which is a modification of the two-

stage proximal algorithm [27] using Bregman divergence instead of the Euclidean distance. Note that 

recently Popov's algorithm for variational inequalities has become well known among machine 
learning specialists under the name “Extrapolation from the Past” [9]. Further development of this 

circle of ideas led to the emergence of the so-called forward-reflected-backward algorithm [30] and 

related methods [31, 32]. The forward-reflected-backward algorithm generates a sequence  nx  

iteratively defined by 

  1 1 1n C n n n n n nx P x Ax Ax Ax       , 

with    1
2

inf ,sup 0,n n n n L
   , where L  is the Lipschitz constant of A . 

In this paper, we propose a novel algorithm for solving variational inequalities in a Banach space. 
Variational inequalities in Banach spaces arise and are intensively studied in mathematical physics 

and the theory of inverse problems [1, 2, 4]. Recently, there has been progress in the study of 

algorithms for problems in Banach spaces [4, 15–18]. This is due to the wide involvement of the 

results and constructions of the geometry of Banach spaces [33–35]. The proposed algorithm is an 
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adaptive variant of the forward-reflected-backward algorithm [30], where the rule for updating the 
step size does not require knowledge of the Lipschitz constant of operator. Moreover, instead of the 

metric projection onto the feasible set, the Alber generalized projection is used [35]. An attractive 

feature of the algorithm is only one computation at the iterative step of the projection onto the feasible 

set. For variational inequalities with monotone Lipschitz operators acting in a 2-uniformly convex and 
uniformly smooth Banach space, a theorem on the weak convergence of the method is proved.  

2. Preliminaries 

We recall several concepts and facts of the geometry of Banach spaces that are necessary for the 

formulation and proof of the results [33–37]. 

Everywhere E  denotes a real Banach space with the norm  , E
 dual to E  space, ,x x

 is 

value of functional x E   on element x E . We denote norm in E
 as 


 . 

Let  : 1ES x E x   . Banach space E  is strictly convex if for all , Ex y S  and x y  we 

have  

1
2

x y
 . 

The modulus of convexity of the space E  is defined as follows 

  inf 1 : , ,
2

E E

x y
x y B x y  

  
     

 
    0,2  . 

Banach space E  is uniformly convex if    0E    for all  0,2  . Banach space E  is called 

2-uniformly convex if exists 0c   that  

  2

E c    

for all  0,2  . Obviously, a 2-uniformly convex space is uniformly convex. It is known that a 

uniformly convex Banach space is reflexive. 

A Banach space E  is called smooth if the limit 

0
lim
t

x ty x

t

 
                                                           (1) 

exists for all , Ex y S . A Banach space E  is called uniformly smooth if the limit (1) exists 

uniformly in , Ex y S . There is a duality between the convexity and smoothness of the Banach space 

E  and its dual E
 [33, 34]: 

 E
is strictly convex space   E  is smooth space; 

 E
 is smooth space   E  is strictly convex space; 

 E  is uniformly convex space   E
 is uniformly smooth space; 

 E  is uniformly smooth space   E
 is uniformly convex space. 

Note that if the space E  is reflexive, the first two implications can be reversed. It is known that 

Hilbert spaces and spaces pL  (1 2p  ) are 2-uniformly convex and uniformly smooth (spaces pL  

are uniformly smooth for  1,p  ) [33, 34]. 

Multivalued operator : 2EJ E


 , acting as follows 

 
22

: ,Jx x E x x x x   


    , 
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is called the normalized duality mapping. It is known that [36]: 

 if the space E  is smooth, then the mapping J  is single valued; 

 if the space E  is strictly convex, then the mapping J  is injective and strictly monotone; 

 if the space E  is reflexive, then the mapping J  is surjective; 

 if the space E  is uniformly smooth, then the mapping J  is uniformly continuous on bounded 

subsets of E . 

Let E  be a smooth Banach space. Consider the functional introduced by Yakov Alber [35] 

 
2 2

, 2 ,x y x Jy x y        ,x y E  . 

A useful identity follows from the definition of  : 

     , , , 2 ,x y x z z y Jz Jy x z            , ,x y z E  . 

If the space E  is strictly convex, then for ,x y E  we have  , 0x y     x y . 

Lemma 1 ([35]). Let E  be a uniformly convex and uniformly smooth Banach space,  nx  and 

 ny  are bounded sequences of E  elements. Then 

 0 0 , 0n n n n n nx y Jx Jy x y


       . 

Lemma 2 ([37]). Let E  be a 2-uniformly convex and smooth Banach space. Then, for some 

number 1  , the inequality holds 

 
21

,x y x y


      ,x y E  . 

Let K  be a non-empty closed and convex subset of a reflexive, strictly convex and smooth space 

E . It is known [35] that for each x E  there is a unique point z K  such that 

   , inf ,
y K

z x y x 


 . 

This point z  is denoted by 
K x , and the corresponding operator :K E K   is called the 

generalized projection of E  onto K  (Alber generalized projection) [35]. Note that if E  is a Hilbert 

space, then 
K  coincides with the metric projection onto the set K . 

Lemma 3 ([35]). Let K  be a closed and convex subset of a reflexive, strictly convex and smooth 

space E , x E , z K . Then 

, 0Kz x Jz Jx y z y K       .                                    (2) 

Remark 1. The inequality (2) is equivalent to the following [35]: 

     , , ,K Ky x x x y x y K        . 

Basic information about monotone operators and variational inequalities in Banach spaces can be 

found in [1, 2, 4, 35, 36]. We mention only two interesting examples of monotone operators acting in 

a Banach space [4].  

For 2p  , define the operator A  by  

   
 

3

2

2

p

p

R

u y
Au u x u x dy

x y




 . 

The operator A  is potential and monotone, and acts from  3

pL R  to  3

qL R , where 
1 1 1p q   . 

Note that A  is the gradient of the functional 
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 
   

3 3
2

1

2

p p

R R

u x u y
F u dxdy

p x y


  . 

Let nG R  be a bounded domain. Differential expression 

   
1 2 1 2

0

1

, ,
i i i i

n p p p pu u u
ix x x x

i

Au a x a x u u u
      

   



    
 

 , 1p  , 

where the function  ,ia x s , 0,1,...,i n , is measurable as a function on x  for every  0,s   

and continuous for almost all x G  as a function on s ,  ,ia x s M  for all  0,s   and for 

almost all x G , specifies a monotone operator acting from Sobolev space  1

0, pW G  to   1

0, pW G


. 

3. Algorithm 

Let E  be 2-uniformly convex and uniformly smooth Banach space, C  be non-empty subset of 

space E , A  be an operator from E  to E
. Consider variational inequality: 

find x C :   , 0Ax y x    y C  .                                              (3) 

We denote set of solutions of (3) by S . 

Assume that the following conditions are satisfied: 

 set C E  is convex and closed; 

 operator 
*:A E E  is monotone and Lipschitz -type with 0L   on C ; 

 set S  is non-empty. 

Remark 2. We can formulate (3) as fixed-point problem [35]: 

 1

Cx J Jx Ax  ,                                                           (4) 

where 0  . Formulation (4) is useful because it contains an obvious algorithmic idea. 

Consider dual variational inequality: 

find x C :   , 0Ay x y    y C  .                                             (5) 

We denote set of solutions of (5) by 
dS . Note that set 

dS  is closed and convex [2]. Inequality (5) 

is sometimes called weak or dual formulation of (3) (or Minty inequality) and solutions (5) are weak 

solutions (3). For monotone operators A  we always have dS S . In our conditions 
dS S  [2]. 

We assume that the following is satisfied: 

 normalized duality mapping :J E E  sequentially weakly continuous, i.e., from nx x  

weak in E  then nJx Jx  weak* in E
. 

Remark 3. In our situation, when the space E  (and of course E
) is reflexive, the weak* and 

weak convergence coincide in E
. 

Consider now a novel algorithm for solving the variational inequality (3). We will use a simple 

rule for updating the parameters n  without information about the Lipschitz constant of the operator 

A . The proposed algorithm is a modification of the forward-reflected-backward algorithm recently 

proposed in [30] for solving operator inclusions with the sum of the maximal monotone and Lipschitz 

continuous monotone operators acting in a Hilbert space.  

Let us know the constant 1   from the Lemma 2. 
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__________________________________________________________________________________ 

Algorithm 1. 

Initialization. Choose 0x E , 
1x E ,  1

2
0,


   and 0 1, 0   . Let 1n  . 

1. Calculate 

  1

1 1 1n C n n n n n nx J Jx Ax Ax Ax 

      . 

2. If 1 1n n nx x x   , then STOP and nx S , else go to 3. 

3. Calculate 

         

1

1

1 1 *

min , ,    if ,

,                       otherwise.

n n

n n n

n n n

n

x x
Ax Ax

Ax Ax
 









 

   
  

    
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Let : 1n n   and go to 1. 

__________________________________________________________________________________ 

Sequence generated by rule of calculation  n  is non-increasing and lower bounded by 

 11min , L  
. Then exists lim 0n

n



 . 

The sequence  nx  generated by Algorithm 1 satisfies the inequality 

 1 1 12 ,n n n n n nAx Ax Ax y x              1 1, , ,n n n ny x x x y x         y С  .      (6) 

Inequality (6) shows a rule of finishing the algorithm. Indeed if  

1 1n n nx x x    

then from (6) it follows then  

, 0n nAx y x   

for all y С , i.e., nx S . 

Now we go to the proof of convergence of Algorithm 1. 

4. Main inequality 

In this section, we state and prove the inequality on which the proof of Algorithm 1 weak 

convergence is based. 

Lemma 4. For the sequence  nx  generated by Algorithm 1, the following inequality holds 

   1 1 1 1

1

, 2 , ,n
n n n n n n n

n

z x Ax Ax x z x x


   


   



      

   1
1 1 1, 2 , ,n

n n n n n n n

n

z x Ax Ax x z x x


   



         

 1
1

1

1 ,n n
n n

n n

x x
 

  
 






 
   
 

, 

where z S . 

Proof. Let z S . We have 

     1 1, , ,n n n nz x z x x x       1 1 12 ,n n n n n nAx Ax Ax z x       .                (7) 
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From monotonicity of operator A  we have 

 1 1 1,n n n n n nAx Ax Ax z x       
1 1,n n n nAx Ax z x      

1 1 1,n n n nAx Ax z x      
1 1

0

,n n nAx z x  



   

1 1 1 1, ,n n n n n n n nAx Ax z x Ax Ax z x            

1 1 1,n n n n nAx Ax x x      .    (8) 

Applying (8) to (7) we obtain 

     1 1 1 1, , , 2 ,n n n n n n n nz x z x x x Ax Ax z x                 

1 1 1 1 12 , 2 ,n n n n n n n n nAx Ax z x Ax Ax x x           .           (9) 

From rule of calculation n  we have upper estimation for 1 1 12 ,n n n n nAx Ax x x      in (9). We 

have 

1 1 12 ,n n n n nAx Ax x x       

1 1 1*
2 n n n n nAx Ax x x       1

1 12 n
n n n n

n

x x x x






     

2 21 1
1 1

n n
n n n n

n n

x x x x
 

 
 
 

       

   1 1
1 1, ,n n

n n n n

n n

x x x x
 

   
 
 

   . 

We obtain 

   1 1 1 1

1

, 2 , ,n
n n n n n n n

n

z x Ax Ax x z x x


   


   



          

   1
1 1 1, 2 , ,n

n n n n n n n

n

z x Ax Ax x z x x


   



         

 1
1

1

1 ,n n
n n

n n

x x
 

  
 






 
   
 

. 

The proof is complete. ■ 
Remark 4. We can change rule of updating for step 3 of Algorithm 1 to the following: 

 1

1

1 1 *

,
min , ,    if ,

,                       otherwise.

n n

n n n

n n n

n

x x
Ax Ax

Ax Ax

 
 









 

     
    



                              (10) 

Lemma 4 holds also for variant of Algorithm 1 with the rule (10). 

5. Convergence 

Let us formulate the main result. 
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Theorem 1. Let C  be a non-empty convex and closed subset of 2-uniformly convex and 

uniformly smooth Banach space E , :A E E  is monotone Lipschitz continuous operator, S 
. Assume that normalized duality mapping J  is sequentially weakly continuous. Then sequence 

generated by Algorithm 1  nx  converge weakly to z S . 

Proof. Let z S . Assume 

   1
1 1 1, 2 , ,n

n n n n n n n n

n

a z x Ax Ax x z x x


   



  
      ,    

 1
1

1

1 ,n n
n n n

n n

b x x
 

  
 






 
   
 

. 

Inequality from Lemma 4 takes form  

1n n na a b   . 

Since there exists lim 0n
n




 , then 

 1

1

1 1 2 0,1n n

n n

 
  

 




     ,  n. 

Show that 0na   for all large n N . We have 

   1
1 1 1, 2 , ,n

n n n n n n n n

n

a z x Ax Ax x z x x


   



  
        

2 21
1 1 1*

1
2 n

n n n n n n n

n

x z Ax Ax x z x x


 
 


  

          

2 21 1
1 1

1
2 n n

n n n n n n

n n

x z x x x z x x
 

 
  

 
 

        
211 n

n

n

x z



 


 

  
 

. 

Since there exists such 0n N  that 

11
0n

n




 
   for all 0n n , 

then 0na   starting from 0n . 

So, we came into conclusion that there exists a limit 

   1
1 1 1lim , 2 , ,n

n n n n n n n
n

n

z x Ax Ax x z x x


   



  


 
     

 
 

and 

 1
1

1 1

1 ,n n
n n

n n n

x x
 

  
 






 

 
    

 
 . 

Hence, we obtain that the sequence  nx  is bounded and 

 1 1lim , lim 0n n n n
n n

x x x x  
 

   . 

Since 

 1
1 1 1lim 2 , , 0n

n n n n n n
n

n

Ax Ax x z x x


  



  


 
    

 
, 

then sequences   , nz x   converge for all z S . 
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Show that all weak cluster points of sequence  nx  are in the set S . Consider subsequence  
knx  

which converges weakly to z E . Easy to see that z C . Show that z S . We have 

 1 1 1 1, 0n n n n n n n nJx Jx Ax Ax Ax y x              y С  . 

Hence using monotonicity of operator A  we have an inequality 

1 1, , ,n n n n n nAy y x Ax x x Ax y x        

1
1 1 1 1

1
, ,n

n n n n n n

n n

Jx Jx y x Ax Ax y x


 


              y С  . 

From 
1lim 0n n

n
x x 


   and Lipschitz property of operator A  it follows 

1 *
lim 0n n
n

Ax Ax 


  . 

From uniform continuity of normalized duality mapping J  on bounded sets we get  

1 *
lim 0n n
n

Jx Jx 


  . 

Hence, 

lim , 0n
n

Ay y x


       y С  . 

From other side 

, lim , lim , 0
kn n

k n

Ay y z Ay y x Ay y x
 

           y С  . 

Then it follows that z S . 

Show that sequence  nx  converges weakly to z . Arguing by contradiction. Let exists the 

subsequence  
kmx  such that 

kmx z  weakly and z z . Easy to see that z S . We have 

   
2 2

2 , , ,n n nJx z z z x z x z z        . 

From that we see the existence of limit lim ,n
n

Jx z z


 . From sequentially weak continuity of 

normalized duality mapping J  we get 

, lim , lim , ,
k kn m

k k
Jz z z Jx z z Jx z z Jz z z

 
           , 

i.e., , 0Jz Jz z z    . Then it follows that z z . The proof is complete. ■ 

The weak convergence of the variant of the algorithm with a constant parameter 0   is similarly 

proved. 

__________________________________________________________________________________ 

Algorithm 2. 

Initialization. Choose 0x E , 
1x E , 

1
0,

2 L




 
 
 

. Let 1n  . 

1.   Calculate 

 1

1 12n C n n nx J Jx Ax Ax 

    . 

2.   If 1 1n n nx x x   , then STOP and nx S , else let : 1n n   and go to 1. 

__________________________________________________________________________________ 
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Remark 5. A special case of Algorithm 2 is the optimistic gradient descent ascent (OGDA) 
algorithm, popular among machine learning specialists [8, 9]. 

Lemma 5. For the sequence  nx  generated by Algorithm 2, the following inequality holds 

   1 1 1 1, 2 , ,n n n n n nz x Ax Ax x z L x x            

   1 1, 2 , ,n n n n n nz x Ax Ax x z L x x             11 2 ,n nL x x   , 

where z S . 

Theorem 2. Let C  be a nonempty convex and closed subset of 2-uniformly convex and uniformly 

smooth Banach space E , operator :A E E  is monotone and Lipschitz continuous with constant 

0L  . Let S   and normalized duality mapping J  is sequentially weakly continuous. Then 

sequence generated by Algorithm 2  nx  converge weakly to z S . 

6. Conclusions 

In this paper, we have proposed and studied a new algorithm for solving variational inequalities in 

a Banach space. The proposed algorithm is an adaptive variant of the forward-reflected-backward 

algorithm [30], where the rule for updating the step size does not require knowledge of the Lipschitz 

continuous operator constant. Moreover, instead of the metric projection onto the admissible set, the 
Alber generalized projection is used [35]. An attractive feature of the algorithm is only one 

computation at the iterative step of the generalized projection onto the feasible set. For variational 

inequalities with monotone Lipschitz continuous operators acting in a 2-uniformly convex and 
uniformly smooth Banach space, a theorem on the weak convergence of the method is proved. 

Based on the technique [38], similar results can most likely be obtained for problems with pseudo-

monotone, Lipschitz continuous, and sequentially weakly continuous operators acting in a uniformly 

convex and uniformly smooth Banach space. Also, in a future article we will present a proof of the 
convergence of a modification of the algorithm using the Bregman projection.  

Note that a problem of significant interest in nonlinear analysis applications is to find 

 
1

1 2 0x A A


  , where 
1 : 2EA E



  is a maximal monotone operator and 2 :A E E  is a 

monotone and Lipschitz operator. Based on the results of this work and [30] for solving this problem, 

we can construct the following adaptive splitting method  

    
1

1 1 2 1 2 2 1 ,n n n n n n n nx J A Jx A x A x A x  


        

1

2 1 2

1 2 1 2 *

min , ,    if ,

,                       otherwise,

n n

n n n

n n n

n

x x
A x A x

A x A x
 









 

   
  

    



 

 

where  1
2

0,


  . The proof of its convergence will be presented in another work soon.   
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