
32

Surface Defect Detection Based on Deep Learning Approach

Mykola Robotyshyn, Marianna Sharkadi and Mykola Malyar

Uzhhorod National University, Narodna Square 3, Uzhhorod, 88000, Ukraine

Abstract
Quality inspection is one of the most essential parts of any manufacturing process that helps

businesses to ensure the quality of their product by detecting defects which is extremely

important due to high market competition. Deep-learning methods have become the most

promising approaches to solve this problem. The advantage of using deep learning is that it

can detect the defects that cannot be detected by traditional machine vision algorithms. This

paper presents a segmentation-based deep learning quality inspection system that is designed

for detecting defects both outside and inside an object's surface. The system was tested on

specific domain (reeds/bamboo straws) but can be generalized to any domain. The design of

the system's architecture allows to iterate over typical machine learning cycle (collect data,

model training, error analysis) in a fast way due to real-time collection of images on which

the system makes mistakes. In this paper we gave equal attention to all crucial parts of the

system: segmentation neural networks, decision algorithms, dataset and monitoring system.

In our case we demonstrate some advantages of using an ensemble of binary segmentation

models over one multiclass model, especially when it comes to data labeling. We discovered

that applying post-processing rules after segmentation can significantly improve accuracy of

your model. Experiments are performed on newly created dataset with real-world images

from reeds straw factory and system’s errors were compared with human level performance.

The dataset is available on request for other to develop and test new models for surface defect

detection problem.

Keywords 1
Surface defect detection, deep learning, segmentation networks, quality and visual inspection,

computer vision, data labeling, reed straws surface defect detection

1. Introduction

In industrial processes, one of the most important tasks when it comes to ensuring the proper

quality of the finished product is inspection of the product’s surfaces. Often, surface quality control is

carried out manually and workers are trained to identify complex surface defects. Such control is,
however, very time consuming, inefficient, and can contribute to a serious limitation of the production

capacity [1]. To overcome these factors many giant companies started to implement their built-in

solutions, so called automated visual inspection systems. These systems have a big level of
generalization, the same solution works equally on different factories, totally different light conditions

and even sometimes with different objects.

Despite tremendous achievements in automated visual inspection solutions there are still many
areas where quality checking is performed by humans. Main reason for that is impossibility to apply

built-in visual inspection solutions due to non typical object view, non typical object surface and

variety of defects that determine whether a product is suitable for sale. For this case there is a need to

build a customized inspection system from scratch. Building such systems from scratch is not

II International Scientific Symposium «Intelligent Solutions» IntSol-2021, September 28–30, 2021, Kyiv-Uzhhorod, Ukraine

EMAIL: mykolarobotyshyn@gmail.com (M. Robotyshyn); marianna.sharkadi@uzhnu.edu.ua (M. Sharkadi); mykola.malyar@uzhnu.edu.ua

(M. Malyar)

ORCID: 0000-0001-6567-6974 (M.Robotyshyn); 0000-0002-1850-996X (M. Sharkadi); 0000-0002-2544-1959 (M. Malyar)

©️ 2021 Copyright for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:mykolarobotyshyn@gmail.com

33

straightforward and includes many iterative steps: camera settings, data collection pipeline, model
training, error analysis, deploying and real-time monitoring system.

This paper focuses on providing a detailed guide on how to build a surface defect detection system

from scratch using modern machine learning approaches. Deep learning approaches have become the

first choice methods when it comes to work with images. More and more new methods have been
invented during the last few years that show huge improvement both in terms of accuracy and

required computational resources. Compared to classical machine vision methods deep learning can

directly learn low-level features, and have a higher capacity to represent complex structures, thus
completely replacing hand engineering of features with automated learning process[1]. The algorithm

that solves surface defect detection problems should be capable of finding the defect area on an

object's surface, thus it means not just classify whether an object is defectable, but to understand
exactly which pixels are defectable. As for any other supervised approaches to teach a system to

detect defects we need to provide labeled data to the algorithm. The first question while working with

deep learning supervised methods is how many annotated images we need to provide to achieve an

acceptable level of accuracy? This is a crucial question because usually it is impossible to collect
hundreds of thousands labeled images thus there is a need for either a neural network that can learn

from small amounts of samples or very quality and diverse dataset. The one part the paper focuses on

is the iterative process of how to collect appropriate dataset to train a model. We achieved accuracy
results close to human level performance with approximate dataset’s size within a range of 1.5k to 3k

labeled images which is possible to collect for any domain.

Partly, this paper explores suitable deep learning methods to solve surface defect detection
problems. In particular, the paper studies state-of-the-art semantic segmentation neural networks

applied to a variety of different surface defects like cracks, spots, small circles holes, hammered stuff

inside (see Fig. 1, Fig. 2). While choosing suitable neural network architecture we take into account

four characteristic.

 speed of the network

 computational requirements

 accuracy on benchmark ImageNet dataset

 annotation requirements
Because it is possible to have more than one defect on object we experimented with multi-class

neural network and ensemble of binary neural networks. Using separate networks for each class has

its pros and cons. Obviously, the main disadvantage is significantly lower speed performance of the
system. But there are a few advantages that are extremely important in practical cases. Firstly, easier

and faster way to label images because each image contains only 2 classes: defect and no-defect.

Secondly, it requires less amount of labeled images. And thirdly, total accuracy is usually higher.

Figure 1: Defect classes where red color highlights defectable area

34

We evaluate our system on the dataset termed Reeds Surface Defect Dataset (ReedsSDD) that we
created ourselves from reeds factory. Partly, the paper provides essential information regarding

collecting images and labeling them. Capability to collect quality images is a crucial step to build a

highly accurate system. Specifically, for surface defect detection problem quality images mean two

things. Firstly, a list of images that covers the full surface of object’s thus there is a need for more
than one camera and their correct placement. Secondly, the defect area on image should be

recognizable by the human eye thus there should be twice more attention to image quality because

very often the defect area is small, like in crack defects. The paper covers information about camera
model and settings we used, solution to cameras placements and tips on how to adjust camera settings

to produce more quality images than with default settings.

Figure 2: Defect classes where red line highlights defectable area

The remainder of the paper is organized as follows. The related work is presented in “Related

work” section, with proposed approach and details of all important steps to build system from scratch

in “Proposed approach”, important information regarding dataset in “Dataset” and system’s results
comparison with human level performance together with implementation details in section

“Evaluation”. The paper concludes with a discussion in “Discussion and conclusion” section.

2. Related work

After the breakthrough paper[2] deep learning approaches became more popular in any domain
and manufacturing is not an exception. There are many practical cases where convolutional neural

networks outperform classic machine learning algorithms on problems where input data are images.

Main advantage of deep learning approaches is that they do not require any changes in algorithms
when you apply them to another domain. On the other hand, in classic computer vision approaches,

you very likely need to play with algorithm’s hyperparameters and even with image preprocessing

operations.

Much research work has been done in the field of designing neural networks architectures so that
acceptable accuracy can be achieved with a minimum amount of labeled images which is extremely

important in practical cases when data labeling and collection is a time consuming process. Research

work by [1] presents architectures that require only 25-30 labeled images to achieve enough level of
accuracy. Most state-of-the-art semantic segmentation models use encoder-decoder architecture firstly

described in [3] that proved results on biomedical image segmentation tasks. One well known

problem when dealing with deep learning is the model's speed thus more and more new approaches
focused on designing neural networks with smaller amounts of parameters[4,5].

There are many works on applying supervised neural networks for surface defect detection

problems. In 2012 the work of Masci et al. [6] was among the first who applied shallow neural

networks to surface defect detection. Later papers [7,8,9,10] described the use of deep neural
networks for detection of rail surface defects, brain tumor segmentation, inspection of laser welding

defects, steel pipe defect detection respectively. During last years tremendous success were achieved

in semi-supervised, weakly-supervised learning - approaches that partly eliminated the problem of
labeled data. Latest publications[11,12] from top-notch companies like Facebook, Google showed

compatible results of self-supervised methods compared to supervised on benchmarks datasets. Latest

35

work on surface-defect detection problems very often related to self-supervised learning. Combining
small amounts of pixel-level labeled images with weakly labeled images can outperform most state-

of-the-art supervised results in defect detection problems[13]. One-shot learning method was

described in [14] to detect defects on steel surface. [15] contains a detailed overview of modern

efficient approaches to solve problem.
Top giant companies like Omron provide built-in solutions called automatic visual inspection

systems. [16] provides an overview of automatic visual inspection systems, their capabilities and

limitations, areas where they can be used. To speed up building defect detection system from scratch
Landing.AI company provides end-to-end visual inspection platform LandingLens [17]. It is designed

to manage data, to perform automatic error-analysis and allows to train neural networks without

programming knowledge.
Surface defect detection problem regarding reeds/bamboo straws domain hasn’t been explored yet

mainly because of lack of publicly available datasets. There are a limited number of papers, the

classic computer vision approaches described in [18, 19] used for bamboo straw defect inspection.

And for reeds straws defect detection there we did not find published papers yet.
Compared with methods mentioned above, the approach proposed in this paper is fully supervised

and consists of two main steps. The first one is an ensemble of binary U-Net semantic segmentation

models where each model is trained for one type of defect. Each model is trained to detect
corresponding defect’s pixels and runs consecutively one after one. The second step is a rule-based

system that based on presence of defects, their type and area classify object to one of predefined

classes. Models were trained on Reeds SDD dataset that we collected on reeds factory. The used
dataset consists of a relatively small amount of images within a range of 1.5k to 3k for each defect

type.

3. Proposed approach

We addressed the surface defect detection problem as a segmentation-image problem. There are
two main reasons why the segmentation approach is more suitable for this problem rather than

classification. Firstly, the visual inspection system is required to highlight the exact defectable area on

the object thus making predictions on pixel-wise level. Secondly, the classification approach has a

low level of interpretability by making predictions on image-wise level and it leads to significant
difficulties on error analysis stage to understand why model makes one or another type of mistakes

and what changes need to be done to improve model. The process of object’s defect detection consists

of 2 main steps. The first one is an ensemble network - an ensemble of binary segmentation models
that has been chosen over one multi-class model due to easier labeling process, less amount of

training images and better total accuracy. The second step, where we classify the object to one of

predefined classes, includes a rule-based process that is built on top of the ensemble network and uses

ensemble network’s output about presence of defects and area size to classify the object. The first step
is referred to as an ensemble network, while the second stage, as rule-based process. Real time

monitoring system has been built to provide an option to see highlighted defect area and respective

size thus it provides an explanation why a system takes one or another decision. Three main
components: ensemble network, rule-based process, monitoring system together with data collection

pipeline that will be described later create a real-time defect detection system that paper is focused

on[fig 3].

3.1. Ensemble network

Binary segmentation model returns probability for each pixel being defected. Ensemble network

consists of seven binary models, where each model is trained to detect one type of defect. Binary

approach significantly speeds up the labeling process and moreover has more precise accuracy
because the defects are very different in terms of area size, appearance, possible quantity per image

and pixel-wise importance. Each model in ensemble networks runs consecutively one by one, the

process can be stopped immediately depending on defect presence and the model's output goes as

input to a rule-based process.

36

Figure 3: Main components of the system

Nowadays encoder-decoder architecture is the go-to choice when dealing with deep segmentation
neural networks. Often the encoder is a classification neural network with pre-trained weights on

ImageNet dataset. The aim of the encoder is to learn low-level representational features called feature

map and usually it consists of convolutional filters followed by batch-normalization, non-linear
activation function and max-pooling. Decoder takes feature map as input and up-samples it to get a

dense classification. Ensemble network consists of models which are equal in terms of architecture

and designed as U-Net model with MobileNetV2 pretrained encoder. Each model contains 6.5ml

parameters. U-Net architecture with MobileNetV2 is a good tradeoff between the amount of
parameters and benchmark accuracy on the ImageNet dataset. At the time of the study, pretrained

MobileNetV3 encoder was not publicly available to use.

Binary segmentation model returns a two-dimension matrix termed as mask where each value
corresponds to a pixel and has probability in range [0,1] for being defected. As a closer value to 1 is

more likely the pixel is defected. Each binary model has two hyperparameters: probability threshold

and min area size. These values are used in post-processing operations. The first one, probability
threshold is used to convert probabilities into either 1 or 0 by applying threshold operation which can

be formulated as follows: if pixel value is less than threshold then assign 0 else 1. Modifying the

probability threshold parameter allows to make the model more or less strict. For example, if

probability threshold = 0.9, that means we want the model to predict that pixel is defected only in
cases when the model is very confident thus the pixel probability is close to 1. The second

hyperparameter, that applied after threshold operations, is termed as min_area size - minimal amount

of defected pixels on the image to consider an object to be defectable. What if an image contains 10
defective pixels? Does it mean that the object is defected? In practice, a defected object means that

some area of surface is defectable. Depending on the problem, type of defect, type of object’s surface,

the size of defected area to consider the object as defectable is different. That's why we have a
hyperparameter min_area size that controls the minimal size of the defectable area. The main logic is

- if the amount of defectable pixels is less than the hyperparameter's value then the object is not

defectable and corresponding pixels will be assigned a value of 0. To sum up, adjusting two

hyperparameters mentioned above for the specific type of defect allows to improve accuracy of each
binary segmentation model thus to improve accuracy for ensemble network.

Very common problem when applying machine learning algorithms in production is false positive

errors especially when it comes to using deep neural networks[20]. Amount of false positive errors
increases when we slightly change the distribution of real-time data compared to training data. It

happens, for example, when light conditions or image background are changing. Moreover these

errors are sometimes very unreasonable like predicting defectable areas outside the object’s surface.

To remove these unreasonable types of mistakes we propose one more post-processing operation that
helps to make the system more stable. Before running an ensemble network we use another

segmentation model to determine the area where the object is located. This is an easy problem and

accuracy of this model is very close to optimal. Having this detection network allows us to remove

37

false predictions from ensemble networks that are outside the object's surface area. Detection network

is the initial component of the system and also it allows to calculate the diameter of the object.

Figure 4: Post-processing operations

To sum up, an ensemble network together with an initial detection network are responsible for

detecting different types of defects and size of corresponding defectable area. Later this information
goes as input to rule-based classification. To give system better capabilities to generalization thus to

be more confident in accuracy we apply post-processing operations [Fig 4].

3.2. Rule-based classification

Rule-based classification is a second main step in the system pipeline that takes as input

information about what type of defects are present in an object, what corresponding defect area size is

and what is the diameter of the object. In manufacturing processes some defects can be eliminated

from the object, some objects can be divided by their size or diameter, some objects are more
expensive than others thus there is a need to implement further classification of objects based on

information from ensemble and detection networks.

In our case, in the factory objects could be classified into 11 different types. The classification
procedure is based on predefined rules thus we termed this stage as rule-based classification. Simple

rules look like:

 If the object contains no defects and its diameter is less than 10mm then classify the object as

class7

 If the object contains defect type “cracks” or defect type “holes” then classify object as class0

 If the object contains defect type “spots” and defectable area is less than X pixels then classify

object as class4
These rules should be able to classify any objects to one of predefined classes. The output of rule-

based classification is final information about an object: object’s class and additional information like

diameter of the object, defectable area size. Later output goes as input to the monitoring system thus it

is important to send not only the object's class but also relevant information regarding previous

outputs of the system to provide as much as possible information to the monitoring system to better
understand why the whole system takes one or another decision.

3.3. Monitoring system

Lack of interpretability is one of the main issues why businesses doubt the use of machine learning

systems in production. Much research work has been done to understand the deep neural network’s

behaviour, to understand why a model makes one or another decision and the best method to achieve

it is visualization of feature maps on each layer[21]. Big advantage of using the segmentation
approach is that it works on pixel-level thus we know the model's prediction not only for the whole

38

image but also for each pixel on the image. It allows us to stack input image with a predicted mask
and create stacked image.

There are 3 main goals of building a monitoring system: interpretability, control the quality of

images and real-time data collection. Firstly, as mentioned above, interpretability is crucial for

integrating machine learning solutions to production. To guarantee it we plot a stack image with
highlighted defectable areas thus it is possible in a moment to understand whether prediction is

correct and why the system classified the object to corresponding class. Secondly, to ensure the

correctness of the system, we must make sure that the images that the system takes as an input are
high quality. For each object, the monitoring system plots the images taken from cameras. If

something goes wrong, like blind images or moving a camera we can detect it and moreover if there

are multiple cameras we know exactly which one needs to be fixed. The third goal is about creating
opportunities to collect more data, especially to collect mistakes that the system makes. To improve a

model's accuracy it is important to understand what mistakes the model makes and fill the train

dataset with more images on which model failed.

Monitoring system is the last component of the defect detection system and as valuable as other
components. In simple words it helps to “understand” why the system makes one or another decision.

For reeds straw case monitoring system describes the following information:

 Diameter of the straw

 Defectable area

 Type of defect

 Straw class

3.4. Iteration cycle

In machine learning the process of creating a solution or model is always iterative and consists of

three main steps: data preparation, model training and error analysis. According to Andrew Ng data-

centric approach[22] researchers need to spend more time to prepare data and perform correct error
analysis rather than focus only on model’s architecture research. The goal of this chapter is to present

how we can iterate over a typical machine learning cycle faster using a monitoring system for

manufacturing cases.
Let’s assume that we trained a model on the first version of the dataset. Now we need to determine

accuracy thus we decide to test a model on new objects. Monitoring system allows us to analyze

model performance by “watching” the model's prediction, defectable areas. Very often it is not

enough just to increase the dataset size to improve accuracy. It is important to increase the dataset by
adding images on which model makes mistakes. With the help of a monitoring system we are able to

analyze predictions thus to identify types of images on which model makes mistakes. How to collect

these images on production? Here it comes again to a monitoring system that allows real-time
collection of all images taken from cameras.

To sum up, the monitoring system is a tool that helps to do error analysis and data collection

processes much faster than without it. And moreover it allows us to collect not just a big dataset but
good. We encourage everyone to build this system and perform error analysis and data collection

steps using it.

4. Dataset

The proposed system is evaluated on a Reeds Surface Defect Detection (Reeds SDD) dataset that

we created ourselves in an industrial factory. This section provides details regarding dataset creation

from scratch, camera’s settings and placements, labeling images. To get access to the dataset, please

contact authors. We guarantee to provide quick access.
There are many options for what camera type to use and as in machine learning choosing a camera

is also an iterative process. We experimented with different cameras starting from industrial one like

Basler and simple web camera Logitech C270. The main criterion while taking the decision whether a
camera is suitable or not is quality of image taken from camera. Taking into consideration that we are

dealing with surface defect detection problem, one should pay twice more attention to assure good

image quality. How to understand without collecting a lot of images and not training neural networks

39

whether image quality is acceptable and neural networks will detect defects well? There is one simple
rule: defectable areas should be recognizable by the human eye when looking at the image. If humans

do not see these areas in the image then very likely neural networks also will fail. And if humans

easily recognize these areas in a moment then image quality is acceptable for further data collection.

After repeating this process we selected the Logitech C270 web camera due to the acceptable level of
image quality and much lower price compared to industrial cameras.

Figure 5: Comparison of “hard” and “soft” labeling

In this paragraph we focus on important camera’s settings and how to adjust them to improve

image quality compared to default settings. Main settings are the next:

 Focus distance

 Auto-exposure

In surface defect detection problem there is a need to place cameras close to the object to see the
object's surface with high quality. According to our experiments approximately 4.7 inches is enough

distance to see all defectable areas on reeds straws objects. After moving the camera closer to the

object focus distance should be changed to prevent image from blurring.
Reeds straw’s surface has different shades of brown and dark colors thus we need to assure light

conditions to make these shadows easily distinguishable. In practice the system should be designed in

a way that small changes in light condition don’t affect the system accuracy. Adjusting auto-exposure

allows to make images more stable to light changes and moreover allows to change the camera’s
exposure to make images brighter or darker without changing outside light. We noticed that best

settings values for auto exposure are within a range of 40-60.

To detect defects on more complex objects like reed straws it is not enough to make images only
from one camera. Images should cover all surface area thus there is a need to understand what optimal

amount of cameras we need and what is the most suitable placement for them. Based on our

experiments we determine that a web camera is capable of covering 120 degrees. In order to clearly

see defects like crack defects we need to place cameras not far than 4.7 - 5 inches from the object but
it allows us to cover only half of the straw’s length. So, two cameras were placed to take images of

120 degrees of straw’s surface. To cover the entire surface area (360 degree), four more cameras were

40

placed so that the area they were looking at did not intersect with other camera’s view areas. Having
determined the optimal way to place the cameras, we began to make images to create a dataset.

Figure 6: Comparison of “strict” and “not strict” labeling

The most time-consuming process of creating a dataset is not taking images but labeling them.

Segmentation approach requires to label each defectable area on the image. To simplify and speed up

the labeling process we created a separate dataset for each type of defect thus it required to label only

one corresponding type of defect on the image. From the speed perspective we proposed two ways of
labeling termed “hard labeling” and “soft labeling”. The difference between them is how accurate

labels are [see Fig 5]. In “hard labeling” we labeled each defectable area very accurately, pixel by

pixel using a polygon figure so it takes significantly more time compared to “soft labeling” that
requires to label defects nearly accurately, for example using rectangles and covering areas without

defects also. The reason we proposed two approaches is because some types of defects like brown or

dark spots are easy to detect thus it requires not super accurate labels, but for defects like crack lines,
small holes accurate labels are crucial. From the defect definition perspective we proposed two other

ways of labeling termed “strict” and “not strict”. Very often because of the object's surface specialities

and ambiguous defect definition it is not possible to say that this area is 100% defectable and another

area is 100% not defectable. We called these ambiguous areas as arguable areas. “Strict” way of
labeling means that most arguable areas were labeled as defectable while “not strict” means that these

areas we did not label [see Fig 6]. Again it depends on the type of defects and defect’s importance.

“Strict” labeling is more sensitive to a bigger amount of false positive mistakes. Labeling is a very
important process so choosing the best tradeoff between “hard” and “soft”, between “strict” and “not

strict” strategies can be vital to assure good quality dataset thus good model’s accuracy. For the

labeling process we used a labeling tool program VIA that is publicly accessible.

Reeds SDD dataset consists of 7 separate datasets for each type of defect. Approximate size of
each dataset is within a range of 1-3 thousand of images. All images have the same resolution

1280x960. Some datasets were labeled by “strict” labeling and some by “not strict”. Based on our

experiments, it was not possible to achieve an acceptable level of accuracy with lower image

41

resolution. One should be careful to apply different augmentation functions during training to assure
that defectable areas are still recognizable by human eyes.

5. Evaluation

This chapter is about three details regarding the system. Firstly, we propose a way to make error
analysis and evaluated the system's accuracy with human level performance. Secondly, training

details chapter has some interesting exploration regarding training binary segmentation model, loss

function and speed of the model on inference. Thirdly, we described the technology stack we use to
build all components of the system.

5.1. Error-analysis

To apply a surface defect detection system to production it is crucial to understand how accurate
the system is. On the other hand, it is difficult to evaluate the accuracy of the system with just a one

number due to the large number of different defects, the different proportion of these defects and the

impossibility in some cases to say unambiguously to which defect class the object belongs. The

following evaluation metrics were used to determine the accuracy of the system for each defect class
[see Table 1]:

 Recall - what percentage of straws with a defect the system recognizes
 False positive error (FP) - what percentage of straws the system erroneously defines as

straws with a defect, even though they have no defect

Table 1
Evaluation metrics for each defect class

Defect class Recall (%) FP (%)

Hammered stuff inside 90 % - 96 % 2 % - 5 %
Cut 97 % < 1 %

Brown spots 97 % 2 % - 3 %
Circle holes 90 % - 95 % 5 % - 10 %
Dark spots 90 % + 1 % - 3 %

Cracks 60 % - 70 % 1 % - 3 %

These metrics were empirically determined during system testing on industrial reeds straws
factory. The main reason why for some defect classes metrics are not a single value but interval is

ambiguous defect definition thus sometimes it is not possible to classify for sure. As mentioned

above, evaluating system accuracy with one value is difficult and requires to customize calculation to
business needs.

Taking into consideration the real-time proportion of defects, we calculated the error rate of the

system as one value and it is approximately 10 %. So, the system makes a mistake for each one of ten

straws and this result is very close to human level.
How to understand whether system accuracy is acceptable for deploying it to production? What

type of defect is a system’s accuracy bottleneck?

One way to do it is to compare accuracy metrics of each type of defect to human-level accuracy.
Firstly, it will give us a picture of how the quality inspection process will change in terms of previous

level of accuracy after deploying the system to production. Of course, the system accuracy should be

close to human-level not to harm business. Secondly, comparing accuracy to human-level allows us to

find types of defects where we are worse than humans thus this is the room for improvements. But
how to make this comparison correct and equal?

 Humans have a main advantage compared to machines: they analyze objects by eyes not based on

images from web-camera like deep neural networks.
Therefore there is a need to evaluate human performance both on images and on real objects as

workers do [Table2].

42

Table 2
System and human-level evaluation metric (only Recall)

Defect class System (%) Human-level on
images (%)

Human-level on
real objects (%)

Hammered stuff
inside

90 % - 96 % 90+ % 95%

Cut 97 % 99 % 99%
Brown spots 97 % 95+ % 95+%
Circle holes 90 % - 95 % 90+ % 95+ %
Dark spots 90 % + 95+ % 95+ %

Cracks 60 % - 70 % 65 % - 73 % 85 %-90 %

From the table above it is clear that the system's metric values for all defect classes except one are
very close or even equal to human-level performance. To achieve even greater accuracy for these

defect classes much more annotated images are required so it is a very time consuming process and

does not guarantee that the results will be better as they are now approaching to human level. Instead
the Table2 shows that the system's accuracy for defect type class6 is close to “human-level on

images” and extremely worse compared to “human-level on objects”. It means that the problem is not

in model but in image quality because there is significant difference in both humans’ metric values.

Approach to compare the system's accuracy with human-level performance has two main
objectives: firstly it gives an understanding how accurate the system is comparing to humans and

secondly what needs to be changed model or dataset to improve results.

5.2. Implementation details

Crucial part of source code for training binary segmentation models was taken from github
repository segmentation_models.pytorch. The repository provides different segmentation

architectures and a variety of backbones including the combination that we used U-Net with

MobilenetV2 backbone. Joint loss function of cross-entropy and dice loss was used as a learning
function with a fixed learning rate value of 0,0001. Proportion of positive and negative samples in the

training dataset was not balanced and to fix this problem when it necessary we adjusted the class

weight parameter in the cross-entropy loss function. To test the accuracy of the model on validation
dataset and to choose best model among others IoU score was used. After the best model was chosen

we tested it in real-time, evaluated accuracy and collected main mistakes to increase quality of data

using a monitoring system. This process was repeated at least 4 times for each class of defects.

Having a monitoring system allowed us to iterate much faster over a typical model development loop.
Training deep neural networks requires gpu computational resources. At the beginning of research we

used Kaggle platform to utilize their gpu resources and to store datasets. Later we switched to locally

installed Nvidia GTX 1070. Regarding the speed of the system, it takes 1 second with Nvidia GTX
1070 to run all components of the system including: detection network, ensemble network and rule-

based classification on one object. The object is represented by 6 outer surface images and 2 inner.

Outer surface images have dimension 256x1248 while inner are 256x248. To process 6 images with

binary segmentation model 100 ms is needed thus ~17 ms for one image. We experimented to set up
the batch size parameter to 6 to make predictions faster but it didn’t give a boost. To process 2 images

with input size 248x248 takes less than 8 ms. To upload one binary model to RAM the server used

approximately 600 mb and the whole ensemble network utilized up to 5gb.
Main programming language to design defect detection system was written in the Python

programming language, while the PyTorch framework was used for machine learning tasks like

training neural networks and making predictions by them. Flask was used as the primary framework
to design monitoring system. Server with an installed inspection system used the Linux operating

system and local network to send data on the central computer to provide a monitoring system with

real-time data.

43

6. Discussion and conclusion

This paper explored a defect detection problem on industrial objects and a possible approach to

solve it by building a system from scratch based on deep learning segmentation methods. Main
components of the system were presented including: decision network, ensemble network, rule-based

classification and monitoring system. The idea of using many binary segmentation models instead of

one multi-class was described together with its main advantages. The system was evaluated on the
newly created Reeds Surface Defect Detection (Reeds SDD) dataset, which is publicly available upon

request to the authors, and key metrics to perform reasonable accuracy evaluation were determined.

Post-processing techniques were described to reduce false positives mistakes and to improve the

system performance.
The experiments on Reeds SDD dataset demonstrated that to achieve an acceptable level of

accuracy there is a need to have a quality and diverse dataset rather than just “big”. A method to

compare results with human level results can give two main conclusions: whether system accuracy is
acceptable for deploying it to production and whether data or models need to be changed to improve

results. Accuracy metrics close to human level performance were achieved on datasets with an

amount of images within a range of 1.5k - 3k that are relatively small and can be collected in any
domain. A few options to annotate images in terms of labeling speed and accuracy were described

depending on the type of defect, its geometrical form, how unambiguous the defect definition is, the

defect’s business importance and how recognizable defectable areas are. For the reed straw domain,

we have proven that the standard web camera Logitech C270 along with specific camera placement
are suitable to assure high quality images. Ambiguous defect definition leads to more than one

possible option on how to annotate images thus to different datasets and respectively different results.

Very likely this problem also exists in other domains. We are thinking about a methodology to label
defectable areas not as binary values 1 or 0 but rather as probability values in range of [0,1]. In our

opinion, if we design a loss function in a way to penalize it more for mistakes where the probability

value is close to 1 then a network will predict non-disputed areas more correctly than now and errors

in disputed areas will be reasonable due to defect ambiguous definition. Such an approach requires
spending more time on data labeling but it looks more natural and closer to a human's way to solve

the problem.

The paper provides essential information about a possible approach to build a visual inspection
system together with a monitoring system to control image quality in real-time and perform machine

learning iteration cycle faster by real-time error analysis and collection of images on which the system

makes mistakes. In our opinion the future work on surface defect detection problem should be focused
on providing more publicly available datasets from different industrial domains and modifying

methods to work well on as small as possible amount of annotated images.

7. References

[1] Tabernik, D., Šela, S., Skvarč, J. et al. Segmentation-based deep-learning approach for surface-

defect detection. J Intell Manuf 31, 759–776 (2020). https://doi.org/10.1007/s10845-019-01476-x.

[2] Krizhevsky, Alex & Sutskever, Ilya & Hinton, Geoffrey. (2012). ImageNet Classification with
Deep Convolutional Neural Networks. Neural Information Processing Systems. 25.

doi:10.1145/3065386.

[3] Ronneberger O., Fischer P., Brox T. (2015) U-Net: Convolutional Networks for Biomedical
Image Segmentation. In: Navab N., Hornegger J., Wells W., Frangi A. (eds) Medical Image

Computing and Computer-Assisted Intervention – MICCAI 2015. MICCAI 2015. Lecture Notes

in Computer Science, vol 9351. Springer, Cham. https://doi.org/10.1007/978-3-319-24574-4_28.
[4] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias

Weyand, Marco Andreetto, Hartwig Adam: MobileNets: Efficient Convolutional Neural

Networks for Mobile Vision Applications. CoRR abs/1704.04861 (2017).
[5] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen,

MobileNetV2: Inverted Residuals and Linear Bottlenecks. The IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2018, pp. 4510-4520. arXiv:1801.04381.

44

[6] J. Masci, U. Meier, D. Ciresan, J. Schmidhuber and G. Fricout, "Steel defect classification with
Max-Pooling Convolutional Neural Networks," The 2012 International Joint Conference on

Neural Networks (IJCNN), 2012, pp. 1-6, doi:10.1109/IJCNN.2012.6252468.

[7] S. Faghih-Roohi, S. Hajizadeh, A. Núñez, R. Babuska and B. De Schutter, "Deep convolutional
neural networks for detection of rail surface defects," 2016 International Joint Conference on

Neural Networks (IJCNN), 2016, pp. 2584-2589, doi: 10.1109/IJCNN.2016.7727522.

[8] Mlynarski, Pawel & Delingette, Hervé & Criminisi, Antonio & Ayache, Nicholas, Deep learning
with mixed supervision for brain tumor segmentation. Journal of Medical Imaging 6(03):1,

doi:10.1117/1.JMI.6.3.034002.

[9] Yang, Yatao, Runze Yang, Longhui Pan, Junxian Ma, Y. Zhu, Tao Diao and L. Zhang. “A
lightweight deep learning algorithm for inspection of laser welding defects on safety vent of

power battery.” Comput. Ind. 123 (2020), doi:103306.

[10] Yang, Dingming, Yanrong Cui, Zeyu Yu, and Hongqiang Yuan. "Deep Learning Based Steel
Pipe Weld Defect Detection." arXiv preprint arXiv:2104.14907 (2021).

[11] Caron, Mathilde, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and

Armand Joulin. "Emerging properties in self-supervised vision transformers." arXiv preprint
arXiv:2104.14294 (2021).

[12] Ting Chen, Advancing Self-Supervised and Semi-Supervised Learning with SimCLR, 2020. URL:

https://ai.googleblog.com/2020/04/advancing-self-supervised-and-semi.html, [Accessed 1 June 2021].
[13] Božič, Jakob, Domen Tabernik, and Danijel Skočaj. "Mixed supervision for surface-defect

detection: from weakly to fully supervised learning." Computers in Industry 129 (2021), doi:

10.1016/j.compind.2021.103459.
[14] Deshpande, Aditya M., Ali A. Minai, and Manish Kumar. "One-Shot Recognition of

Manufacturing Defects in Steel Surfaces." Procedia Manufacturing 48 (2020): 1064-1071, doi:

10.1016/j.promfg.2020.05.146.
[15] Andrei-Alexandru Tulbure, Adrian-Alexandru Tulbure, Eva-Henrietta Dulf, A review on modern

defect detection models using DCNNs – Deep convolutional neural networks. Journal of

Advanced Research, 2021, ISSN 2090-1232, https://doi.org/10.1016/j.jare.2021.03.015.
[16] Karim Tout. Automatic Vision System for Surface Inspection and Monitoring : Application to

Wheel Inspection. Performance [cs.PF]. Université de Technologie de Troyes, 2018. English.

ffNNT : 2018TROY0008ff. fftel-02974251.
[17] Landing.ai platform, 2021. URL: https://landing.ai/platform/, [Accessed: 1 March 2021].

[18] H. Kuang, Y. Ding, R. Li and X. Liu, "Defect detection of bamboo strips based on LBP and

GLCM features by using SVM classifier," 2018 Chinese Control And Decision Conference
(CCDC), 2018, pp. 3341-3345, doi:10.1109/CCDC.2018.8407701.

[19] Q. Xiansheng, H. Feng, L. Qiong and S. Xin, "Online defect inspection algorithm of bamboo

strip based on computer vision," 2009 IEEE International Conference on Industrial Technology,
2009, pp. 1-5, doi:10.1109/ICIT.2009.4939598.

[20] Giordano D., Kavasidis I., Palazzo S., Spampinato C. (2015) Rejecting False Positives in Video

Object Segmentation. In: Azzopardi G., Petkov N. (eds) Computer Analysis of Images and
Patterns. CAIP 2015. Lecture Notes in Computer Science, vol 9256. Springer, Cham.

https://doi.org/10.1007/978-3-319-23192-1_9.

[21] Fan, Fenglei, Jinjun Xiong and Ge Wang. “On Interpretability of Artificial Neural Networks.”
ArXiv abs/2001.02522 (2020): n. pag.

[22] A Chat with Andrew on MLOps: From Model-centric to Data-centric AI, video, 2021. URL:

https://www.youtube.com/watch?v=06-AZXmwHjo, [Accessed: 31 May 2021].

	1. Introduction
	2. Related work
	3. Proposed approach
	3.1. Ensemble network
	3.2. Rule-based classification
	3.3. Monitoring system
	3.4. Iteration cycle

	4. Dataset
	5. Evaluation
	5.1. Error-analysis
	5.2. Implementation details

	6. Discussion and conclusion
	7. References

