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Abstract  
Quality inspection is one of the most essential parts of any manufacturing process that helps 

businesses to ensure the quality of their product by detecting defects which is extremely 

important due to high market competition. Deep-learning methods have become the most 

promising approaches to solve this problem. The advantage of using deep learning is that it 

can detect the defects that cannot be detected by traditional machine vision algorithms. This 

paper presents a segmentation-based deep learning quality inspection system that is designed 

for detecting defects both outside and inside an object's surface. The system was tested on 

specific domain (reeds/bamboo straws) but can be generalized to any domain. The design of 

the system's architecture allows to iterate over typical machine learning cycle (collect data, 

model training, error analysis) in a fast way due to real-time collection of images on which 

the system makes mistakes. In this paper we gave equal attention to all crucial parts of the 

system: segmentation neural networks, decision algorithms, dataset and monitoring system. 

In our case we demonstrate some advantages of using an ensemble of binary segmentation 

models over one multiclass model, especially when it comes to data labeling. We discovered 

that applying post-processing rules after segmentation can significantly improve accuracy of 

your model. Experiments are performed on newly created dataset with real-world images 

from reeds straw factory and system’s errors were compared with human level performance. 

The dataset is available on request for other to develop and test new models for surface defect 

detection problem. 
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1. Introduction 

In industrial processes, one of the most important tasks when it comes to ensuring the proper 

quality of the finished product is inspection of the product’s surfaces. Often, surface quality control is 

carried out manually and workers are trained to identify complex surface defects. Such control is, 
however, very time consuming, inefficient, and can contribute to a serious limitation of the production 

capacity [1]. To overcome these factors many giant companies started to implement their built-in 

solutions, so called automated visual inspection systems. These systems have a big level of 
generalization, the same solution works equally on different factories, totally different light conditions 

and even sometimes with different objects. 

Despite tremendous achievements in automated visual inspection solutions there are still many 
areas where quality checking is performed by humans. Main reason for that is impossibility to apply 

built-in visual inspection solutions due to non typical object view, non typical object surface and 

variety of defects that determine whether a product is suitable for sale. For this case there is a need to 

build a customized inspection system from scratch. Building such systems from scratch is not 

                                                   
II International Scientific Symposium «Intelligent Solutions» IntSol-2021, September 28–30, 2021, Kyiv-Uzhhorod, Ukraine 

EMAIL: mykolarobotyshyn@gmail.com (M. Robotyshyn); marianna.sharkadi@uzhnu.edu.ua (M. Sharkadi); mykola.malyar@uzhnu.edu.ua 

(M. Malyar) 

ORCID: 0000-0001-6567-6974 (M.Robotyshyn); 0000-0002-1850-996X (M. Sharkadi); 0000-0002-2544-1959 (M. Malyar) 

 
©️  2021 Copyright for this paper by its authors. 

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).  

 CEUR Workshop Proceedings (CEUR-WS.org)  

 

mailto:mykolarobotyshyn@gmail.com


33 

 

straightforward and includes many iterative steps: camera settings, data collection pipeline, model 
training, error analysis, deploying and real-time monitoring system. 

This paper focuses on providing a detailed guide on how to build a surface defect detection system 

from scratch using modern machine learning approaches. Deep learning approaches have become the 

first choice methods when it comes to work with images. More and more new methods have been 
invented during the last few years that show huge improvement both in terms of accuracy and 

required computational resources. Compared to classical machine vision methods deep learning can 

directly learn low-level features, and have a higher capacity to represent complex structures, thus 
completely replacing hand engineering of features with automated learning process[1]. The algorithm 

that solves surface defect detection problems should be capable of finding the defect area on an 

object's surface, thus it means not just classify whether an object is defectable, but to understand 
exactly which pixels are defectable. As for any other supervised approaches to teach a system to 

detect defects we need to provide labeled data to the algorithm. The first question while working with 

deep learning supervised methods is how many annotated images we need to provide to achieve an 

acceptable level of accuracy? This is a crucial question because usually it is impossible to collect 
hundreds of thousands labeled images thus there is a need for either a neural network that can learn 

from small amounts of samples or very quality and diverse dataset. The one part the paper focuses on 

is the iterative process of how to collect appropriate dataset to train a model. We achieved accuracy 
results close to human level performance with approximate dataset’s size within a range of 1.5k to 3k 

labeled images which is possible to collect for any domain. 

Partly, this paper explores suitable deep learning methods to solve surface defect detection 
problems. In particular, the paper studies state-of-the-art semantic segmentation neural networks 

applied to a variety of different surface defects like cracks, spots, small circles holes, hammered stuff 

inside (see Fig. 1, Fig. 2). While choosing suitable neural network architecture we take into account 

four characteristic. 

 speed of the network 

 computational requirements 

 accuracy on benchmark ImageNet dataset 

 annotation requirements 
Because it is possible to have more than one defect on object we experimented with multi-class 

neural network and ensemble of binary neural networks. Using separate networks for each class has 

its pros and cons. Obviously, the main disadvantage is significantly lower speed performance of the 
system. But there are a few advantages that are extremely important in practical cases. Firstly, easier 

and faster way to label images because each image contains only 2 classes: defect and no-defect. 

Secondly, it requires less amount of labeled images. And thirdly, total accuracy is usually higher. 

 

Figure 1: Defect classes where red color highlights defectable area 
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We evaluate our system on the dataset termed Reeds Surface Defect Dataset (ReedsSDD) that we 
created ourselves from reeds factory. Partly, the paper provides essential information regarding 

collecting images and labeling them. Capability to collect quality images is a crucial step to build a 

highly accurate system. Specifically, for surface defect detection problem quality images mean two 

things. Firstly, a list of images that covers the full surface of object’s thus there is a need for more 
than one camera and their correct placement. Secondly, the defect area on image should be 

recognizable by the human eye thus there should be twice more attention to image quality because 

very often the defect area is small, like in crack defects. The paper covers information about camera 
model and settings we used, solution to cameras placements and tips on how to adjust camera settings 

to produce more quality images than with default settings. 

 

Figure 2: Defect classes where red line highlights defectable area 
 
The remainder of the paper is organized as follows. The related work is presented in “Related 

work” section, with proposed approach and details of all important steps to build system from scratch 

in “Proposed approach”, important information regarding dataset in “Dataset” and system’s results 
comparison with human level performance together with implementation details in section 

“Evaluation”. The paper concludes with a discussion in “Discussion and conclusion” section. 

2. Related work 

After the breakthrough paper[2] deep learning approaches became more popular in any domain 
and manufacturing is not an exception. There are many practical cases where convolutional neural 

networks outperform classic machine learning algorithms on problems where input data are images. 

Main advantage of deep learning approaches is that they do not require any changes in algorithms 
when you apply them to another domain. On the other hand, in classic computer vision approaches, 

you very likely need to play with algorithm’s hyperparameters and even with image preprocessing 

operations. 

Much research work has been done in the field of designing neural networks architectures so that 
acceptable accuracy can be achieved with a minimum amount of labeled images which is extremely 

important in practical cases when data labeling and collection is a time consuming process. Research 

work by [1] presents architectures that require only 25-30 labeled images to achieve enough level of 
accuracy. Most state-of-the-art semantic segmentation models use encoder-decoder architecture firstly 

described in [3] that proved results on biomedical image segmentation tasks. One well known 

problem when dealing with deep learning is the model's speed thus more and more new approaches 
focused on designing neural networks with smaller amounts of parameters[4,5]. 

There are many works on applying supervised neural networks for surface defect detection 

problems. In 2012 the work of Masci et al. [6] was among the first who applied shallow neural 

networks to surface defect detection. Later papers [7,8,9,10] described the use of deep neural 
networks for detection of rail surface defects, brain tumor segmentation, inspection of laser welding 

defects, steel pipe defect detection respectively. During last years tremendous success were achieved 

in semi-supervised, weakly-supervised learning - approaches that partly eliminated the problem of 
labeled data. Latest publications[11,12] from top-notch companies like Facebook, Google showed 

compatible results of self-supervised methods compared to supervised on benchmarks datasets. Latest 
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work on surface-defect detection problems very often related to self-supervised learning. Combining 
small amounts of pixel-level labeled images with weakly labeled images can outperform most state-

of-the-art supervised results in defect detection problems[13]. One-shot learning method was 

described in [14] to detect defects on steel surface. [15] contains a detailed overview of modern 

efficient approaches to solve problem. 
Top giant companies like Omron provide built-in solutions called automatic visual inspection 

systems. [16] provides an overview of automatic visual inspection systems, their capabilities and 

limitations, areas where they can be used. To speed up building defect detection system from scratch 
Landing.AI company provides end-to-end visual inspection platform LandingLens [17]. It is designed 

to manage data, to perform automatic error-analysis and allows to train neural networks without 

programming knowledge. 
Surface defect detection problem regarding reeds/bamboo straws domain hasn’t been explored yet 

mainly because of lack of publicly available datasets. There are a limited number of papers, the 

classic computer vision approaches described in [18, 19] used for bamboo straw defect inspection. 

And for reeds straws defect detection there we did not find published papers yet. 
Compared with methods mentioned above, the approach proposed in this paper is fully supervised 

and consists of two main steps. The first one is an ensemble of binary U-Net semantic segmentation 

models where each model is trained for one type of defect. Each model is trained to detect 
corresponding defect’s pixels and runs consecutively one after one. The second step is a rule-based 

system that based on presence of defects, their type and area classify object to one of predefined 

classes. Models were trained on Reeds SDD dataset that we collected on reeds factory. The used 
dataset consists of a relatively small amount of images within a range of 1.5k to 3k for each defect 

type. 

3. Proposed approach 

We addressed the surface defect detection problem as a segmentation-image problem. There are 
two main reasons why the segmentation approach is more suitable for this problem rather than 

classification. Firstly, the visual inspection system is required to highlight the exact defectable area on 

the object thus making predictions on pixel-wise level. Secondly, the classification approach has a 

low level of interpretability by making predictions on image-wise level and it leads to significant 
difficulties on error analysis stage to understand why model makes one or another type of mistakes 

and what changes need to be done to improve model. The process of object’s defect detection consists 

of 2 main steps. The first one is an ensemble network - an ensemble of binary segmentation models 
that has been chosen over one multi-class model due to easier labeling process, less amount of 

training images and better total accuracy. The second step, where we classify the object to one of 

predefined classes, includes a rule-based process that is built on top of the ensemble network and uses 

ensemble network’s output about presence of defects and area size to classify the object. The first step 
is referred to as an ensemble network, while the second stage, as rule-based process. Real time 

monitoring system has been built to provide an option to see highlighted defect area and respective 

size thus it provides an explanation why a system takes one or another decision. Three main 
components: ensemble network, rule-based process, monitoring system together with data collection 

pipeline that will be described later create a real-time defect detection system that paper is focused 

on[fig 3]. 

3.1. Ensemble network 

Binary segmentation model returns probability for each pixel being defected. Ensemble network 

consists of seven binary models, where each model is trained to detect one type of defect. Binary 

approach significantly speeds up the labeling process and moreover has more precise accuracy 
because the defects are very different in terms of area size, appearance, possible quantity per image 

and pixel-wise importance. Each model in ensemble networks runs consecutively one by one, the 

process can be stopped immediately depending on defect presence and the model's output goes as 

input to a rule-based process. 
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Figure 3: Main components of the system 

 

Nowadays encoder-decoder architecture is the go-to choice when dealing with deep segmentation 
neural networks. Often the encoder is a classification neural network with pre-trained weights on 

ImageNet dataset. The aim of the encoder is to learn low-level representational features called feature 

map and usually it consists of convolutional filters followed by batch-normalization, non-linear 
activation function and max-pooling. Decoder takes feature map as input and up-samples it to get a 

dense classification. Ensemble network consists of models which are equal in terms of architecture 

and designed as U-Net model with MobileNetV2 pretrained encoder. Each model contains 6.5ml 

parameters. U-Net architecture with MobileNetV2 is a good tradeoff between the amount of 
parameters and benchmark accuracy on the ImageNet dataset. At the time of the study, pretrained 

MobileNetV3 encoder was not publicly available to use. 

Binary segmentation model returns a two-dimension matrix termed as mask where each value 
corresponds to a pixel and has probability in range [0,1] for being defected. As a closer value to 1 is 

more likely the pixel is defected. Each binary model has two hyperparameters: probability threshold 

and min area size. These values are used in post-processing operations. The first one, probability 
threshold is used to convert probabilities into either 1 or 0 by applying threshold operation which can 

be formulated as follows: if pixel value is less than threshold then assign 0 else 1. Modifying  the 

probability threshold parameter allows to make the model more or less strict. For example, if 

probability threshold = 0.9, that means we want the model to predict that pixel is defected only in 
cases when the model is very confident thus the pixel probability is close to 1. The second 

hyperparameter, that applied after threshold operations, is termed as min_area size - minimal amount 

of defected pixels on the image to consider an object to be defectable. What if an image contains 10 
defective pixels? Does it mean that the object is defected? In practice, a defected object means that 

some area of surface is defectable. Depending on the problem, type of defect, type of object’s surface, 

the size of defected area to consider the object as defectable is different. That's why we have a 
hyperparameter min_area size  that controls the minimal size of the defectable area. The main logic is 

- if the amount of defectable pixels is less than the hyperparameter's value then the object is not 

defectable and corresponding pixels will be assigned a value of 0. To sum up, adjusting two 

hyperparameters mentioned above for the specific type of defect allows to improve accuracy of each 
binary segmentation model thus to improve accuracy for ensemble network. 

Very common problem when applying machine learning algorithms in production is false positive 

errors especially when it comes to using deep neural networks[20]. Amount of false positive errors 
increases when we slightly change the distribution of real-time data compared to training data. It 

happens, for example, when light conditions or image background are changing. Moreover these 

errors are sometimes very unreasonable like predicting defectable areas outside the object’s surface. 

To remove these unreasonable types of mistakes we propose one more post-processing operation that 
helps to make the system more stable. Before running an ensemble network we use another 

segmentation model to determine the area where the object is located. This is an easy problem and 

accuracy of this model is very close to optimal. Having this detection network allows us to remove 
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false predictions from ensemble networks that are outside the object's surface area. Detection network 

is the initial component of the system and also it allows to calculate the diameter of the object. 

 
Figure 4: Post-processing operations 

To sum up, an ensemble network together with an initial detection network are responsible for 

detecting different types of defects and size of corresponding defectable area. Later this information 
goes as input to rule-based classification. To give system better capabilities to generalization thus to 

be more confident in accuracy we apply post-processing operations [Fig 4]. 

3.2. Rule-based classification 

Rule-based classification is a second main step in the system pipeline that takes as input 

information about what type of defects are present in an object, what corresponding defect area size is 

and what is the diameter of the object. In manufacturing processes some defects can be eliminated 

from the object, some objects can be divided by their size or diameter, some objects are more 
expensive than others  thus there is a need to implement further classification of objects based on 

information from ensemble and detection networks. 

In our case, in the factory objects could be classified into 11 different types. The classification 
procedure is based on predefined rules thus we termed this stage as rule-based classification. Simple 

rules look like: 

 If the object contains no defects and its diameter is less than 10mm then classify the object as 

class7 

 If the object contains defect type “cracks” or defect type “holes” then classify object as class0 

 If the object contains defect type “spots” and defectable area is less than X pixels then classify 

object as class4 
These rules should be able to classify any objects to one of predefined classes. The output of rule-

based classification is final information about an object: object’s class and additional information like 

diameter of the object, defectable area size. Later output goes as input to the monitoring system thus it 

is important to send not only the object's class but also relevant information regarding previous 

outputs of the system to provide as much as possible information to the monitoring system to better 
understand why the whole system takes one or another decision. 

3.3. Monitoring system 

Lack of interpretability is one of the main issues why businesses doubt the use of machine learning 

systems in production. Much research work has been done to understand the deep neural network’s 

behaviour, to understand why a model makes one or another decision and the best method to achieve 

it is visualization of feature maps on each layer[21]. Big advantage of using the segmentation 
approach is that it works on pixel-level thus we know the model's prediction not only for the whole 



38 

 

image but also for each pixel on the image. It allows us to stack input image with a predicted mask 
and create stacked image. 

There are 3 main goals of building a monitoring system: interpretability, control the quality of 

images and real-time data collection. Firstly, as mentioned above, interpretability is crucial for 

integrating machine learning solutions to production. To guarantee it we plot a stack image with 
highlighted defectable areas thus it is possible in a moment to understand whether prediction is 

correct and why the system classified the object to corresponding class. Secondly, to ensure the 

correctness of the system, we must make sure that the images that the system takes as an input are 
high quality. For each object, the monitoring system plots the images taken from cameras. If 

something goes wrong, like blind images or moving a camera we can detect it and moreover if there 

are multiple cameras we know exactly which one needs to be fixed. The third goal is about creating 
opportunities to collect more data, especially to collect mistakes that the system makes. To improve a 

model's accuracy it is important to understand what mistakes the model makes and fill the train 

dataset with more images on which model failed. 

Monitoring system is the last component of the defect detection system and as valuable as other 
components. In simple words it helps to “understand” why the system makes one or another decision. 

For reeds straw case monitoring system describes the following information: 

 Diameter of the straw 

 Defectable area 

 Type of defect 

 Straw class 

3.4. Iteration cycle 

In machine learning the process of creating a solution or model is always iterative and consists of 

three main steps: data preparation, model training and error analysis. According to Andrew Ng data-

centric approach[22] researchers need to spend more time to prepare data and perform correct error 
analysis rather than focus only on model’s architecture research. The goal of this chapter is to present 

how we can iterate over a typical machine learning cycle faster using a monitoring system for 

manufacturing cases. 
Let’s assume that we trained a model on the first version of the dataset. Now we need to determine 

accuracy thus we decide to test a model on new objects. Monitoring system allows us to analyze 

model performance by “watching” the model's prediction, defectable areas. Very often it is not 

enough just to increase the dataset size to improve accuracy. It is important to increase the dataset by 
adding images on which model makes mistakes. With the help of a monitoring system we are able to 

analyze predictions thus to identify types of images on which model makes mistakes. How to collect 

these images on production? Here it comes again to a monitoring system that allows real-time 
collection of all images taken from cameras. 

To sum up, the monitoring system is a tool that helps to do error analysis and data collection 

processes much faster than without it. And moreover it allows us to collect not just a big dataset but 
good. We encourage everyone to build this system and perform error analysis and data collection 

steps using it. 

4. Dataset 

The proposed system is evaluated on a Reeds Surface Defect Detection (Reeds SDD) dataset that 

we created ourselves in an industrial factory. This section provides details regarding dataset creation 

from scratch, camera’s settings and placements, labeling images. To get access to the dataset, please 

contact authors. We guarantee to provide quick access. 
There are many options for what camera type to use and as in machine learning choosing a camera 

is also an iterative process. We experimented with different cameras starting from industrial one like 

Basler and simple web camera Logitech C270. The main criterion while taking the decision whether a 
camera is suitable or not is quality of image taken from camera. Taking into consideration that we are 

dealing with surface defect detection problem, one should pay twice more attention to assure good 

image quality. How to understand without collecting a lot of images and not training neural networks 
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whether image quality is acceptable and neural networks will detect defects well? There is one simple 
rule: defectable areas should be recognizable by the human eye when looking at the image. If humans 

do not see these areas in the image then very likely neural networks also will fail. And if humans 

easily recognize these areas in a moment then image quality is acceptable for further data collection. 

After repeating this process we selected the Logitech C270 web camera due to the acceptable level of 
image quality and much lower price compared to industrial cameras. 

 

Figure 5: Comparison of “hard” and “soft” labeling 

In this paragraph we focus on important camera’s settings and how to adjust them to improve 

image quality compared to default settings. Main settings are the next: 

 Focus distance 

 Auto-exposure 

In surface defect detection problem there is a need to place cameras close to the object to see the 
object's surface with high quality. According to our experiments approximately 4.7 inches is enough 

distance to see all defectable areas on reeds straws objects. After moving the camera closer to the 

object focus distance should be changed to prevent image from blurring. 
Reeds straw’s surface has different shades of brown and dark colors thus we need to assure light 

conditions to make these shadows easily distinguishable. In practice the system should be designed in 

a way that small changes in light condition don’t affect the system accuracy. Adjusting auto-exposure 

allows to make images more stable to light changes and moreover allows to change the camera’s 
exposure to make images brighter or darker without changing outside light. We noticed that best 

settings values for auto exposure are within a range of 40-60. 

To detect defects on more complex objects like reed straws it is not enough to make images only 
from one camera. Images should cover all surface area thus there is a need to understand what optimal 

amount of cameras we need and what is the most suitable placement for them. Based on our 

experiments we determine that a web camera is capable of covering 120 degrees. In order to clearly 

see defects like crack defects we need to place cameras not far than 4.7 - 5 inches from the object but 
it allows us to cover only half of the straw’s length. So, two cameras were placed to take images of 

120 degrees of straw’s surface. To cover the entire surface area (360 degree), four more cameras were 
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placed so that the area they were looking at did not intersect with other camera’s view areas. Having 
determined the optimal way to place the cameras, we began to make images to create a dataset. 

 

Figure 6: Comparison of “strict” and “not strict” labeling 

The most time-consuming process of creating a dataset is not taking images but labeling them. 

Segmentation approach requires to label each defectable area on the image. To simplify and speed up 

the labeling process we created a separate dataset for each type of defect thus it required to label only 

one corresponding type of defect on the image. From the speed perspective we proposed two ways of 
labeling termed “hard labeling” and “soft labeling”. The difference between them is how accurate 

labels are [see Fig 5]. In “hard labeling” we labeled each defectable area very accurately, pixel by 

pixel using a polygon figure so it takes significantly more time compared to “soft labeling” that 
requires to label defects nearly accurately, for example using rectangles and covering areas without 

defects also. The reason we proposed two approaches is because some types of defects like brown or 

dark spots are easy to detect thus it requires not super accurate labels, but for defects like crack lines, 
small holes accurate labels are crucial. From the defect definition perspective we proposed two other 

ways of labeling termed “strict” and “not strict”. Very often because of the object's surface specialities 

and ambiguous defect definition it is not possible to say that this area is 100% defectable and another 

area is 100% not defectable. We called these ambiguous areas as arguable areas. “Strict” way of 
labeling means that most arguable areas were labeled as defectable while “not strict” means that these 

areas we did not label [see Fig 6]. Again it depends on the type of defects and defect’s importance. 

“Strict” labeling is more sensitive to a bigger amount of false positive mistakes. Labeling is a very 
important process so choosing the best tradeoff between “hard” and “soft”, between “strict” and “not 

strict” strategies can be vital to assure good quality dataset thus good model’s accuracy. For the 

labeling process we used a labeling tool program VIA that is publicly accessible. 

Reeds SDD dataset consists of 7 separate datasets for each type of defect. Approximate size of 
each dataset is within a range of 1-3 thousand of images. All images have the same resolution 

1280x960. Some datasets were labeled by “strict” labeling and some by “not strict”. Based on our 

experiments, it was not possible to achieve an acceptable level of accuracy with lower image 
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resolution. One should be careful to apply different augmentation functions during training to assure 
that defectable areas are still recognizable by human eyes. 

5. Evaluation 

This chapter is about three details regarding the system. Firstly, we propose a way to make error 
analysis and evaluated the system's accuracy with human level performance. Secondly, training 

details chapter has some interesting exploration regarding training binary segmentation model, loss 

function and speed of the model on inference. Thirdly, we described the technology stack we use to 
build all components of the system. 

5.1. Error-analysis 

To apply a surface defect detection system to production it is crucial to understand how accurate 
the system is. On the other hand, it is difficult to evaluate the accuracy of the system with just a one 

number due to the large number of different defects, the different proportion of these defects and the 

impossibility in some cases to say unambiguously to which defect class the object belongs. The 

following evaluation metrics were used to determine the accuracy of the system for each defect class 
[see Table 1]: 

 Recall - what percentage of straws with a defect the system recognizes 
 False positive error (FP) - what percentage of straws the system erroneously defines as 

straws with a defect, even though they have no defect 

Table 1 
Evaluation metrics for each defect class 

Defect class Recall (%) FP (%) 

Hammered stuff inside 90 % - 96 % 2 % - 5 % 
Cut 97 % < 1 % 

Brown spots 97 % 2 % - 3 % 
Circle holes 90 % - 95 %  5 % - 10 % 
Dark spots 90 % + 1 % - 3 % 

Cracks 60 % - 70 % 1 % - 3 % 

 

These metrics were empirically determined during system testing on industrial reeds straws 
factory. The main reason why for some defect classes metrics are not a single value but interval is 

ambiguous defect definition thus sometimes it is not possible to classify for sure. As mentioned 

above, evaluating system accuracy with one value is difficult and requires to customize calculation to 
business needs.  

Taking into consideration the real-time proportion of defects, we calculated the error rate of the 

system as one value and it is approximately 10 %. So, the system makes a mistake for each one of ten 

straws and this result is very close to human level. 
How to understand whether system accuracy is acceptable for deploying it to production? What 

type of defect is a system’s accuracy bottleneck?  

One way to do it is to compare accuracy metrics of each type of defect to human-level accuracy. 
Firstly, it will give us a picture of how the quality inspection process will change in terms of previous 

level of accuracy after deploying the system to production. Of course, the system accuracy should be 

close to human-level not to harm business. Secondly, comparing accuracy to human-level allows us to 

find types of defects where we are worse than humans thus this is the room for improvements. But 
how to make this comparison correct and equal? 

 Humans have a main advantage compared to machines: they analyze objects by eyes not based on 

images from web-camera like deep neural networks.  
Therefore there is a need to evaluate human performance both on images and on real objects as 

workers do [Table2]. 
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Table 2 
System and human-level evaluation metric (only Recall) 

Defect class System (%) Human-level on 
images  (%) 

Human-level on 
real objects (%) 

Hammered stuff 
inside 

90 % - 96 % 90+ %  95% 

Cut 97 % 99 % 99% 
Brown spots 97 % 95+ % 95+% 
Circle holes 90 % - 95 %  90+ % 95+ % 
Dark spots 90 % + 95+ % 95+ % 

Cracks 60 % - 70 % 65 % - 73 % 85 %-90 % 

 

From the table above it is clear that the system's metric values for all defect classes except one are 
very close or even equal to human-level performance. To achieve even greater accuracy for these 

defect classes much more annotated images are required so it is a very time consuming process and 

does not guarantee that the results will be better as they are now approaching to human level. Instead 
the Table2 shows that the system's accuracy for defect type class6 is close to “human-level on 

images” and extremely worse compared to “human-level on objects”. It means that the problem is not 

in model but in image quality because there is significant difference in both humans’ metric values.  

Approach to compare the system's accuracy with human-level performance has two main 
objectives: firstly it gives an understanding how accurate the system is comparing to humans and 

secondly what needs to be changed model or dataset to improve results. 

5.2. Implementation details 

Crucial part of source code for training binary segmentation models was taken from github 
repository segmentation_models.pytorch. The repository provides different segmentation 

architectures and a variety of backbones including the combination that we used U-Net with 

MobilenetV2 backbone. Joint loss function of cross-entropy and dice loss was used as a learning 
function with a fixed learning rate value of 0,0001. Proportion of positive and negative samples in the 

training dataset was not balanced and to fix this problem when it necessary we adjusted the class 

weight parameter in the cross-entropy loss function. To test the accuracy of the model on validation 
dataset and to choose best model among others IoU score was used. After the best model was chosen 

we tested it in real-time, evaluated accuracy and collected main mistakes to increase quality of data 

using a monitoring system. This process was repeated at least 4 times for each class of defects. 

Having a monitoring system allowed us to iterate much faster over a typical model development loop. 
Training deep neural networks requires gpu computational resources. At the beginning of research we 

used Kaggle platform to utilize their gpu resources and to store datasets. Later we switched to locally 

installed Nvidia GTX 1070. Regarding the speed of the system, it takes 1 second with Nvidia GTX 
1070 to run all components of the system including: detection network, ensemble network and rule-

based classification on one object. The object is represented by 6 outer surface images and 2 inner. 

Outer surface images have dimension 256x1248 while inner are 256x248. To process 6 images with 

binary segmentation model 100 ms is needed thus ~17 ms for one image. We experimented to set up 
the batch size parameter to 6 to make predictions faster but it didn’t give a boost. To process 2 images 

with input size 248x248 takes less than 8 ms. To upload one binary model to RAM the server used 

approximately 600 mb and the whole ensemble network utilized up to 5gb. 
Main programming language to design defect detection system was written in the Python 

programming language, while the PyTorch framework was used for machine learning tasks like 

training neural networks and making predictions by them. Flask was used as the primary framework 
to design monitoring system. Server with an installed inspection system used the Linux operating 

system and local network to send data on the central computer to provide a monitoring system with 

real-time data. 
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6. Discussion and conclusion 

This paper explored a defect detection problem on industrial objects and a possible approach to 

solve it by building a system from scratch based on deep learning segmentation methods. Main 
components of the system were presented including: decision network, ensemble network, rule-based 

classification and monitoring system. The idea of using many binary segmentation models instead of 

one multi-class was described together with its main advantages. The system was evaluated on the 
newly created Reeds Surface Defect Detection (Reeds SDD) dataset, which is publicly available upon 

request to the authors, and key metrics to perform reasonable accuracy evaluation were determined. 

Post-processing techniques were described to reduce false positives mistakes and to improve the 

system performance. 
The experiments on Reeds SDD dataset demonstrated that to achieve an acceptable level of 

accuracy there is a need to have a quality and diverse dataset rather than just “big”. A method to 

compare results with human level results can give two main conclusions: whether system accuracy is 
acceptable for deploying it to production and whether data or models need to be changed to improve 

results. Accuracy metrics close to human level performance were achieved on datasets with an 

amount of images within a range of 1.5k - 3k that are relatively small and can be collected in any 
domain. A few options to annotate images in terms of labeling speed and accuracy were described 

depending on the type of defect, its geometrical form, how unambiguous the defect definition is, the 

defect’s business importance and how recognizable defectable areas are. For the reed straw domain, 

we have proven that the standard web camera Logitech C270 along with specific camera placement 
are suitable to assure high quality images. Ambiguous defect definition leads to more than one 

possible option on how to annotate images thus to different datasets and respectively different results. 

Very likely this problem also exists in other domains. We are thinking about a methodology to label 
defectable areas not as binary values 1 or 0 but rather as probability values in range of [0,1]. In our 

opinion, if we design a loss function in a way to penalize it more for mistakes where the probability 

value is close to 1 then a network will predict non-disputed areas more correctly than now and errors 

in disputed areas will be reasonable due to defect ambiguous definition. Such an approach requires 
spending more time on data labeling but it looks more natural and closer to a human's way to solve 

the problem. 

The paper provides essential information about a possible approach to build a visual inspection 
system together with a monitoring system to control image quality in real-time and perform machine 

learning iteration cycle faster by real-time error analysis and collection of images on which the system 

makes mistakes. In our opinion the future work on surface defect detection problem should be focused 
on providing more publicly available datasets from different industrial domains and modifying 

methods to work well on as small as possible amount of annotated images. 
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