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Abstract  
There are the research results of using machine learning to solve the problem of the remote 

host operating system detection in the article. The analysis of existing methods and means of 

detection of the remote host operating system are carried out, the main advantages and 

disadvantages of their using are defined. Modeling of machine learning methods is carried out. 

The software architecture is designed and experimental application is developed. It uses a 

trained machine learning model that allows detecting the type and version of operating system 

with high accuracy. 

 

Keywords  1 
Operating system detection, machine learning, computer networks, network protocol, scanning.  

1. Introduction 

Today, the number of devices in computer networks is growing every day. The list of devices 

includes routers, printers, IP phones, smart things, personal computers, laptops, smartphones, etc. 
However, not all the network devices have the latest version of the operating system (OS) and 

updates related to its security. The reasons for this may be: lack of necessary funding or lack of 

required hardware for the new version of the operating system to work properly; unwillingness of 
device users to master the new interface or capabilities; lack of support for the software used in the 

new version of the operating system. The need for constant OS updating is an ever-increasing number 

of identified vulnerabilities [1, 2]. Exploiting these vulnerabilities could lead to breaches of the 

confidentiality, integrity, and availability of data and other software, such as web services [3, 4]. OS 
vulnerabilities cause the possibility of unauthorized access to database-oriented applications, which in 

turn requires additional protection [5]. Network administrators must be ready for possible attacks. It 

requires constant network monitoring to detect unauthorized devices or devices, which are running an 
old and/or vulnerable version of the operating system. 

Penetration testing specialists and ethical hackers need to gather as much information about the 

object as possible to conduct authorized attacks in the initial stages. It is necessary to form the most 
effective vector of attack to identify potential vulnerabilities in the protection system of the researched 

infrastructure [6]. Knowledge about the family, type, and version of the operating system installed on 

network hosts can help them, because after all, each OS is associated with certain vulnerabilities in its 

software [1].  
Currently, there are a significant number of software tools for the operating system detection, 

which allow some probability to determine its family, not to mention the ability to determine the type 

and version of the OS. 
Therefore, it is very important to research and develop methods and tools that will determine 

detailed information about the remote host operating system with high reliability, which will increase 

the efficiency of identifying vulnerabilities and, consequently, increase the level of cyber security in 

general. 
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2. Methods and tools for the operating system detection 

There are two main methods for detecting a remote host operating system: active and passive. 

The active methods are based on sending a specially built service packets to the target machine [7]. 

Then after receiving answer analysis, a conclusion about the target node operating system is formed. 
The advantages of this method are: 

 speed – since the packets are sent to the target node, you can get a response faster, without 

having to wait for the necessary packets in the network; 

 simplicity – usually you only need to compare the received answers with the database of 

signatures, without analyzing the parameters or their combination; 

 flexibility – due to the packages are formed manually, it is possible to adjust the packages 
contents, adding new ones as needed. 

However, there are also disadvantages:  

 visibility – using this method, packets are sent over the network, so one can detect them and 

apply appropriate actions; 

 signature database usage – record absence in the database, causes wrong detection or no 

answer at all; 

 necessity of the node response receiving – if the response from the target node is not received, 
it is impossible to detect the operating system. 

The passive methods of the operating system detection are based on network traffic listening, 

transmitted packets collecting, and then, their contents analyzing to form a conclusion about the 
remote host OS [8]. 

The advantages of this method are:  

 invisibility – because of continuous listening, there is no activity on the listening network 

device, or this activity is so low that it can be perceived as normal traffic during the business day; 

 no need to receive the target node response – traffic analysis from the target node to other 
devices is allowed. 

The disadvantages of this method are: 

 speed – it is necessary to wait for the appearance of certain packets in order to form a 

conclusion, that takes a long time in the case of the network activity absence; 

 implementing complexity – since it is not possible to send self-generated packets, you need to 

use the information from intercepted packets. 
In conclusion, the appropriate approach should be chosen depending on whether you want to 

perform the scan imperceptibly or you want to get the result quickly. 

Existing tools of the remote node operating system detection also is considered. Currently, a small 
number of software products perform the task of scanning the remote node operating system. Often 

this task is not their main function, but only one of the menu options. 

The most common tools that use the active detection method are Nmap, NetScanTools Pro and 
Xprobe.  

Nmap is a free, open source software designed for network scanning and security auditing. The 

program also allows you to detect the available nodes in the network, active network services, types 

of firewalls, etc. [9].  
Nmap uses an active method to detect the operating system. To do this, the tool creates a 

"fingerprint", sending TCP, UDP and ICMP packets to known potentially open and closed ports. 

Nmap analyzes the responses to these packets. As a result, a conclusion is formed, which indicates the 
type of node operating system and the reliability of this conclusion. If there are no complete matches 

with the signature, the score is performed (each parameter has a corresponding weight in points). The 

tool does not have the ability to detect the operating system by passive method, so the tool is designed 

specifically for active analysis [7, 10].  
NetScanTools Pro uses responses to ICMP packets to detect the operating system. This is the main 

disadvantage of the tool – using only ICMP packets do not allow obtaining a reliable answer [11]. 

Xprobe is a software tool that relies on fuzzy signature matching, probabilistic assumptions, 
analysis of multiple matches simultaneously in the signature database [12]. 



67 

 

The most common tools that use the passive detection method are p0f, Satori, NetworkMiner, 
PRADS and Ettercap. They all have a similar principle of operation, namely the analysis of incoming 

traffic based on the signature database [13-17].  

It is worth noting the p0f tool, which uses many complex, purely passive mechanisms to detect the 

node operating system by any random connections. The tool can detect node operating systems in 
those networks, where Nmap packets provoke the security system operation.  

Ettercap tool is also quite interesting. It is designed to implement man-in-the-middle attacks, while 

having the function of detecting the operating system by passive method. 
The comparative description of the software for the host operating system detecting is presented in 

Table 1. 

Table 1 
OS detection software characteristics  

Software Method Protocols Last update OS family 

Nmap Active TCP, UDP, ICMP 23-04-2021 FreeBSD, iOS, Mac 
OSX, OpenSolaris, 
Linux, Windows 

p0f Passive TCP, HTTP 18-04-2016 FreeBSD, iOS, Mac 
OSX, OpenSolaris, 
Linux, Windows 

NetScanTools 
Pro 

Active ICMP 02-09-2020 - 

Xprobe Active ICMP, TCP 27-07-2005 FreeBSD, Mac OSX, 
Linux, Windows 

Satori Passive DHCP, TCP, HTTP, 
SMB 

04-05-2021 FreeBSD, iOS, Mac 
OSX, OpenSolaris, 
Linux, Windows 

NetworkMiner Passive TCP, HTTP 23-09-2020 FreeBSD, iOS, Mac 
OSX, OpenSolaris, 
Linux, Windows 

PRADS Passive TCP, UDP, DHCP, 
ICMP 

19-09-2020 (app), 
16-02-2010 (DB 

signature) 

FreeBSD, iOS, Mac 
OSX, OpenSolaris, 
Linux, Windows 

Ettercap Passive TCP 06-01-2021 FreeBSD, iOS, Mac 
OSX, OpenSolaris, 
Linux, Windows 

 

You can also use Wireshark for passive detection [18]. In such case, you need to analyze certain 

fields by yourself: TTL, User-Agent, etc. For example, if the TTL value is 128 and the User-Agent 

parameter contains the value "Windows NT 10.0", you can conclude that the device has the Windows 
10 operating system installed [9, 19]. However, in this case it is necessary to have database, where 

types of operating systems are in accordance with the packets content values [20].  

There are also tools that can work using both active and passive operating system detection 
methods, for example are SinFP [21] and queso [22]. However, support for these tools is currently 

discontinued and download pages are unavailable. 

3. Related works 

In research [23] only mobile operating systems were analyzed. Operating systems, that were 

analyzed in that work, are: Android v2.3, Android v4.4, iOS 5, iOS 8, Symbian 3 and Win Phone 7.5. 

Dataset size is 489 GB of data, that was gathered during several months. Traffic, that was used to 
identify OS, was captured while watching videos on YouTube, downloading files, making video calls 

on Skype and combined traffic. Combined traffic included traffic, while all actions described were 
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made on OS’s, that support multitasking. Research results show that detection accuracy is around 
70% when analyzing traffic for 30 seconds, around 90% accuracy while analyzing traffic for 5 

minutes, and 100% accuracy when using combined traffic for 30 seconds period. 

In research [24] only TCP SYN packets were captured for analysis. There is no description on how 

packets were gathered. Developed system searches signature in signature database. Experiments had 
next results: an accuracy of 86.3% when finding exact match and additionally 9.2% were detected 

correctly, when using minimal distance match. Type I error is 4.5%. Developed system allows to 

classify OS as one of three classes: Windows 7 or 8, Windows 7 or Vista, Linux. It does not allow to 
detect exact version of OS, and classes are very general, because they unite 2 or more OS in 1 class. 

SVM was used as a machine learning method in [25] to detect OS. Nmap signature database was 

used as a dataset for machine learning. Training set consisted of 1503 samples, testing set consisted of 
1023 samples. Most of samples were classified as: Other system, Windows, Linux. Developed system 

allowed to classify detected OS as one from the list: Windows, Linux, FreeBSD, OpenBSD, MAC 

OS, Sun Solaris, Cisco, Other system. On average accuracy is 86.63%. Amount of errors depends on 

OS that was detected: for Windows amount of errors is 3,91%, for Linux – 5,19%; FreeBSD – 
17,71%; OpenBSD – 15.85%; Mac – 25.8%; Solaris – 4.53%; Cisco – 24.22%; Other system – 

9.74%. 

In research [26] only headers of ICMP packets were analyzed. No system was developed, the OS 
detection was conducted manually by analyzing TTL value and identification field increment. Only 5 

OS’s were used during experiments: Windows 7, Windows 8.1, Windows 10, Linux 18.x, and Debian 

7.x. In [27] 2 similar to our research algorithms were used: Decision Table and J48. Decision Table 
used data from ICMP protocol (checksum, checksum_status, ext.checksum, ident, length), J48 used 

data from IP, UDP, DNS protocols (IP: checksum_status, dsfield, dsfield.dscp, dsfield.ecn, flags, 

flags.df, flags.mf, flags.rb, frag_offset, hdr_len, len, proto, ttl, version). For Decision Table and J48 

dataset size is around 79,000 packets. Operating systems, that were classified are: - Linux (Raspberry, 
Xubuntu), Mac OS (10.7, 10.11), Windows (7, 8, 10). Decision Tree has an accuracy of 0.994 and J48 

has an accuracy of 0.94. 

In [28] Decision Tree/C4.5 algorithm was used. Algorithm used data from TCP protocol (window 
size, ttl, don’t fragment bit, packet size, options order, window size of fin packet, ttl of fin packet, 

don’t fragment of fin packet, packet size of fin packet). Dataset size is around 30000 packets. Oss that 

were classified are: Windows Vista SP0-2, Windows 7 SP1, Windows 2000 SP2,4, Windows XP 

SP1+, Linux. Algorithm has an accuracy of 0.9086. 

4. Problem statement 

Methods and instruments analysis of the operating system type detection show that all of 
approaches are based on the signatures database. However, this imposes limitations if the signature of 

an OS is missing from the database, which can lead to low credibility. Herewith it is possible to form 

a huge base for all possible types of OS but it can lead to considerable time expenses on finding the 

corresponding signature. An alternative solution of the remote host OS type detection is use of the 
machine learning methods [23-29]. Many researchers present some results of these methods usage. 

They are also based on the signature database usage but with a purpose of model learning. 

Consequently, the signatures obtaining method, their preliminary analysis and processing may 
significantly affect the credibility of the OS type detection. 

If focusing on the real software development the signature database should be formed manually. 

This is necessary for understanding the signature forming principles so in the future it would be 

possible to use the tool for actual tasks rather than leaving everything on the stage of developed 
model. In addition, this approach will allow system scaling, namely to gradually increase the detected 

OS number. For making the OS type detection software more convenient, both active and passive 

mode should be implemented. 
In addition, it is important not only detect the type of OS, but also its version, what can have 

significant influence on the user’s decision-making. Since the task of OS type detection is a 

classification task, the criteria of qualitative model obtaining is maximizing its accuracy and 
precision. In addition, an important metric of the tool grade evaluation is the response time. Most of 

the time is spent on the trial packet sending and receiving responses so it is a network delay. 
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Herewith, the attempts amount can also have great influence on the response receiving time. The 
complexity of the machine learning model can also significantly affect the system efficiency so upon 

reaching sufficient accuracy it should be as simple as possible. The volume of the studied test 

packages parameters and their pre-processing affect the time delays as well. Therefore, it will be 

advisable to select relevant protocol headers. 
Thereby, it is possible to determine the main goals and criteria to develop the OS detection 

software based on the machine learning methods: 

 precision maximization; 

 response time minimization; 

 self-dependent signature forming; 

 scalability; 

 cross-platforming; 

 universality of use. 

5. Data gathering and preprocessing 

Solving the object classification problem, namely the problem of detection the OS type, involves 

the usage of algorithms for learning with the teacher (supervised learning) [30]. Although it is 

possible to set the problem as clustering of objects using unsupervised learning. In any case, a dataset 
is needed to build a machine learning model. In addition, when using supervised learning, this data set 

must be labeled, i.e., each class of the operating system is associated with a specific label. 

A ready-made data set can be used to solve the set tasks [31], but it contains only families of 
operating systems. However, the user may be interested in the type and version of the operating 

system. Therefore, authors decide to form a data set independently. 
The main idea of detecting the family / type of remote node OS is based on the analysis of 

network protocol headers of the OSI model application, transport and network layers. Despite the 
standards of network protocols (RFC, IEEE) in different operating systems of even one family, some 
header fields can differ significantly, such as TTL, DF, ToS IP [32]. 

The essence of the experiment of a training data set formation is to generate certain traffic, 
capture and analyze it. The analysis consists in parsing packets, redacting to one data format and 
relevant parameters (features) selecting. The creation of a dataset was performed under laboratory 
conditions. The following OS versions were studied: Linux (version 5.4.0), Mac OS (version 10.12.4 
and 11.4), Windows 10 (Corporate 20h2, Home 20h2), Windows 7 (Professional), Windows XP 
(Professional SP3). At the same time, Windows XP and Linux 5.4 were studied using virtualization 
technology using VirtualBox software [33], and the others were installed on real PCs.  

The experiment steps of dataset creation are shown in Figure 1.  

Traffic 
generation

Traffic gathering Parsing Preprocessing
Feature 

selection

1 2 3 4 5

 

Figure 1: Experiment flow 

Step 1. Traffic generation. Different types of traffic were used to form the dataset. To obtain it, 
the following steps were performed for each operating system:  

 Sending 20 ICMP packets with the Type 8 Echo Request value from the studied OS; 

 Viewing video content on the YouTube web resource for at least 30 seconds from the studied 
OS; 

 Viewing different web pages from the studied OS; 

 Downloading images from the web to the studied OS. 
Step 2. Traffic capture. The most popular Wireshark traffic analyzer was used to capture packets 

from the network, which allows recording an interception session to a file for further processing 
without having to be connected to the network [19]. This software is distributed under the GNU GPL 
license. There are versions of Wireshark for various operating systems: Linux, Windows, MacOS, 
FreeBSD, Solaris. It is also possible to use no less popular console utilities "tshark and tcpdump [34]. 
Traffic files are saved in pcap format. As a result, so many packages were collected: MacOS 11.4  - 
67949, Windows XP Professional SP3 – 21294, Windows 10 Home 20h2 – 19291, Windows 7 
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Professional – 17741, Mac OS X 10.12.4  - 16204, Linux 5.4.0 – 14307, Windows 10 Corporate 20h2 
– 14072. 

Step 3. Traffic parsing. Packets were selected from all captured traffic, in which the IP address of 
the source corresponds to the IP address of the PC with the studied OS. After that, it is necessary to 
disassemble structure of a packet on headers fields of the main protocols: IP, ICMP, TCP, DNS and 
HTTP. As a result of parsing, the following field’s values were obtained: 

1. IP – version, hdr_len, dsfield, dsfield_dscp, dsfield_ecn, len, id, flags, flags_rb, flags_df, 
flags_mf, frag_offset, ttl, proto, checksum, checksum_status. 

2. ICMP – type, code, checksum, checksum_status, ident, seq, seq_le, data, data_data, data_len.  
3. TCP – hdr_len, flags, flags_res, flags_ns, flags_cwr, flags_ecn, flags_urg, flags_ack, 

flags_push, flags_reset, flags_syn, flags_fin, flags_str, window_size_value, window_size, 
window_size_scalefactor, checksum, checksum_status. 

4. DNS – id, flags, flags_response, flags_opcode, flags_truncated, flags_recdesired, flags_z, 
flags_checkdisable, count_queries, count_answers, count_auth_rr, count_add_rr, 
qry_name_len, count_labels, qry_type, qry_class. 

5. HTTP – user_agent. 
Parsing is performed using the Python 3.8 and the PyShark library, which allows working 

effectively with pcap-files. The parsing results of each packet are saved in a csv-file for further 
analysis. In addition to the field values, each entry in the csv file also has an OS version. As a result, a 
dataset containing 42,318 records was formed. It can be used as a database of signatures, which can 
give a certain result the search for. 

Step 4. Preprocessing. Almost all classifiers do not work directly with text data. They received 
features as well as numbers or booleans (which translate into numbers 0/1) that some feature is there 
or not. Therefore, it is necessary to convert all categorical (text) features (IP: dsfield, flags; TCP: 
flags, flags_str; DNS: flags, qry_class) into numbers. The following methods were used for this 
purpose [35]: 

 label encoding – to encode the values of the operating system classes by assigning a certain 
number to each OS value; 

 one hot encoding – to encode attribute values (protocol parameters) by creating columns 
where each column is responsible for single attribute value and the attribute value is set as 1 in the 
corresponding column, and 0 in the other columns of the attribute. 
The Processing module from the Scikit-learn (Python) library was used as a tool. An example of 

the converted data is shown in Table 2, 3. 

Table 2 
Results of label encoding 

Type/version OS Label Type/version OS Label 

Linux 5.9.0 0 Windows 10 Home 20h2 4 
Mac OS 10.12.4 1 Windows 7 Professional 5 

MacOS 11.4 2 Windows XP Professional SP3 6 
Windows 10 Corporate 20h2 3   

 
Table 3 
Example of one hot encoding 

The id, checksum, and data fields of the TCP / IP protocols were not used during the 
transformation and were removed from the feature list due to lack of clear differences between OS 
families. Also for the study of some classifiers data normalization was performed, i.e. reduction of all 
values of each parameter with a mean of 0 to the standard deviation of 1 by expression [36]: 

 Before After 

Feature name ip_flags ip_flags_0x00000000 ip_flags_0x00004000 

Values 
0x00000000 1 0 
0x00004000 0 1 
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𝑧𝑗𝑖  =
(𝑥𝑗𝑖 −  µ𝑗  )

𝑗
, 

(1) 

where zij – i-th normalize value of j-th feature, xij – i-th original value of j-th feature, µj – mean of j-th 

feature, j – standard deviation of j-th feature. For this transformation, the “StandartScaler” method 
from Scikit-learn (Python) is used.  

Step 5. Feature selection/importance. Since the size of the dataset has slightly increased from 54 to 
156 after the some features transformation, it will be advisable to reduce the dimension and select the 
most relevant features. This is necessary to increase the learning speed of the model, computation 
time when using the trained model, avoid overfitting and increase the generalizing ability of the 
model. Among the significant number of methods for selecting features by importance, the Recursive 
Feature Elimination method was used. The essence of this method is to build a model (which includes 
all factors), which excludes the least significant factor (feature) from the point of view of the model. 
After that, a new model is built, which contains all the factors except those excluded in the previous 
stage, and so on [37]. The RFE module from the Scikit-learn library was used to solve the problem. 
The decision tree model with default hyperparameters was used as an estimator. As a result of 
selection, 14 features were identified, the parameters and the importance degree of which are shown 
in Table 4. The importance degree is obtained from the "feature_importance" attribute of the trained 
model. Moreover, although some features have little impact, in our opinion they are important and 
give some expressiveness to different operating systems. 

 

Table 4 
Characteristics of dataset features 

Protocol Parameter name Description Value example Importance (%) 

IP hdr_len the length of the IP 
header 

20 0.0001 

IP flags list of set flags 0x00004000 0.0001 
IP flags_df the value of the flag 

Don’t Fragment 
1 0.0001 

IP ttl packet lifetime 64 24.8843 
IP proto the protocol used 

below 
17 (UDP) 0.0001 

ICMP ident identification of parts 
of the protocol packet 

1 8.71 

ICMP seq packet number in the 
sequence 

558 0.0001 

ICMP seq_le the current length of 
the sequence 

142848 0.0088 

ICMP data_data the contents of the 
message in the packet 

61:62:…:76:77:61:62:6
3:64:65:66:67:68:69 

0.0001 

ICMP data_len the length of the 
message in the packet 

32 36.87 

TCP hdr_len the length of the 
protocol header 

32 0.0001 

TCP window_size_value window size value 513 0.008 
TCP window_size the calculated value of 

the window 
131328 0.0001 

TCP window_size_scale
factor 

the calculated window 
size modifier (2^n) 

256 29.5181 

6. Model selection and training 

When solving the problem of classification by machine learning methods, the question of choosing 
a classifier model arises. At present, a significant number of classifiers are known and implemented, 
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which differ in approaches to the construction of the decision rule, as well as hyperparameters. 
Correct adjustment of hyperparameters is one of the key points; it allows receiving desirable results. 
In some models of machine learning, the number of hyperparameters can reach more than 10, and 
each hyperparameter can take different values. Finding the optimal combination is not an easy task. 
One of the options for solving this problem is to build a model for each possible combination for all 
given domains of hyperparameters. 

As a result of preliminary data processing, a dataset was obtained, the structure of which is 
shown in Table 5. 

Table 5 
Dataset structure 

Full dataset Small dataset 

OS Samples Percent, % OS Samples percent, % 
MacOS 11.4 16949 40.05 MacOS 11.4 999 14.67 

Windows XP Pro SP3 5281 12.48 Windows XP Pro SP3 999 14.67 
Windows 10 Home  4717 11.14 Windows 10 Home  999 14.67 

Windows 7 Pro 4385 10.36 Windows 7 Pro 999 14.67 
Mac OS X 10.12.4 4024 9.51 Mac OS X 10.12.4 999 14.67 

Linux 5.4.0 3549 8.39 Linux 5.4.0 816 11.98 
Windows 10 Corp 20h2 3413 8.07 Windows 10 Corp  999 14.67 

Total: 42318 100 Total: 6810 100 

For each model, the desired metric is calculated, the best result of which determines the best 
model. This approach is implemented in the GridSearch package of the Scikit-learn library [38]. 
Although this approach is quite costly in terms of machine time, it gives the best result. In addition, 
although the Scikit-learn library does not support GPU computing, one can use a set of cuML libraries 
from the RAPIDS project to parallelize calculations based on CUDA technology [39, 40]. 

Using GridSearch technology, the best parameters for the most used classifier models were 
automatically selected: 

1. Decision Tree (DT) (criterion='entropy', max_depth=6); 
2. Multilayer Perceptron (MLP) (alpha=0.05, hidden_layer_sizes=(50, 50, 50)); 
3. Gaussian Naive Bayes (GNB) (var_smoothing=1e-9); 
4. K-Nearest Neighbors (KNN) (leaf_size=5, n_neighbors=1); 
5. Support Vector Machine (SVM) (C=1000, gamma=0.0001); 
6. Logistic Regression (LR) (C=5, max_iter=500, solver='newton-cg'); 
7. Random Forest (RF) (criterion='entropy', max_features='sqrt', min_samples_leaf=4, 
n_estimators=1900). 
Since the use of GridSearch is quite time consuming even with a large number of models, it was 

decided to use a small dataset (table 5). It is representative enough to obtain adequate results. 
The following metrics were used to assess the quality of classifiers [3, 35]: 

 Accuracy – share of correctly defined classes;  

 F1 – weighted average estimate of type I and II errors; 

 Precision – the ratio of the correctly defined classes number to the sum of the correctly 
defined classes and type I error (false positive) numbers; 

 Recall – the ratio of the correctly defined classes number to the sum of the correctly defined 
classes and type II error (false negative) numbers; 

 Confusion Matrix – a matrix showing the number of correct definitions and the number of 
erroneous definitions; 

 FP – type I error (False Positive); 

 FN – type II error (False Negative). 
After obtaining the optimal parameters of the classifiers based on the maximizing "accuracy" 

criterion, they were trained on a full dataset. Naive Bayes trained the fastest in time, and Logistic 
Regression the longest: DT - 0.194 s, GNB - 0.0409 s, KNN - 0.742, LR - 482.51 s, RF - 88.369 s, 
SVM - 5.08 s, MLP - 39.43. Training of models was performed on a PC with AMD A8-4500M APU, 
1.9 GHz (4 cores, 4 threads) and 8 Gb RAM. Dataset is divided into training and test in the amount of 
70% and 30%, respectively. The test results of the classifiers are presented in Table 6.  
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Table 6  
Classifiers metrics 

Classifier Accuracy Precision Recall F1 FP, % FN, % Average cross-
validation 

score 

DT 1.0 1.0 1.0 1.0 0 0 0.9999 
MLP 0.99964 0.99952 0.9995 0.9995 0.002 0,004 0.9998 
GNB 0.90548 0.91690 0.8736 0.8474 1.7 0,189 0.9031 
KNN 0.99763 0.99682 0.9960 0.9964 0.016 0,031 0.9949 
SVM 0.99952 0.99926 0.9994 0.9993 0.009 0 0.9987 

LR 0.97861 0.97287 0.9880 0.9792 0.378 0,059 0.9784 
RF 1.0 1.0 1.0 1.0 0 0 0.9999 

Frequency analysis [23] 0.7-1 - - - - - - 
Euclidean distance [24] 0.955 - - - 4.5 - - 

SVM [25] 0.8663 - - - - 13.36 - 
Decision Table [26] 0.994 - - - - - - 

DT/J48 [27] 0.94 - - - - - - 
DT/C4.5 [28] 0.9086 - - - - - - 

As can be seen from Table 6, the Decision Tree models and its ensemble modification Random 
Forest have best results without any errors. The worst classifier is Gaussian Naive Bayes, which 
showed the highest number of erroneous predictions, but in general, all classifiers have high metrics. 
These results are confirmed by 5-Fold cross validation. Compared with the known research results, 
our metrics are better. However, for a more adequate comparison it is necessary to carry it out at least 
for identical families / types / versions of OS.  

According to the simulation results, confusion matrixes is obtained, which are shown in Appendix  
A.  They contain the results of model prediction, namely the following indicators: True Positive, True 
Negative and FP, FN. 

Analyzing the matrix of classifier errors (Figs.A.1 – A.6), we can note that most classifiers have 
errors within the OS family: 

 Multilayer Perceptron: incorrect definition of Windows 10 Home (defined as Windows 10 
Corporate) and Windows 7 Professional (defined as Windows XP Professional); 

 Gaussian Naive Bayes: incorrect definition of Linux (defined as Windows 10 Home and 
Corporate), MacOS (defined as Linux), Windows 10 Corporate (defined as Linux), Windows 10 
Home (defined as Windows 10 Corporate and Linux); 

 K-Nearest Neighbors: incorrect definition of Windows 10 Corporate (defined as MacOS 11.4 
and Windows 10 Home), Windows 10 Home (defined as Windows 10 Corporate); 

 Support Vector Machine: incorrect definition of Windows 10 Home (defined as Windows 10 
Corporate) and Windows XP (defined as Windows 10 Home); 

 Logistic Regression: incorrect definition of MacOS 11.4 (defined as MacOS 10.12.4) and 
incorrect definition of Windows 10 Corporate (defined as Windows 10 Home and Linux). 
Because the Decision Tree model is architecturally simpler than Random Forest, it is therefore 

more appropriate to use it in software. The tree consists of five levels and has 13 leaves. Due to the 
bulkiness of the tree, its image is not given in this article. 

7. Application architecture and experiments 

A software is developed for application use of trained classifier model. The software architecture 
is shown in Figure 2.  

It consists of four modules: visualization module, scanning module, preprocessing module and 
intelligent analysis module. System has its own database also. 

Visualization module is the first one to start. It initializes graphical components of program: icons, 
buttons, windows etc. It is also responsible for providing dialogue windows for user interaction, 
providing detection results for user. 
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Scanning module has two purposes: sniffing network traffic to capture packets from the host, 
which OS needs to be detected; sending probes (specific packets) to the host, which OS needs to be 
detected, in order to receive responses and conduct OS detection. 

Preprocessing module is responsible for gathering fields from captured packets that are needed in 
order to create OS signature and creating OS signature. Signature is a string, where all fields needed 
from received packets are written, each field is separated by comma.  

Visualization module

Scanning module Preprocessing module

Intelligent analysis 

module

Database

Network

User

...
 

Figure 2: Application architecture 

Intelligent analysis module uses trained machine learning classification algorithm to conduct OS 
detection on provided signature. Classification results are sent to visualization module in order to 
show them to user. Application database is used for storing previous OS detection results for using 
later. It can be used for signature storing and pcap-files also. 

Based on proposed architecture a software is developed using Python 3.8 programming language 
with PyQt5 library. SQLite is used as a database. Software has two modes: online and offline.  

In offline mode, user has an opportunity to upload pcap-file from external or internal resources. It 
can be useful when you already have captured traffic and need to detect type/version of OS after some 
time. Pcap-file should contain information about one specific host. Otherwise it can be filtered by ip-
address and then resaved. Online mode is available for both active and passive scanning. Passive 
scanning takes more time, since, as stated before, all needed packets are required for analysis. 
Software is in waiting mode until all needed packets are not captured. However, it can be sped up by, 
for example, visiting it if detected host is a webserver and is available through http or ftp. In addition, 
software provides a way to detect OS by analyzing User Agent from HTTP packets.  

Active mode is more appropriate since it does not require waiting, because software send probes: 
four ICMP requests along with up to 10 TCP SYN requests. The procedure will be repeated up to 5 
times if no response is received. After preprocessing module receives packets it sends formed 
signature to intelligent analysis module. Classifier predicts OS family/type/version of the target host 
and prediction probability. Next, an experiment is conducted by checking how software works and 
compare results with Nmap. First a scan for Windows 10 Corporate was conducted, it’s IP address in 
local network is 192.168.1.170. Results of the active scan mode are shown in Appendix B. 

Results are stating that Nmap couldn’t detect exactly installed operating system. Also in results we 
can see a wide specter of possible operating systems (Windows 10, 7, Windows Phone, Windows 
Server, FreeBSD), and probability is equal to 0.92 compared to 0.955 of developed software (Fig. 
B.1, 2). By executing similar actions for host, that has IP address 192.168.43.60 developed software 
correctly detected Windows 10 Home 20h2 with probability of 0.937 (Fig. B.3). Nmap do not provide 
a result and states that host has too many signature matches (Fig. B.4). Also rented host with white IP 
address was used in experiments. It has OS Linux 5.4 installed beforehand. Developed software 
detected it with probability of 0.987 (Fig. B.5). Nmap gave a result of it having Windows 7 installed 
(Fig. B.6).  
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8. Conclusion and future work 

The analysis of existing methods and means of detection of the remote node operating system 
shows the main advantages and disadvantages of their using. Two main approaches, active and 
passive, of the remote node OS detection are considered. The combination of these approaches can 
make the process detection more flexible and accurate. The existing method of remote host OS 
detection is mostly based on signature model of decision making, but in such way they have a lot of 
errors because of undecidability in case of properly signature absence. That is why the machine 
learning methods are carried out. To form dataset for model learning the five-stage process is realized: 
traffic generating and gathering, parsing, preprocessing and feature selection.  

As a result of the research, a classifier based on the Decision Tree model was trained. At the same 
time, other classifiers also showed high metrics with low rate errors within the OS family. The high 
accuracy of detection the type of OS indicates well-chosen features, as well as a sufficient size of 
input data set. This helped to avoid the effect of overfitting.  

The trained model can detect seven OS versions within several families with absolute accuracy. 
The system architecture is proposed to remote OS detection. It realized in crosspaltform application 
based on trained model. This software tool allows scanning hosts in both offline and online modes. At 
the same time, both active and passive scanning are implemented online. This adds a means of 
versatility compared to analogues. The developed tool can be used by an ethical hacker for intrusion 
testing, network administrator for auditing, checking the network for new unknown devices. You can 
also use the tool to test the effectiveness of server protection tools against detecting their OS. 

As a result of the experiment, the developed software was more effective compared to Nmap. 
However, Nmap allows to define many more types of OS. Therefore, further research will be 
associated with scaling the model, as well as expanding the functionality of application. One such 
future function will be to implement the ability to provide a list of ranked vulnerabilities inherent in a 
particular OS. It provides faster vector attack creation or decision making for network protection.  
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10. Appendix 

Appendix A. Confusion matrixes 

 
Figure A.1: Multilayer Perceptron 

 

    

    Figure A.2: K-Nearest Neighbors 
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Figure A.3: Support Vector Machine 

 

Figure A.4: Gaussian Naive Bayes 
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Figure A.5: Logistic Regression 

  

Figure A.6: Random Forest 
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Appendix B. Experiments results 

 

Figure B.1: Developed application 
 

 

Figure B.2: Nmap 

 

Figure B.3: Developed application 
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Figure B.4: Nmap 

 

 

Figure B.5: Developed application 

 

 

Figure B.6: Nmap 
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