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Abstract  
We obtained theoretical results for the development of methods for solving problems of 

linear ordering of objects based on labeled graphs. Solving the problem of planning of fair, 

equivalent and balanced (handicap) incomplete tournaments is equivalent to solving the 

problem of constructing of corresponding distance magic or antimagic labeling of an  

r -regular graph of order n . Let ),( EVG   be distance magic graph, different from 

2,....,2,2,1K .We have proved the conjecture, which was presented by K. Sugeng, D.Froncek 

and others (K.A. Sugeng, D. Froncek, M. Miller, J. Ryan and J. Walker, On distance magic 

labeling of graphs, J. Combin. Math. Combin. Comput., 71 (2009), 39-48), that a set of 

vertices of the graph G

 

can be partitioned into sets pVVV ...,,, 21 , in such way that 1iV  

and )( iVG  is the empty graph for every pi ...,,2,1 . We have also presented some results 

of edge and total vertex magic labeling of graphs/ 
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1. Introduction 

The problem of linear ordering of objects is the mathematical model for many real life problems. 
There are different models of linear ordering, which include models of the ”sports” type. The main 

feature of this “sports” group is that its models use sum of points scored by the object as a ranking 

factor. Tournament models are widely used because of the simplicity of getting of the optimal 
solution. The quest for the optimal solution in planning of incomplete round-robin tournaments can be 

achieved with the help of methods of the graph labeling theory. In this paper, our main focus is on the 

properties of graphs with magic labeling, which can serve as models of incomplete round-robin 
tournaments. With a large number of competing teams, it is impossible to complete round-robin 

tournament in short period of time. Therefore, it is really necessary to have incomplete tournaments 

that imitate the complexity of a full round-robin tournament. There are several types of incomplete 

tournaments; each of them possesses its own, certain characteristics. Solving the problem of planning 

of fair, equivalent and balanced (handicap) incomplete tournaments for 𝑛 teams playing against 𝑟 

opponents is equivalent to solving the problem of constructing of corresponding distance magic or 

anti-magic labeling of an r -regular graph of order n . The questions, regarding the existence of 

tournament graphs and methods of their construction, are very well described in works of D. Froncek, 

P. Kovar, T. Kovarova, A. Shepanik, M. Semeniuta. 
Magic-type labelings are widely used in automated information systems. They come in handy 

when one needs to calculate a check sum or to avoid using a lookup table. Simple graph may 

represent a network of nodes and links with addresses (labels) intended for both links and nodes. If 

the addresses form an edge magic labeling, it is enough to know the addresses of two vertices in order 
to determine the address of their link without the lookup table, by simply subtracting the addresses 

from the magic constant. The method for solving this problem is associated with a variety of 

alternative solutions and requires the selection of optimal one; it also includes the process of linear 
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ordering of objects [1]. The aim of this study is to obtain the theoretical groundwork for the 
development of methods, which will allow us to solve the problems of linear ordering of objects 

based on labeled graphs. 

2. Literature Survey. Preliminary theoretical information 

A. Rossa is considered to be the founder of the theory of labeling. He offered several types of 

labeling as a tool for decomposing a complete graph into isomorphic subgraphs. Magic labeling was 

first presented by D. Sedlyacek as a generalization of the concept of a magic square. D. Sedlyachek 

called the edge labeling of graph 𝐺 as magical in case of backward numbers existence, as the label of 

the edges of 𝐺, with the following properties: (1) different vertices have different vertex labeles, and 

(2) the sum of the values of the labels assigned to all edges incident to a given vertex is the same for 

all vertices of graph 𝐺. Details of edge-magic graphs can be found in the book ”Magic and Antimagic 
Graphs” [2]. The book [2] also summarizes the results on total vertex-magic labeling presented by 

J. MacDougall, M. Miller, Slamin, and W.Wallis in 1999 [3]. The concept of distance magic labeling 

was introduced independently by several authors [4, 5]. A detailed overview on this topic can be 
found in [6] and [7]. At present, graph labeling theory is a popular tool for solving a wide range of 

problems [7]. 
We consider only finite undirected graph without loops and multiple edges. We denote ),( EVG   

as a graph, where V  is the set of vertices, and E  is the set of edges. For the degree )(deg uG  (or 

)deg(u ) of the vertex u  of the graph G , the number of edges incident to u  is equal. The maximum 

and minimum degrees of the vertices of the graph 𝐺 are denoted by the symbols )(G  and )(G  

respectively. 

If S  is a finite set, then we denote S  as its power. A set of subsets of a set S  is called a partition 

S  if the union of these subsets coincides with S  and no two of them intersect. 

Some graphs have certain names and designations. A graph of order n  is called complete when 

each pair of its vertices is adjacent and it is denoted nK . Graph ),( EVG   is considered to be k -

partition if we can represent V  as a disjunctive union of sets kVVV ...,,, 21  so that each edge of G  

connects only vertices from different sets. If each vertex iV  is adjacent to each vertex jV  for any 

kji ...,,2,1,  , ji   and  ji VV ∅, then G  is a complete k -partition graph, which we denote as 

knnn KKK ...,,,
21

, where ii nV  . If the graph is given by the set of vertices }...,,,{ 21 nvvvV   and the 

set of edges }1...,,1|,{( 1   nkvvE kk , then it is called a path of order n  and is denoted nP . A 

cycle nC  of order n  ( 3n ) is a closed path. A graph is considered empty if the degrees of all its 

vertices are zero. 
For any subset )(GVA  of the set of vertices of a graph ),( EVG  , the generated subgraph 

)(AG  is the maximum subgraph of the graph G  with the set of vertices A . Two vertices with A  are 

adjacent in )(AG  if and only if they are adjacent in G . A subset )(GVB   is called a clique if the 

subgraph )(BG  generated by it is complete. The graph )(BG  is also called a clique. A subset of the 

vertices of a graph is called independent if the subgraph generated by it is empty. The terminology on 
graph theory used in this article is presented in more detail in [8]. 

Distance magic labeling of graph ),( EVG   of order p  is a bijection }...,,2,1{)(: pGVf  , for 

which there exists an positive integer number k , such for every vertex u  equality 
 )(

)(
uNv

vfk  is 

fair, where )(uN  is a set of vertices of graph G  adjacent with u . Number k  is called magic constant 

of labeling f , and a graph, which allows such labeling is distance magic. 

Let us denote the theorems which used in the article. 
Тhеоrem 1. [4] Let G  be a graph of order p  which has two vertices of degree 1p . Then G  is 

not a distance magic graph. 
Perfect matching M  (or 1-factor) in a graph G  is a 1-regular spanning subgraph of G . 

Тhеоrem 2. [6] Let G  be a graph of order p  with 1)(  pG . Then G  is a distance magic 
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graph, if and only if, when p  is odd and 11 )( KMKG p   , where M  is perfect matching in 

1pK . 

Тhеоrem 3. If 11 )( KMKG p    is a graph of odd order p  with 1)(  pG , where M  is 

perfect matching in 1pK , then 2...,,2,1KG  . 

Proof. Suppose, that 11 )( KMKG p    is a graph of odd order p , where M  is perfect 

matching in 1pK . Let u  be a vertex of degree 1)(  pG  in graph G , e.i. 𝑢 is adjacent with all 

vertices of G . Every vertex of G , different from u  is not adjacent to only one vertex. Thus, 

2...,,2,1KG  . 

The Theorem has been proved. 

Corollary 1. Graph 2...,,2,1K  is the distance magic graph. 

The proof of the corollary follows directly from the theorems 2 and 3. 

Example 1. Suppose 16 )( KMKG   (fig.1). Let us set vertex labeling of G , as it is shown in 

figure 1. The labeling is distance magic with magic constant 21k . Let us identify the vertices with 

their labels. We divide the set of vertices )(GV  into subsets }6,1{ , }5,2{ , }4,3{ , }7{ . They are 

independent, moreover, these subsets are particles of the graph 2,2,2,1K  such that 2,2,2,1KG   

 

Figure 1: Distance magic labeling of the graph 16 )( KMKG  . 

The edge labeling of graph ),( EVG   is defined as the mapping   of edge set E  into a set of 

positive integer number N . Number )(e , in which an edge Ee  is mapped, is called their label. 

Index )(* u  of vertex Vu  at edge labeling 𝜑 is called a sum of labelinges of all edges which are 

adjacent to 𝑢. Edge labeling   of graph G  is magic, if   is an injection )(GE  into N

 

and the 

weight of the vertex does not depend on the choice of the vertex. Graph, which allows magic labeling, 
is called magic. We define a constant value of index as magic constant and denote as  . Magic 

power )(  of labeling   is maximum of the label, used in  , and a magic power )(G  of graph 

G  is minimum of the magic powers of the magic labelings, which the graph allows. If the graph G  is 

not magic, then 0)( G  by definition. 

We can classify the graphs. Class )(M , N  includes those graphs that have a magic index 𝜇, 

all non-magical graphs make up class )0(M . 

Another type of magic graph labeling which is considered in the article is total vertex-magic 
labeling. The domain of total labeling of graph ),( EVG   is set

 

EV  . 

The total vertex-magic labeling of a graph ),( EVG   of order p  and size q  is denoted as a 

bijection }...,,2,1{: pEVg  , for which there exists such a constant k , that for each vertex 

Vu  the equality holds kuvgug
uVv


 )(

)()( . The number k  s called the magic constant, the sum 

)()()(
)(

uwuvgug
uVv




 is called the weight of the vertex u , and the graph G  allowing the labeling 
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g  is called total vertex-magic. 

3. Problem Statement 

When planning sports competitions, when there is no possibility of holding a full round 
tournament, the organizers of the competition put forward the following requirements: each team 
must play with the same number of opponents; the complexity of the tournament for each team should 
imitate the complexity of a full round robin tournament. To implement the second condition, n  teams 
are ranked, for example, based on the results of the previous year [9]. Teams can be evaluated in the 
range from 1 to n , according to the occupied seats. Let’s identify the team number with its rank. The 

strength of the i -th team in a full round tournament as understood as number inisn  1)( , and 

the total strength of the opponents of this team is the number  )(2/)1()(1, isnniS nnn

 .2/)2)(1( inn   The sequence of all common strengths, arranged in ascending order, forms 

an arithmetic progression with a difference of one. Therefore, to simulate a similar difficulty in an 
incomplete round robin tournament, it is necessary to obtain an arithmetic progression from the total 
strength of the opponents of each team. If such a tournament of n  teams with r  rounds, where 

1 nr  arises from a round robin tournament by omitting certain matches, provided that each team 

must play the same number of matches, it is denoted by FIT(𝑛, 𝑟) and is called a fair incomplete 
tournament. In FIT(𝑛, 𝑟), each team plays with r  other teams, and the total strength of opponents 

playing with the i -th team is determinedby the formula kinniS nr  2/)2)(1()(,  for each i  

and a fixed constant k . On the other hand, missed matches also form a kind of tournament, denoted 

by EIT(𝑛, 𝑛–𝑟–1) and called an equivalent incomplete tournament. In EIT(𝑛, 𝑛–𝑟–1) each team plays 

1 rn  matches and the total strength of the opponents )(*
, iS nr  of the i -th team is the same and 

equal to the constant k , i.e. kiS nr )(*
, . Obviously, FIT(𝑛, 𝑟) exists if and only if its complement 

EIT(𝑛, 𝑛–𝑟–1) exists. These tournaments have been studied in [9, 10, 11, 12]. 
The mathematical model of the tournament can be a finite undirected graph that does not contain 

loops and multiple edges. Each team corresponds to the vertex of the graph and the two vertices are 
adjacent if a match has taken place between the respective teams. Since the rank of the command 
coincides with its number, the numbers from 1 to n  are used as labels of the vertices of a graph of 

order n. Finding EIT(𝑛, 𝑟) is equivalent to solving the problem of the existence of remote magic 
labeling for an r -regular graph G  of order n . In this regard, the paper considers the problem of 
finding the conditions for the existence of a distance magic labeling of a graph that is not isomorphic 
to the graph. Let us consider a system of p  elements. The connections between its elements are 

assigned with numerical characteristics belonging to the set of natural numbers. Each element has a 
weight function equal to the sum of the numerical characteristics of the connections corresponding to 
this element. The system has the following properties: 1) different connections correspond to different 
natural numbers, 2) the weight function does not depend on the choice of the system element, i.e. It is 
a constant. It is necessary to choose from all variants of numerical characteristics of connections of 
the system the one for which weight function (constant) accepts the minimum from possible values. 
The mathematical model of this system is a magic graph with the least magical power of those 
magical labelings that it allows. Therefore, the actual problem is to determine the properties of graphs, 
which will make it possible to find the necessary and sufficient conditions for their magic. 

4. One sufficient condition for existence of distance magic labeling of the 
graph 

The following theorem is presented in [13] as a conjecture. Let us prove it. 

Тhеоrem 4. If ),( EVG   is a distance magic graph different from 2...,,2,1K , then the set V  of 

vertices can be partitioned into sets pVVV ...,,, 21  in such way that 1iV  and )( iVG  is the empty 

graph for every pi ...,,2,1 . 

Proof. According to the conditions ),( EVG   is a graph other than 2...,,2,1K , and G  allows 

distance magic labeling f . Let G  be a connected graph, in other case every component of the 
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connectivity of this graph should be investigated in a similar way separately. 
Any graph can be decomposed into subgraphs, each of which is a click or an empty graph. 

Therefore, we examine the graph G  with the partition of the set of vertices )(GV  on clicks and 

independent sets. Let pVVV ...,,, 21  be the partitions, and 1V  is a click of order n , and pVVV ...,,, 32  are 

independent sets. In addition, we will assume that n  is a minimum number for which there is a 
specified partition, otherwise the partition process can be continued. 

Let denote the vertices )( iVG  as }...,,,{ 21
i

V

ii

i
uuu  and the degree of vertex i

ju  in graph G  as 

)(deg i
jG u , where pi ...,,2,1 , iVj ...,,2,1 . 

If S  is a sum of vertex labels in )( 1VG  and 1)(deg)(deg 11  nuu mGlG , where 1
11, Vuu ml  , then 

we obtain the following weights for these vertices: )()( 11
llG ufsuw   and )()( 11

mmG ufsuw  . 

Here we have )()( 11
ml ufuf  . Thus, the degrees in a graph G  less than 1n  of vertices from set 

}...,,,{ 21
i

V

ii

i
uuu  must exceed 1n , otherwise the condition of being magic is violated. But in this case 

you can get a new partition into )(GV  subsets, each of which is empty. Similar considerations can be 

performed if there is more than one click in the partition. 

Suppose, that among pVVV ...,,, 21 , there are at least two sets of power one, for example, |

121  VV . Then vertices i
i Vu 1  ( 2,1i ) must be adjacent to every vertex of the corresponding set 

iVV   in graph G . According to theorem 1, the graph G  is not distance magic. We came to a 

contradiction with the condition of the theorem 4. 

If there is only one set iV  from 1iV , then its only vertex i
i Vu 1  is adjacent to every vertex of 

the set iVV   in graph G . According to theorems 2 and 3, and the corollary 1, we get 2,...,2,1KG  , 

which contradicts the condition of the theorem 4. The theorem has been proved. 
Corollary 2. Let ),( EVG   be a distance magic r -regular graph of order n . Then for the power 

of any independent set iV  in G  double inequality 

r

n
Vi






1  

is fair, where 𝜆 is the minimum eigenvalue of the adjacency matrix 𝐺. 
The proof of the corollary 2 follows directly from theorem 4 and the known Delsart-Hoffmann 

results with respect to the upper limit on the power of the independent set. 
When we use distance magic graphs as mathematical models to solve specific practical problems, 

then attention should be paid to the fact that the magic constant takes the only value for any distance 

magic graph [14]. If G  is a r -regular distance magic graph of order with a magic constant k , then 

for the labels of its vertices we obtain the equality: knnr  )...21( . Thus, 
2

)1( 


nr
k . 

5. Magic types of labelings 

Let ),( EVG   be a graph with p  vertices and q  edges, i.e. the

 

),( gp graph with edge 

labeling  . Let numbers qxx ,...1   form a set of edge labels of G . We denote the vertices of G  as 

.,..., 21 puuu  It is obvious, G  is the magic graph with magic constant   if and only if, the system 

 )(*

iu         ),...,2,1( pi  .   

of p  linear equations with 1q   unknowns ,,...1 qxx , has a solution on the set of positive integer 

numbers. If this system has no solution, it means that the graph is not magic. If there exists such a 

solution, then it corresponds to the magical labeling of the graph G . In this case, there is an unlimited 

family of magical labelings if this graph, and among them there is one that will give the value )(G . 

The matrix record the system of linear equation has the form 
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,)( IXGA 

 
where )(GA   is the incidence matrix of graph G ,  ),,...,,( 21 q

T xxxX   I  – column-matrix with 

p  rows, all elements of which equal one.  

Example 2. Determine the magical power of the graph G , shown in figure 2. We set the edge 

labeling of the graph G , as it is shown in figure 2. Suppose, that G  is magic with magic constant 

. Then the system of linear equations for the graph looks like  

 )(*

iu  , where pi ,...,2,1  or 

 



























.

,

,

,

,

,

9765

6432

9831

87

54

21











xxxx

xxxx

xxxx

xx

xx

xx

 

After performing elementary transformations on the equations of the system, we obtain the 

following equation 0963  xxx . Therefore, the system on the set of positive integer numbers 

has no solution. We came to a contradiction with the assumption. Thus, the graph G  has no magical 

labeling, so its magical power is zero. 

 
Figure 2: Graph G 

The method of finding the magic labeling of a graph, and hence its magical power using a system 

of linear equations is not effective, especially for graphs of large orders. Therefore, it is advisable to 

obtain the properties of graphs that allow you to set the necessary and/or sufficient conditions of being 
magic. For example, a magic graph cannot contain more than one edge with a ended vertex of degree 

one, and it can not contain edges with ended vertices of degree two. It follows that a 1-regular graph 

will be magical if and only if it is isomorphic of  2K  and there are no 2-regular magic graphs. 

Representatives of class )0(M  are all graphs containing a path of the form xyzt  with 

.2)deg()deg(  zy  Here are examples of such graphs.  

Consider two connected graphs 1G  and 2G , that have no common elements. Randomly select one 

vertex in each column and connect them with a path kP , each inner vertex of which does not belong 

to any of the graphs   , 21 GG . The graph is denoted as  21 :: GPG k . Graph  21 :: GPG k .does not 

allows magic labeling where 4k , and graph  npm GPG :: does not allow magic labeling where 

nm 3  for any k . 
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Let )2(,...,, 21 kGGG k  be connected graphs, and )( ii GVu   is a randomly selected vertex. 

Then the graph, obtained conneсting edge of vertex iu  of graph iG   with corresponding vertex 1iu  

of graph 1iG  for 1,...,2,1  ki   is called path connection of graph kGGG ,...,, 21 . Path connection 

of an arbitrary number of cycles is not a magic graph.  
The relations between the magic constant and the degrees of the vertices of the graph are presented 

in the following lemmas. 

Lemma 1. If graph G  allows magic labeling with magic constant  , then 

)(G  and 









)(
)(

G
G




 . 

Proof. Weight of vertex   of maximum degree of graph G  is a sum of edge labels, each of 

which is not less than one 1. Тhen ).(G  The equal sign is possible only for the graph 
2K . 

 On the other hand, to the vertex of the last degree )(G  labels are incidental, which give the sum 

of  . Amoung them there is a label which not less that 
)(G


. Thus, 










)(
)(

G
G




 .  

Lemma has been proved. 

Corollary 3. If G  is a magic graph, then 









)(
)(

G
G




 . 

Lemma 2. Let G  be a graph of order ,p  which allows magic labeling with magic constant  . 

Then the number p  is even. Proof. Suppose, that the graph G  of order p  allows magic labeling 

with magic constant  . We denote the sum of all edges of graph G  as S . Every vertex from p  has 

a weight 𝜇, then product p represents twice the amount of labels. Thus, .2Sp   

Lemma has been proved.  

Corollary 4. If graph G  of odd order allows magic labeling with magic constant  , then 

)2(mod0 . In some cases, it is convenient to consider as mathematical models those graphs 

which have total labeling that satisfy certain properties. Let us dwell on the study of regular graphs 
with such labelings  

For r regular graph ),( EVG   of order p  and size q  with total vertex-magic labeling g  and 

magic constant k  there is dual labeling 'g , defined as follows )(1)(' ugqpug   and 

)(1)(' uvgqpuvg   for any ., EuvVu   We denote magic constant for 'g  as 'k , then  

).1('  rkk   

The graph   ),,( *ExVxG   where )(GEx  is obtained from the graph ),( EVG   

adding a vertex 𝑥 and all edges, which are connecting the vertex to all vertices of set ).(GV  

Let G  be a regular graph of order p  and size q  with total vertex labeling g  and. For the graph 

xG   we consider such a total labeling 
*g , that ),()(*

ii ugug   ),()(*

jiji uuguug   

,)(* igpxug i   ,12)(*  gpxg for any ),(GVui   ),(GEvu ji   where 

 pjiji ,...,2,1,,  . We obtain the following weights for the vertices of graph 

,)(: igpkuwxG it     .1)1(53
2

1
)( 2  pqppxwt . As we can see, the weights 

of vertices ui  in graph xG   at different values i  are different. If we suppose, that there is 

 pi ,...,2,1  at which )()( xwuw tit  , then we obtain .1)1(
3

2
 pqppik . This is 

impossible since .constik   In this case, the labeling 
*g   is called total vertex-antimagic.  

We have proved the following theorem.  
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Тhеоrem 5. If G  is a regular total vertex-magic graph, then xG    allows total vertex antimagic 
labeling. It is easy to establish the relationship between the magical and total vertex-antimagic 
labelings of 2-regular graphs.  

Тhеоrem 6. Let G  be a 2-regular magic graph of order p  and size q  with a set of edge labeles 

},,2,1{ p . Then G  allows total vertex-antimagic labeling.  

Proof. Let   be a magic labeling of 2-regular graph G  of order p  and size q , whith a set of 

edge labels },,2,1{ q , and   is his magic constant and  puuuV ,...,, 21  },,,{ 21 puuuV  . 

We denote total labeling 
*g  of graph G  as the following: )()(*

jiji uuuug  , iqug i )(*
 for 

any ),(GVui   ),(GEvu ji   where  pjiji ,...,2,1,,  . Let’s calculate the weights of the 

vertices for labeling .)(:* iquwg it    They are all different, therefore, 
*g  is total vertex-

antimagic labeling. The theorem has been proved.  

6. Conclusion 

In the course of the study, we obtained a proof of the hypothesis presented by K.Sugeng,  

D. Froncek and others in [13], found the necessary conditions for the existence of a magic labeling of 
graphs, established the relationship between the magic and total vertex-antimagic labeling of  

2-regular graphs. The research results can be used in the development of real decision-making support 

systems. 
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