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Abstract 
We have revealed conditions of existence and optimality of solutions of multicriterion 
problems of lexicographic optimization with an unbounded set of feasible solutions on the 
basis of applying properties of a recession cone of a convex feasible set, the cone which 
lexicographically puts in order a feasible set with respect to optimization criteria and local 
large tents, built at the frontier points of feasible set. Obtained conditions may be successfully 
used while developing algorithms for finding optimal solutions of mentioned problems of 
lexicographic optimization. A method for finding lexicographically optimal solutions of 
convex lexicographic problems has been constructed and substantiated on the basis of ideas 
of method of linearization and Kelley’s cutting-plane method. 
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1. Introduction 

Many problems of making multipurpose decisions in management, planning, design are 
formulated as multicriterion (vector) optimization problems. Among vector problems, lexicographic 
problems form a fairly wide and important class of optimization problems. Lexicographic ordering is 
used to establish rules of subordination and priority. Therefore, a significant number of problems, 
including the problems of optimization of complex systems, modeling of hierarchical structures, 
stochastic programming problems under risk conditions, problems of a dynamic nature, etc., can be 
represented in the form of lexicographic optimization problems [1-12]. The lexicographic approach to 
solving multicriterion problems consists in a strict ranking of criteria in terms of relative importance 
allowing optimizing a more important criterion at the expense of any losses for all other, less 
important criteria. Most often, such multicriterion problems arise when additional criteria are 
successively introduced into ordinary scalar optimization problems, which may not have a unique 
solution. 

Possible methods for solving such problems include the use of a scalarization scheme or a 
convolution of a vector criterion for a one-stage solution [1-2]. In [2] it is proposed to use the 
simplex-method to find the lexicographic optimum of linear multicriterion optimization problems, in 
[7] − for linear maxmin problem. In [10], the problem of lexicographic optimization with convex 
criterial functions and linear constraints is reduced to a sequence of linear lexicographic problems by 
approximating the criteria functions. In single-criterion optimization, a number of extremum search 
algorithms are based on the use of the apparatus of duality theory. This issue is also of interest for 
multicriterion optimization problems. The article [11] investigates convex quadratic problems of 
lexicographic optimization on a set given by a system of linear inequalities, and questions of 
constructing problems that are dual to them. Dual problems to the original one are constructed using 
the Lagrange map, where the Lagrange multipliers are vector variables, the set of values of each of 
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them is a set of vectors in the space, the dimension of which is equal to the number of particular 
criteria with the lexicographic order introduced on it. An algorithm allowing reducing the solving of 
the initial lexicographic optimization problem by approximating a feasible set to solving a sequence 
of lexicographic problems of the linear programming is presented in this paper. 

The present paper continues researches, presented in works [13-17]. The aim of the research 
presented in this article is to establish conditions for the lexicographic solvability of vector 
optimization problems with an unbounded feasible set and conditions for lexicographic optimality of 
solutions based on the use of the properties of a recessive cone of a convex feasible set [18], a cone 
lexicographically ordering the feasible set with respect to optimization criteria [2] and local tents [19], 
built at the boundary points of the admissible set, also to develop and substantiate a method for 
finding lexicographically optimal solutions to lexicographic problems of convex optimization based 
on the ideas of linearization methods and Kelly’s cutting-planes [20]. 

2. Formulation of the problem 

In the criterion space R , we introduce a binary relation of the lexicographic order between 

vectors  1 2, , ,z z z z and  1 2, , ,z z z z     such that: 

    1: , ,L

j j j i iz z z z j N i N z z z z
             where 0N   

Consider a lexicographic optimization problem of the following type: 

    , : maxL

LZ F X F x x X ,                                               

where       1 , ,F x f x f x , 2,   ,k kf x c x , 
n

kc R ,  1,2,..., ,k N 

  0, 0, , ,n i

mX x R g x x i N X        , ,i

mg x i N  − convex functions.  

In the problem of lexicographic optimization, particular criteria are ordered by importance. This 
gives rise to the concept of the lexicographic optimum. 

Definition 1. A vector x  is lexicographically preferable to a vector x  if one of the following 
conditions is  met: 

1)    1 1f x f x ; 

2)    1 1f x f x ,    2 2f x f x ; 

……………………………………….. 

)     , 1,..., 1,j jf x f x j      f x f x . 

Definition 2. A vector x is equivalent to a vector x  if for each criterion the vectors have the same 

estimates, while .x x  

By solving the problem   ,LZ F X we mean the search for elements of the set  ,L F X of 

lexicographic optimal solutions, which we define in this way: 

    , | , ,x XL F X x F X  , where 

    , , | : ( ) ( ) min : ( ) ( ) .j j i ix F X x X j N f x f x j i N f x f x            It follows 

directly from the definition of lexicographically optimal solutions that the set  ,L F X can also be 

pecified using recurrence relations. Thus, 

   1Arg max{ (, , ,) :i i if xL F X L F X ix N   ,               (1) 

where Arg max{}  − is a set of all optimal solutions to the corresponding maximization problem, 

 0 ,L F X X ,    , ,L F X L F X . 

Reasonable inclusions of the sequence of sets follows from relations (1) 

       1 2, , ... , ,X L F X L F X L F X L F X     ,  
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that is, each next particular criterion narrows the set of solutions obtained taking into account all the 
previous particular criteria. 

It is known [1, 2], a set  ,L F X can be defined as the result of solving a sequence  of scalar 

convex programming problems  , , ,
iLZ F X i N . So, the problem  ,LZ F X can be viewed as a 

sequential optimization problem. 

Let us note the important properties of problems  , , ,
iLZ F X i N  [18]: any local minimum 

(maximum) is a global minimum (maximum). 
The definition of the lexicographically optimal solution to the problem implies the validity of such 

properties [8]. 

1. If for a feasible solution
0x X  and  0\x X x   the inequality 

0

1 1( ) ( )f x f x is carried 

out, then  0 ,x L F X . 

2. If for a feasible solution x X  \x X x   is such that 1 1( ) ( ),f x f x 
 
then  ,x L F X . 

According to [2], we introduce a definition. 

Definition 3. A vector z R is called lexicographically positive if its first nonzero component in 
ascending order of the component indices is positive. 

We will denote the lexicographic positivity of the vector z R  as: 0Lz  , here  L − the sign 

of the relation is lexicographically larger. 

A vector z R  is lexicographically larger than a vector y R Lz y if the vector  z y  is 

lexicographically positive. With this ordering, any two vectors of the same dimension are comparable 
with each other. 

So, for any vectors ,a b R La b , if and only if 1 i   so that i ia b  and if 1i  , then, 

the k ka b , 1,2,..., 1.k i   Vector a is lexicographically not less than the vector b , 
La b , if 

La b or, a b  ,  L  - the sign of the relation is lexicographically not less. 

Definition 4. A solution x X to a problem  ,LZ F X  will be called lexicographically optimal 

if it is not worse than any other admissible solution y X  in understanding the relation 
L , that is, 

if     0LF x F y   . 

So, for an arbitrary x X , the assertion is true 

       , | Lx L F X y X F y F x     .      

In terms of a lexicographic optimization problem, an arbitrarily small increase in a more important 
criterion is achieved at the expense of any losses according to other less important criteria. 

3. Existence of lexicographically optimal solutions 

The solvability of the problem of finding lexicographically optimal solutions on a feasible set Х
and the structure of the set of optimal solutions depend on the properties of the order of the preference 
relation, the structure of the feasible domain Х , the nature of its elements, properties of the vector 

function  F x , etc. According to [2], the finiteness of the set X is a sufficient condition for the 

existence of optimal solutions to the lexicographic problem of optimization. Also, the set  ,L F X  is 

not empty if the set of vector estimates  ( ) |Y F x x X   is bounded and closed. However, in the 

case of an infinite feasible region X, the set of lexicographically optimal solutions may be empty. 
It is relevant to study the issues of solvability of lexicographic vector optimization problems in 

which the set of feasible solutions is not bounded and convex.  The unboundedness of a convex set  

Х  means that  0 \ 0Х  , where  0 | : , 0nХ y R x X x ty X t         is the recessive 

cone of the set Х . 
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We will analyze the problem  ,LZ F X taking into account the properties of the recessive cone 

0 Х
 [18] and the cone  0L n LK x R Cx    lexicographically ordering the feasible set with 

respect to the optimization criteria, which we will also call the cone of perspective [13] lexicographic 

directions of the problem  ,LZ F X , since the transition from any point  1

nх R to the point 

2 1x x y  , where y belongs to the cone 
LK , leads to the inequality 2 1

LCx Cx , that is, to the 

lexicographic increase in the values of the vector criterion of the problem. 

The cone 
LK  determining the lexicographic order in space R  is a convex cone of directions of 

lexicographically positive vectors and can be represented as a union of disjoint sets: 

1 2 ... ,LK K K K  

where  1 1| 0 ,nK x R c x    

 2 1 2| 0, 0 ,nK x R c x c x     

             …, 

 1 2 1| 0, 0,..., 0, 0 .nK x R c x c x c x c x       

For an arbitrary, the statement [2] is true: 

      , Lx Kx L F X X   .                     (2)  

Continuing the study of the existence of various types of optimal solutions for vector optimization 
problems [14-17], started in work [2] for lexicographic problems, we will consider the necessary and 
sufficient conditions for the existence of lexicographically optimal solutions to the problem 

 ,LZ F X . In the case of a convex closed unbounded feasible set X of the problem  ,LZ F X , the 

theorem is valid. 
Theorem 1. A necessary condition for the existence of lexicographically optimal solutions to the 

problem  ,LZ F X  is the empty intersection of the cone 
LK of promising lexicographic directions 

and the recessive cone 0 Х
, that is, 

0LK X  .                                             (3) 

Proof. Let us suppose by contradiction that the set ( , )L F X   , but condition (3) is not 

satisfied, that is, the intersection of the cones 
LK and 0 X

is not empty:. Then the following 
relations are true: 

       0 0L L Lx x xK X K X Kx X       . 

Taking into account formula (2), we can conclude that the set ( , )L F X   . But this contradicts 

the condition of the theorem and thereby proves its validity. 
The converse statement of the theorem is generally not true. In the monograph [2, p. 113] an 

example is given in which condition (3) is satisfied for an admissible set X , but the set of its extreme 

points is unbounded, and as a result, the set ( , )L F X   . The direction of the lexicographically 

positive vector will be called the lexicographically positive direction. The theorem is true [2, p. 113]. 
Theorem 2. Let V  be a non-empty set of extreme points of a convex closed set X . If set V  is a 

bounded, then the set X  has a lexicographic maximum if and only if it is bounded in all 
lexicographically positive directions. 

In our notation, under the conditions of Theorem 2, the set ( , )L F X  is not empty if and only if 

condition (3) is satisfied. In the case of a convex, unbounded and polyhedral set, the corollary to 
Theorem 2 [2, p. 114] is true. 

Corollary. A closed convex polyhedral set X  has a lexicographic maximum if and only if it is 
bounded in all lexicographically positive directions. 

Theorem 1 and the corollary to Theorem 2 imply the following theorem. 
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Theorem 3. Let the feasible set X of the problem  ,LZ F X be a closed convex polyhedral set. 

A necessary and sufficient condition for the existence of lexicographically optimal solutions to this 
problem is the fulfillment of equality (3). 

It should be noted that the multifaceted condition of a convex closed unbounded set X is essential 
for the statement of the fact that condition (3) is a necessary and sufficient condition for the existence 

of lexicographically optimal solutions to the problem  ,LZ F X . 

4. Optimality conditions for solutions 

Optimality conditions are an essential component of the mathematical theory of optimization, 
including vector optimization. Establishing the necessary and sufficient conditions for the optimality 
of solutions to vector problems is an urgent problem, since the knowledge of such conditions provides 
the basis for developing methods for testing the optimality of one or another chosen solution, as well 
as for constructing and developing effective optimization methods in order to find various sets of 
optimal solutions. 

As is well known [3,13-17], if the criteria of a vector problem are equally important, then the 

solution of a vector problem is usually understood as finding a subset of one of such sets:  ,P F X

all Pareto-optimal (effective) solutions,  ,S F X  Slater-optimal solutions. The following 

statements x X   are true: 

          , | , ,x P F X y X F y F x F y F x       

      , | ,x S F X y X F y F x      

It's obvious that      , , ,L F X P F X S F X  . 

According to Theorem 1 [3, p. 163], due to the linearity of the criterion functions of the problem 

 ,LZ F X and regardless of the structure of the feasible set X , Pareto-optimal and Slater-optimal 

solutions can constitute the entire feasible set, or be located only on its boundary. Therefore, taking 

into account the inclusions ( , ) ( , ) ( , )L F X P F X S F X   in establishing necessary and 

sufficient conditions for the lexicographic optimality of solutions to the problem, we will consider 
only the boundary points of the set X . We will denote a subset FrB  of boundary points of some set. 
Let us introduce the following sets for consideration:  

( ) { ( ) 0}m iN y i N g y    ,  ( ) ( ) 0,  ( )n

iX y x R g x i N y     .  

Moreover, if, ( ),  ( ),ig x i N y  – are continuously differentiable functions in space 
nR , we can 

define the set ( ) { ( ),  0,  ( )}n

iQ y x R g y x y i N y        , where ( )ig y  – function gradient 

( )ig x  at the point , ( )y i N y . It's obvious that Fr :y X  ( )N y   , 

0 ( ) ( ).y X X X y Q y     

Theorem 4. Let Fry X . If ( ), ( )ig x i N y , – are continuously differentiable functions, then 

the relation 

  ( )L Q yK y                                                               (4)  

is a sufficient condition for the inclusion ( , )y L C X . Moreover, if  ( )  ( )ig y i N y    –is a 

system of linearly independent vectors, then the relation 

 
 1 ( )Q yK y                                                          (5)  

is a necessary condition for the inclusion ( , )y L C X .  

Proof. The sufficiency of condition (4) of the theorem becomes obvious, taking into account the 

inclusion ( )X Q y , as well as formula (2). 
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Necessity. The requirement of linear independence of vectors  ( )  ( )ig y i N y    leads to the 

fulfillment of the relations: int ( )Q y   , int ( ) ri ( )Q y Q y , where ri B is the relative interior of 

some set B . Let ( , )y L C X , that is, according to formula (2)  

   Ly XK   .                             (6) 

Let us suppose (by contradiction) that relation (5) is not fulfilled, that is  1 ( )Q yK y  , 

whence, by Corollary 6.3.2 with [18]  1 int ( )K Q y y  . Taking into account also that under 

the conditions of this theorem the sum of the linear hulls of the cones 1K and  ( )Q y y coincides 

with 
nR , and according to Theorem 3.4 [21, p. 31], we conclude that the cones 1 {0}K and 

 int ( )Q y y are inseparable, which are local tents [19, 21] at the point y of the sets 

 1 { }y K y and X , respectively. Moreover, each of these local tents is not a linear subspace in 

nR , since the point  0 nR does not belong to their interiors, as well as taking into account 

Theorems 1.1 and 6.1 from [18]. Then, according to Theorem 1.3 from [21, p. 204] 

 1( ) { } \{ }y K y X y  , which contradicts condition (6) and thus it proves the necessity of 

satisfying relation (5) for any lexicographically optimal boundary point y X  under the conditions 

of the theorem. The proof of the theorem is finished. 

5. Cutting plane method for solving lexicographic vector convex optimization 
problems 

The search for solutions to the problem  ,LZ F X  can be reduced to solving a sequence of 

lexicographic linear programming problems 

    , : maxL
L p pZ F X F x x X

 
on a polyhedral set 

    , 0, 0, , 0,1,...,n i j j i j
p mX x R g x x x g x x i N j p         , 

j nx R ,  0,n n
i nR x R x i N     , containing the feasible domain X  of the original 

problem. 

Statement 1. The including pX X
 
is just. 

Proof. The including follows directly from the construction of a polyhedral set pX . Using the 

properties of a convex continuously differentiable function  h x  for any , nx y R , the inequality 

     ,h y x y h y h x     .                                          (7) 

According to (7), for some number 0p  and any
j nx R  , 1,...,j p , we can write down 

     ,i j j i j ig x x x g x g x    , mi N  , 0,1,...,j p .       (8) 

Since the inequalities,   0ig x  , ,mi N
 
are satisfied for arbitrary x X , then relation (8) 

implies the fulfillment of the inequalities 

   , 0i j j i jg x x x g x    , mi N  , 0,1,..., ,j p  (9) 
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that is px X , as required to be proved. 

Theorem 4. [2, p. 190]. If a vector function F  reaches a lexicographic maximum on a set pX , 

then among the points of this maximum there is an extreme point of the set pX . 

From Theorem 4 it follows that a simplex algorithm can be used as an algorithm for directed 

enumeration of the extreme points of the set pX  to solve the problem  ,L pZ F X . 

Finding lexicographically optimal solutions to the problem  ,L pZ F X  will be carried out by 

direct (lexicographic) search [2], which is reduced to solving maximization problems 

    , : max ,ss p pZ f X f x x X s N  , in each of which the corresponding function of the 

lexicographically ordered vector criterion is maximized. The main idea of the proposed method is as 

follows. If the optimal solution to the problem  ,s pZ f X is inadmissible in the problem 

 , ,LZ F X  then it is excluded from further consideration by adding a new linear constraint to the 

constraints of the problem  ,s pZ f X . Thus, this restriction cuts off the invalid solution, as well as 

part of the invalid problem domain,  ,LZ F X from all subsequent considerations. All the added 

constraints are correct cutting planes, that is, those that do not cut off any part of the feasible region of 

the convex problem  ,LZ F X . If the optimal solution to a problem  ,s pZ f X  belongs to a set 

,X and it is the only optimal solution on this set, then the found solution is lexicographically optimal 

for the problem  ,LZ F X . 

6. Algorithm for solving the problem  ,LZ F X  

Initial step. Let 1,s  0.k   First we select an arbitrary point Frkx G .  

Ten we build a polyhedron     , 0, 0,n i k k i k
k mX x R g x x x g x x i N        .  

1. We will solve the problem 

  max s kf x x X .      (10) 

by the dual simplex algorithm [2]. Let   1 arg maxk
s kx f x x X   . If 

1kx X  , and 
1kx 

 − 

is the only optimal solution on the feasible set X , then   1 arg maxk Lx F x x X   , insofar as 

kX X . The problem  ,LZ F X  is solved. 

2. If 
1kx X   and  

1kx 
 − is not the only optimal solution on the feasible set X , we believe

 1 ,k
s sf f x  1s s  , 

 1 | ( ) , 1,2,..., 1k k i iX x X f x f i s      and pass over to step 1. 

If  
1kx X   we go to step 3. 

3. We define the set   1
1 0i k

kI i g x 
    of constraint indices of problem  ,LZ F X , 

which are violated at the point 
1kx 

. We will build a polyhedron 1kX  , adding to the constraints 

describing the set ,kX  the inequality 
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   1 1 1, 0i k k i kg x x x g x      , 

   
1

1 1
1 1 max

k

j k i k
k k

i I
i N j I g x g x



 
 



  
    

  

. We get a new multifaceted set 

    1 1 1
1 1| , 0,i k k i k

k k kX x X g x x x g x i N  
        .v 

We go to step 1, believing 1k k  .  
To solve auxiliary problems of linear optimization of the form (10) it is advisable to apply the dual 

simplex method [2], which allows using the solution obtained at the previous step as a basis for the 
updated feasible domain. 

The convergence of the algorithm is established by the following theorem. 

Theorem 5. If the functions  ig x , ,mi N are convex, continuously differentiable and the 

problem  ,LZ F X  has a finite optimal solution, then the sequence of points generated by this 

algorithm converges to the lexicographically optimal solution to the problem  ,LZ F X . 

Proof. If the problem  ,LZ F X has a finite lexicographically optimal solution, then, starting 

from some number 0p , the sequence of points  is contained in a bounded set  px . Let  kx  be a 

subsequence of a sequence  px that converges to a point 
*x . We will consider a subsequence tx  

of points for which the cutting hyperplane is generated with respect to the i-constraint of the form (9). 
If at each iteration a hyperplane is added with respect to the strongest (most violated) constraint, then, 

starting from some number 0k k , the constraint is fulfilled   0i kg x  , that is, 
kx it belongs to 

the set of feasible solutions or the subsequence  tx  is infinite. In the case when the subsequence

 tx  is infinite, the inequality holds for each t t  , whence    , 0i t t t i tg x x x g x


    , 

following  Cauchy-Bunyakovsky inequality, we obtain    i t i t t tg x g x x x


   . Considering 

that 0t tx x

  ,    *i t ig x g x   , from the last inequality it follows 

   * 0i t ig x g x  , that 
*x is  a feasible solution to the problem  ,LZ F X . On the other hand, 

if x is the optimal solution to the problem  ,LZ F X , then at each iteration of the algorithm the 

inequality    t LF x F x  is valid, whence we obtain    * LF x F x at the passage to the limit. 

Hence 
*x  is the lexicographically optimal solution to the problem  ,LZ F X . The theorem is 

proved. 

The construction of the sequence  kx  in the proposed method is carried out in such a way that 

each of the points 
kx  is an no feasible point for the original problem. Therefore, the calculation 

process cannot be stopped even at rather large values s , this is possible only when we get an 
admissible point. Convergence to a lexicographically optimal solution is guaranteed by the algorithm 
in the case when the admissible set is convex. 

7. Conclusions 

The issues of existence and lexicographic optimality of solutions of vector convex optimization 
problems with linear functions of criteria and an unbounded feasible set have been investigated. 



210 

 

Based on the analysis of these problems, taking into account the properties of the cones of perspective 
lexicographic directions, of recessive directions and local tents at the boundary points of the feasible 
set, necessary and sufficient conditions for the existence and lexicographic optimality of solutions of 
the problems under study have been established. The obtained conditions can be successfully used in 
the development of algorithms for finding optimal solutions to these lexicographic optimization 
problems. Based on the ideas of linearization methods and Kelly’s cutting planes, a method for 
finding lexicographically optimal solutions of convex lexicographic problems has been constructed 
and substantiated. 
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