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Abstract  
The problem of missing values is prevalent in practically any field that has to deal with 
collecting, storing, and processing large volumes of data. There are several methods for 
dealing with this issue, however, it is not always clear which one is optimal in a given set of 
circumstances. In this study, four popular methods of handling these missing values were 
chosen - dropping of rows, simple mean imputation, nearest neighbor imputation and 
multiple imputation. These methods were tested with the goal of determining whether one 
performs better than others across multiple models as well as determining whether the type of 
model has an impact on the method’s effectiveness. These methods were employed on a 
dataset of house sales with over 21,000 entries with the price as the prediction target. The 
results showed that across several models multiple imputation performed most optimally, but 
also the fact that the comparative effectiveness of the methods does vary depending on the 
type of machine learning model use. 
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1. Introduction 

The relevance of the study comes from the prevalence of the missing data problem in most 
statistics tasks today. The sheer volume and amount of data that needs to be processed has grown and 
continues to grow exponentially and due to this a lot of values and observations are bound to be 
missing when they get to a data analyst, data scientist, machine learning expert or any other 
practitioner of statistics. Handling these blank spots in a dataset is an issue that people today struggle 
at all levels, from student to statistician expert. Thus, there is constantly a need for research in the 
field. Looking at missing data in a general sense can give insights that can be then applied to any 
problem that uses data, but arguably looking at the problem in a more specialized way could lead to 
new discoveries specific to the problem or the used method. Regression problems today account for a 
large chunk of statistics and data science problems with new state-of-the-art models being developed 
often. Therefore, looking at the issue of missing values in the context of specifically regression 
problems, this study would allow a more detailed comparative look at the impact of different methods 
on certain models. 

As more models are being developed in the machine learning field for the purpose of solving 
regression problems the issue of missing values in a dataset is more relevant than it has ever been. 
Because of this, a closer comparative exploration has to be performed of popular models used for 
regression in order to determine the best course of action for dealing with the mentioned problem.  

The paper consists of five sections. Section 2 is devoted to some methods of machine learning that 
will be used in practical experience, and the problem of regression models in the term of machine 
learning analysis. Section 3 deals with missing data issues and some approaches how can the missing 
values be handled. There is important problem in the context of using machine learning. Most of the 
machine learning algorithms that are available for use today do not accept input with empty cells in 
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the dataset (there are exceptions as some machine learning algorithms and libraries do allow missing 
data through automatic handling).To combat this issue in a manner that maximizes the accuracy of 
predictions numerous methods and precautions have been developed. In this section, we will be 
looking at some of the powerful and widespread methods of handling missing data. In section 4, the 
practical experiment is studied and a test is carried out in order to determine the effectiveness of 
several different methods of handling missing data and see how these methods compare to each other. 
The dataset used in this study is the “House Sales in King County, USA” public dataset [20]. The goal 
of the machine learning models will be to predict the price of the house based on the values of other 
rows. Here we have 18 features (predictor variables) and 1 outcome variable – the price. The last 
section is conclusion. 

2. Methods of Machine Learning 

2.1. Regression problems and models 

The first thing that should be clarified in this work is what is a regression problem in our 
understanding. In the terms of the current data science field the most simple and straightforward 
answer to that would be that a regression problem is a problem where the value of some numerical 
variable needs to be predicted given a dataset of observations. And really, this is the goal of 
regression – given input data predict an output variable, or multiple variables. But to achieve this goal 
we need to solve an underlying statistical modeling problem of trying to fit a model, or function, to a 
set of observations so that the model is accurate enough to make predictions given new observations. 
Let us discuss which models will be used in this work. 

2.2. General linear regression model 

This is a model that is not outright used in this work, however, it is required to have an 
understanding of this model nonetheless as an extension of it, the polynomial regression, is used as 
well as several other machine learning models and imputation methods relying on this model.  

First let us define notation for our regression models. Let Y = 𝑌1, … , 𝑌𝑘  be the vector of variables 
we want to predict, referred to as dependent or outcome variables. Often, Y is a single scalar, but it 
can also consist of multiple variables in more complex problems. Let X = 𝑋1, … , 𝑋𝑛 be the vector of 
predictor variables. In simple regression problems, X can be a single predictor variable but in terms of 
the problems discussed in this work an n value greater than 1 is typically the case. Then, let β = 
β 0, β 1, … , β 𝑛 denote a vector of regression coefficients. Here β 0 is an optional parameter and β 1, 
… , β 𝑛 are the regression coefficients where each coefficient corresponds with an X variable. Then, 
we can write down the weighted sum of X and β known as a linear predictor [1], [2] 

𝑋β =  β 0 + 𝑋1β 1 + ⋯ +  X𝑛β 𝑛                                             (1) 

     The general formula for most regression models can be written down as a function of our X 
variables and β coefficient with an added error term 𝑒𝑖 representing statistical noise or some 
determinants of Y that were left unmodeled: 

𝑌 = 𝑓(𝑋, β) + 𝑒𝑖                                                           (2) 

     As formulated in [1, p14] if a general regression model is given by f(X) then a general linear 
regression model will only involve X as a weighted sum of all 𝑋𝑖, that is, it is not a function of X but a 
function of the linear predictor 𝑋β. Such a model is given by f(𝑋β). A general or generalized 
regression model has both linear and logistic regression as cases (more various classes of a general 
linear model are demonstrated in [2]). As outlined in [2, p109] a  general linear regression model 
involves the previously defined vectors of predictors X and coefficients β, a data vector y = (𝑦1, … , 
𝑦𝑘) and also the following parameters. Firstly, the link function g that yields a vector of transformed 
data y’ = 𝑔−1(𝑋β) which is then used in modeling of the data. Secondly, the data distribution, p(y | 
y’). And lastly, some other parameters that may or may not be needed. Such parameters may include 
but are not limited to variances, overdispersions and cutpoints. [1], [2] 

This foundation gives us a basic model to work with. However, another aspect to consider is that 
when we are solving a regression problem, we may find that, as often is the case, some variables in X 
have an effect on each other in such capacity that they cannot be separate from one another. Let us say 
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we have two variables, 𝑋𝑖 and 𝑋𝑗 that have such an interaction between them. A rather simple way to 

include such a dependency or interaction (as it is referred to as in [1]) is to create a new variable, 𝑋𝑖𝑋𝑗 

and add it into our model along with a new coefficient β 𝑛+1 such that 𝑋β will now be written as: 

𝑋β =  β 0 + 𝑋1β 1 + ⋯ +  X𝑛β 𝑛 +  𝑋𝑖𝑋𝑗β 𝑛+1                                 (3) 

Thus, we now compensate for this interaction between 𝑋𝑖 and 𝑋𝑗 in the model, although this is just 

one rather simplistic method of doing so. 

2.3. Polynomial regression models 

Polynomial models get their name from polynomials and the need for these models arises where 
the relationships between the predictors and the output variables are not linear, in other terms when 
fitting a linear function, a straight line, would not be possible to do within reasonable accuracy. A 
polynomial over variables X can be written in the following form (a formulation from [10]): 

𝑌 =  β 0 + ∑  β 𝑖  T 𝑖 + 𝑒𝑚
𝑖=1                                                        (4) 

Where  𝑇𝑖 =  ∏ 𝑋
𝑗

𝑎𝑖,𝑗𝑛
𝑗=1  are the terms, 𝑎𝑖,𝑗 >  0 are variable degrees and β are coefficients and e is 

the error term. 
The polynomial model is powerful since it has properties that are well understood, it is flexible and 

therefore can fit many shapes of data, it is easy to use computationally. These are far from the only 
benefits of these models and they have found widespread use for various statistical and machine 
learning problems.  

2.4. Gradient boosting models 

When data scientists use most methods of regression, they attempt to find a function F(X) that fits 
the data with acceptable accuracy. Understandably, as such function only approximates the data and, 
in most cases, cannot describe it perfectly, there is also an error term that needs to be accounted for. 
Sometimes, however, it is the case that the relationship between the predictors and the outcome 
variable is not fully defined or described. In those cases, instead of being a constant error term, the 
error actually corelates with Y. Therefore, a secondary model can be trained on this error term and 
thus we would derive a formula for the error term which consists of some function h(X)  and a new 
error term. We can then derive the updated model function as 

𝐹2(𝑋𝑖) =  𝐹1(𝑋𝑖) + ℎ1(𝑋𝑖)                                                    (5) 

We can then iterate this process for n steps until we get a suitably accurate model. Here the 
function h can be any weak learner such as a linear model or an artificial neural network. The error of 
the model, or the loss, is then minimized (using methods such as gradient descent) to find optimal 
values. [12] 

2.5. Decision trees 

Decision trees are models that function by splitting the dataset into smaller and smaller subsets 
using simple decision models. The final tree model will consist of leaf and decision nodes that branch 
off the main (root) node. A decision node is a mode of the tree where an attribute of the model is 
being tested (for example, is 𝑋3 < 4.5?) and the node is then connected to two or more other nodes 
which split the set further based on the result of the attribute test. The leaf nodes are the final point of 
the model, they represent the final decision on the value of the output variable Y. 

2.6. Ensemble learning models 

Ensemble models are models which use several other sub-models that train on one dataset and then 
have their outputs combined. Each of the model’s output is accounted into the final output of the 
ensemble model in a ‘voting’ process, at times with different weights. The main aim of such a model 
it to produce more accurate outputs as an ensemble, even if the outputs of individual models are less 
accurate. [14]. The individual models can be practically anything, including a portion of the models 
that were discussed in this paper. The ensemble learning model that will be used in this work is a 
Random Forest, a model that uses decision trees. 
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3. Missing Data 

At the moment missing data is arguably one of the largest and most relevant issues in the field of 
data science. Data scientists of all experience levels, both industry veterans and beginner students 
have to face this problem. But why does missing data present such an issue? Well, for one, it reduces 
the statistical power of our dataset assuming that the rows with the missing values cannot be used. 
Additionally, numerous other issues such as poor representativeness of the remaining sample or 
biasness can arise. For these reasons, simply removing and forgetting about (also known as dropping) 
the rows or columns with the missing data is a poor option that would lead to inaccurate result in 
practically any study or data science problem.  

There is also the issue in the context of using machine learning. Most of the machine learning 
algorithms that are available for use today do not accept input with empty cells in the dataset (there 
are exceptions as some machine learning algorithms and libraries do allow missing data through 
automatic handling). There is, of course, the option of dropping the rows or columns with the missing 
data, however, we will then face the considerable issues that were just described above. 

To combat this issue in a manner that maximizes the accuracy of predictions numerous methods 
and precautions have been developed. In the following sections, we will be looking at some of the 
powerful and widespread methods of handling missing data. 

After discussing this issue, a question arises: why does it occur? What is the root of the problem of 
missing data? The reasons for it are often specific to the case and have to do with the way the data is 
collected. In general, however, it occurs either when there is an error in recording or storing a data 
entry or when the missing data does not actually exist.  This distinction is of the highest importance as 
it can make a difference in how we approach the situation. In the following sections, we will take a 
look at methods of imputing missing data, however, using such methods is only justified in the case 
that the data actually exists. If the missingness of a value is due to it’s nonexistence in the real world, 
then a different approach is needed, such as replacing the missing values with a placeholder values, 
like 0, and constructing another auxiliary boolean feature that indicates whether the respective values 
was missing. 

3.1. Types of missing data 

Missing data can be classified into several groups based on several different characteristics. It is 
important to understand these to have a solid foundation to then make decisions on how to handle the 
missing data. Let us now explore some of these classifications more closely. First, missing data can be 
divided into two groups based on number of response (dependent, output) variables affected. If just a 
single response variable is affected, then the missing data is defined as univariate. If multiple 
variables are instead affected, then the missing data is defined as multivariable. [15]  

Missing data can also be unit non-responsive when the data is missing for a whole unit, or 
observation or item non-responsive when the failure of obtaining data affected only one or several of 
the features of the observation or unit, but not all. To return to our previous example with the housing 
prices dataset, if a whole row was missing data, in other words we lacked all data for a given house, 
this instance would be considered a unit non-response, while if the data was only missing for the 
garage area for this particular house then it would be considered an item non-response [15] 

In [Rubin, 16] missing data is classified into 3 groups based on assumptions about the data – there 
is data Missing at Random, Missing Completely at Random and Missing Not at Random. 

To better define these classes let us use notation introduced in [15]. Let U be a finite universe of N 
unites and let s be a sample of size n. Then, let D denote the data matrix (complete) with the element 
𝑑𝑖𝑗(i=1,…n; j=1,…J). Let 𝐷𝑜𝑏𝑠 denote the part of the matrix D that is observed and  𝐷𝑚𝑖𝑠𝑠   the part 

that is missing. Then, the matrix R is made up of elements 𝑟𝑖𝑗such that  𝑟𝑖𝑗 equals to 1 when  𝑑𝑖𝑗 is 

observed and equal to 0 when 𝑑𝑖𝑗 is not observed. Then, the missing data problem can be defined as 

the fact that the probability density function of the distribution 𝑓(𝑅|𝐷) (also referred to as the 
nonresponse mechanism) is unknown. [15]. Then, we can introduce the three classifications from [16] 
as follows. Data missing completely at random, or MCAR can be defined as data where f(R| 𝐷𝑜𝑏𝑠, 
𝐷𝑚𝑖𝑠𝑠  ) = f(R) occurs if the missingness does not depend on either 𝐷𝑜𝑏𝑠 or 𝐷𝑚𝑖𝑠𝑠. In other words, 
missingness depends on the characteristics of neither the observed not the unobserved values of the 
dataset. In this case, in terms of any analysis that is going to be performed, missing values are not 
treated differently from ones that are not missing. [15], [16] 
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Data missing at random, or MAR can be defined by f(R| 𝐷𝑜𝑏𝑠, 𝐷𝑚𝑖𝑠𝑠  ) = f(R | 𝐷𝑜𝑏𝑠) occurs if the 
distribution of the nonresponse mechanism does not depend on missing values but might depend (is 
implied to depend) on the observed values. In other words, missingness is randomly distributed and is 
ignorable when the observed values had already been accounted for. This assumption is weaker than 
the previous one, MCAR, however if either of the two (MAR or MCAR) is true, then we can consider 
the nonresponse structure (the missing data structure) to be ignorable and therefore assume unbiased 
results in the analysis. [15], [16]. Data missing not at random, or MNAR, is an assumption that takes 
place when the distribution of the nonresponse mechanism, the missing data, depends on the values 
both observed and when not observed. That is we cannot account for the missingness through 
controlling for the variables that are observed. This situation is non-ignorable and makes analysis 
considerably more difficult since the missing data here depends on the events that cannot be measured 
by the analyst or researcher when working with the data.  [15], [16] 

As one can see, missing data can be classified by multiple characteristics into multiple groups and 
therefore there is no one universal approach to dealing with it. This is why it is important for any 
researcher, analyst or anyone else working with data to not only have a varied arsenal of tools of 
handling missing data, but also an understanding of when to use each tool. 

3.2. Dropping 

The downsides of simply dropping the rows or columns with the missing data were already 
mentioned in this paper. It is not an elegant solution to the problem of missing data and in most cases 
it has far more negative consequences than benefits. Despite this, this method still has the benefit of 
being arguably the simplest when compared to other methods of processing missing values and in 
some situations one can still consider this method for dealing with missing data.  

One example would when a variable (column) has a large percentage of data missing. In cases like 
this, the column may be dropped for dimensionality reduction as it would have likely not provided 
added accuracy to the model. There are also a lot of cases however where even if a large portion or 
most of the values are missing in a column it should not be dropped as the variable could still have 
critical importance for the observations where it is not missing. Individual observations (rows) could 
be dropped too if they contain a large portion of missing data. When doing so one would also run into 
the risk of reducing the accuracy of the model, introducing biasness etc.  

To summarize dropping as a method of dealing with missing data, one should consider the 
numerous drawbacks of using it before applying dropping. It is challenging to define formal rules or 
guideline to when this method should be used or what percentage of missing values in a row or 
column is the acceptable threshold for dropping, as it also depends on circumstances of the problem at 
hand. When data is Not Missing at Random, for example, analyzing the missing values instead of 
dropping them would likely lead to more accurate results. In theory, if data is Missing Completely at 
Random, though, the deleted observations would then be in turn also random and therefore loss of 
important variation would not take place [17]. To make a generalized summary, though, one can say 
that dropping varies heavily on a case-by-case basis and, in most applicable cases, should be used 
purely as a last resort when a significant portion of the data is missing, and other methods are not 
feasible or would have greater negative consequences on the accuracy of the model. If the data is 
MAR or MNAR dropping has more severe drawbacks, such as introducing biasness, reducing 
statistical power and missing out on key insights from the data.  

3.3. Imputation, Simple Imputation 

Imputation is the name for a family of techniques that compute values for the missing cells and fill 
them in to get a complete dataset without dropping any data. Imputation methods are classified in  
several ways, of which we will look at two: deterministic or random imputation, and single or 
multiple imputation. [15], [17]. Deterministic imputation methods always produce the same, 
determined outputs given the same dataset and parameters. Stochastic imputation methods, as the 
name suggests, have an element of randomness, and therefore may produce different outputs. [15] 

Single imputation is a term used for a number of techniques such as mean replacement, single 
regression replacement and others. In these methods, the missing value is estimated, or predicted, only 
once. Multiple imputation on the other hand refers to a family of imputation methods that are 
essentially an extension of normal single imputation where the missing values are estimated multiple 
different times in order to reduce biasness in the standard error and potentially improve accuracy of 
prediction of the missing values. [17] 
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Some of the simplest imputation methods impute missing values through use of the logical 
relations between the variables to estimate the missing values with high probability of such 
predictions being accurate. For example, the mean imputation technique calculates the overall mean 
for the variable for every missing value in the dataset. Variations of this method exist that make use of 
other stochastic characteristics, such as median or mode. Other variations may impute a class mean or 
median instead. In this case, predictor variables are used to define such classes. [15] 

These simple imputation methods have the benefit of being easy to use and applicable to a wide 
variety of problems where missing data is a factor. However, when using these techniques, one has to 
consider their disadvantages, mainly the distortion of the relationships between variables and 
compression of distributions of the variables. [15]  

3.4. Nearest Neighbor Imputation 

The nearest neighbor (NN) imputation methods are deterministic donor-based methods where the 
donor is selected through the ‘nearest neighbor’ procedure by minimizing the so-called distance 
between the recipient and potential donors. For this, a distance metric has to be defined as a function 
of the auxiliary variables. The unit with the smallest distance function value that is observed is then 
selected as the donor and the missing values in the non-respondent are filled with the missing values 
from this donor for relevant variables. The imputed value is always equal to another record in the 
dataset or an average of a number of other records. Thus, the key beneficial aspect of the NN method 
is that imputed values are real, observed values from the dataset (or averages of such values) and are 
not constructed approximations.[19], [15] 

 Another advantage of NN based methods is that they have often been shown to perform better 
than other donor-based methods, although this depends on the selection of the distance metric.[19] 

The main issue with NN methods, addressed in [19] is that some features that are irrelevant to the 
imputation or excessively noisy add random perturbations to the distance metric and this reduce 
performance considerably. Multiple ways of dealing with this issues have been proposed, such as, as 
mentioned previously, using multiple neighbors and averaging their values to get the imputed value 
for the recipient. Although there are several proposed ways of dealing with this issue, it is still an 
issue that anyone that chooses to use Nearest Neighbors has to consider.  

3.5. Multiple Imputation  

Proposed in [16], Multiple Imputation methods are an extension of what is known as Single 
Imputation, where imputed values are only calculated once. In multiple imputation, these values are 
calculated multiple times instead. The reasons for imputing the values repeatedly, as opposed to only 
once, are as follows. Firstly, it reduces the random component of the imputation estimator’s variance. 
Secondly, the variance estimation of the point estimator is simpler with multiple imputation, thus 
resulting in a relatively simple variance estimation formula. [15] 

Multiple Imputation methods work well with missing data that is either MCAR or MAR and can 
be particularly useful with data that is Missing at Random (MAR). Analyzing data that has been 
imputed using multiple imputation is a three-step procedure. Firstly, the missing data is imputed. 
Secondly, Independent statistical analysis is conducted on the resulting datasets (of which there are 
several with multiple imputation). Finally, the results are then pooled across the imputations. [17] 

Multiple imputation has the advantage of being able to be used in multivariate missing data 
problems across different variable types. This fact combined with the ability to produce additional 
micro-data files that can then be used for various research makes multiple imputation one of the most 
practical and powerful approaches for problems where a number of analyses needs to be performed 
with missing values across several different numerical and categorical variables. [15]. [17] 

4. Experiment – comparison of imputation methods across ML models 

The aim of this experiment is to carry out a test in order to determine the effectiveness of several 
different methods of handling missing data and see how these methods compare to each other. The 
test is also to be performed on three separate models to gain further insights and determine if the 
model type has an impact on comparative method effectiveness.  
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4.1. Experiment setup and conditions 

The dataset used in this study is the “House Sales in King County, USA” public dataset [20]. The 
goal of the machine learning models will be to predict the price of the house based on the values of 
other rows. Here we have 18 features (predictor variables) and 1 outcome variable – the price. Four 
methods of handling missing data will be used – dropping of rows with missing values, simple 
imputation via the mean, nearest neighbor imputation and multiple imputation. The models to be 
tested are a polynomial regression model of the 2nd order, a random forest ensemble learning model 
and a gradient boosting model. The dataset will be injected with 10% missing values. This means that 
in this case we assume that the data is Missing Completely at Random (MCAR). Afterwards, the 
dataset will be split into training and validation subsets as needed and all four methods of handling 
with missing values will be used resulting in four groups of data. These datasets will then be fed into 
each machine learning model separately, measuring the RMSE and MAE of the resulting model.  
Once all the RMSE and MAE values are measured, they will then be manually written down in a table 
for analysis. 

4.2. Tools  

The code for this experiment is written in python 3.7. A number of python libraries were also used. 
The Numpy library for used for various auxiliary functions. The Pandas library was used for storing 
and working with the datasets. The scikit-learn library was used for the train\test split function as well 
as for the polynomial and random forest models. The xgboost library was used for its XGBoost 
regressor model, a gradient boosting model for regression. To evaluate the methods’ performance two 
error metrics will be used: root mean squared error (RMSE) and mean absolute error (MAE). The 
reason for using several metrics as opposed to one is that different ways of calculating error have 
varying strengths, features and shortcomings. There is no one metric that is best for all situations and 
thus, due to the nature of this study it has been decided that using both RMSE and MAE would lead to 
a more wholistic picture of the results and less mistakes in the analysis of these results. 

The mean absolute error is calculated as follows 

MAE = 
∑ |𝑒𝑖−𝑜𝑖|𝑛

𝑖=1

𝑛
                                                     (6) 

Where n is the sample size, 𝑒𝑖  are the expected values (in our case the known price values in the 
validation samples) and 𝑜𝑖 are the observed (in our case predicted) values. The root mean squared 
error is calculated as follows  

RMSE = √
∑ (𝑒𝑖− 𝑜𝑖)2𝑛

𝑖=1

𝑛
                                              (7) 

Where, again, n is the sample size, 𝑒𝑖 are the expected (known) values and 𝑜𝑖 are the observed 
(predicted) values. 

4.3. Results 

Table 3.1 
 RMSE values for the method\model combinations 
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Table 3.2 
MAE values for the method\model combinations 

 

4.4. Results analysis  

Before any analysis on the results can be conducted it should be noted that any conclusions or 
insights derived from these results are made within the context of the MCAR assumption due to the 
missing values being injected into the dataset at random. Therefore, these results potentially do not 
reflect situations where other assumptions, like MAR or MCNAR hold true. This experiment was also 
repeated multiple times to account for randomness and showed negligible difference in results across 
multiple attempts. 

The first thing to be addressed is the dropping method. While, as expected, showing the worst 
MAE score across any model, the method managed to get a lower RMSE score than some of the other 
methods in the Random Forest and Gradient Boosting models. This, however, does not indicate that 
this method is accurate or will perform better than any other method. It is important to note that since 
we dropped rows, data was lost. While the results might be relatively accurate compared to other 
methods, because both the train and validation sets were derived from the same dataset, there was no 
external test dataset and data was lost biasness was potentially introduced into the model and, when 
combined with some random variation, resulted in lower-than-expected RMSE scores in two cases. 

 If we take a look at the MAE table, it is apparent that the methods follow a similar hierarchy 
across all three models – dropping being the worst, followed by mean imputation which performed 
better, followed by nearest neighbor imputation and multiple imputation performing the best. The 
polynomial regression model performed the worst, but also showed a consistency in this hierarchy in 
both MAE and RMSE values. The random forest and gradient boosting model have, on the other 
hand, varying hierarchies between MAE and RMSE, suggesting that the model type has some effect 
on how these methods compare. When looking at the RMSE table, an even more varied pattern can be 
seen. Considering all of this, it is obvious in the case of this particular experiment that the type of 
model does have an impact on how well a particular method of handling missing data performs. This 
might be due to the models putting different weights on certain columns, reacting to outliers and 
different data types differently (as some of the methods can result in rational values rather than 
exclusively integers). The scope of this impact, however, is hard to evaluate within the scope of this 
work, suggesting a larger scope and more detailed study might be needed. 

The final and one of the key insights that can be derived is that, independent of the model and 
across both the MAE and RMSE scores, the multiple imputation method resulted in the best score in 
every case. This demonstrates this methods effectiveness and leads to the conclusion that in the 
MCAR assumption it is preferrable to the other methods tested in this experiment. 

5. Conclusions 

In this work, the topics of regression and machine learning were discussed before exploring the 
missing data problem in the context of these topics. As shown, there are many tools and methods 
available to deal with the ever-present problem of missing data. After testing several of these methods 
for regression problems across different models, two main conclusions can be made. The first, is the 
fact that among these methods, the Multiple Imputation method performed showed by far the most 
accurate results within the MCAR assumption. Second, is the fact that the type of the model, with 
high likelihood, had an effect on how these methods compare to each other. Although one method 
was shown to be the best in this case, a wider study could be conducted comparing a wider range of 
methods on not only several types of models but also multiple models of the same type, to confirm 
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that the difference is truly due to the model type and not to the underlying code of one particular 
model. As shown, the missing data problem in statistics and data science is an issue that is so 
prevalent that to this day it is in need of continuous research and study. 
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