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Abstract 
Alterations of gait and balance are a significant cause of falls, injuries, and consequent 

hospitalizations in the elderly. In addition to age-associated motor decline, other factors can 

impact gait and stability, including the motor dysfunctions caused by neurological diseases 

such as Parkinson’s disease or hemiplegia after stroke. Monitoring changes and deterioration 

in gait patterns and balance is crucial for activating rehabilitation treatments and preventing 

serious consequences. This work presents a Kinect-based solution, suitable for domestic 

contexts, for assessing gait and balance in individuals at risk of falling. The system captures 

body movements during home acquisition sessions scheduled by clinicians at definite times 

of the day and automatically estimates specific functional parameters to objectively 

characterize the subjects’ performance. The system includes a graphical user interface 

designed to ensure usability in unsupervised contexts: the human-computer interaction 

mainly relies on natural body movements to support the self-management of the system, if 

the motor conditions allow it. This work presents the system’s features and facilities, and the 

preliminary results on healthy volunteers’ trials.     
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1. Introduction

Changes in gait patterns, balance disorders, and alteration of postural stability are among the most 

evident effects of the functional decline linked to aging [1]. Particularly relevant features in the gait 

patterns in older people are the slower walking speed, shorter steps and longer double support phase 

[2], mainly due to lower leg strength and difficulty in maintaining stability during walking, leading to 

more significant gait variability and mediolateral sways [1]-[4]. Balance disorders are primarily 

related to the decline of sensory systems, essential for ensuring postural stability. The deterioration of 

the sensory systems reduces the ability to maintain balance, especially in the presence of sudden 

perturbations in the surrounding environment [1]. Gait and balance impairments lead to less 

independence and autonomy in daily living, thus reducing the overall quality of life. However, the 

increased risk of falls is the most damaging consequence, often leading to injuries and hospitalizations 

that are particularly common in the elderly [5]. 
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In addition to age-related factors, other comorbidities can adversely affect gait and stability, 

including neurological pathologies characterized by movement disorders. In particular, the 

dysfunctions in motor control and coordination cause changes in gait and postural stability linked to 

the progression of the disease (for example, in Parkinson's disease [6]) or the consequences of the 

acute event, respectively (e.g., post-stroke hemiplegia [7]). There is evidence that programs based on 

balance exercise and walking practice help prevent falls in older people [8]. The early identification of 

alterations and decline in motor patterns and postural stability for pathological and non-pathological 

older people is essential to promptly activate treatments (such as aerobic, lower limb agility, and 

muscle strengthening exercises) that improve stability in static and dynamic conditions to avoid 

severe consequences [9]. Recently, new training methodologies, based on virtual reality approaches, 

have been explored to improve gait and balance in elderly and subjects with movement disorders due 

to neurological dysfunctions [10], using optical sensors [11][12], wearable sensors [13][14] and 

smartphones [2][15]. Several instruments are available to characterize balance and gait disorders in 

older populations. Static and dynamic posturography and traditional gait analysis, for example, are 

standardized methods to analyze movements of the body center of pressure and alterations in gait 

patterns. Nevertheless, their use is limited to equipped and supervised laboratories, therefore not 

always suitable for an early detection of changes in habitual motor behavior. In the last years, several 

studies proposed emerging technological solutions to spread gait and balance assessment, overcoming 

the limitation of standard instruments [16]-[20]. In particular, Kinect-based optical techniques have 

been widely used in the context of evaluation and analysis of dysfunctions related to balance, stability 

and gait disorders. Some approaches, as in [21]-[23], employ Kinect v2 to evaluate stability 

parameters during the execution of purely static tasks (e.g., double or single support stability, side 

bending). Other studies focus on using Kinect v2 to characterize gait through the estimation of 

spatiotemporal parameters, either neglecting dynamic stability metrics [24] or employing additional 

instrumentation for their evaluation [25]. A different approach [26] tries to classify normal versus 

pathological gait directly from Kinect v2 body tracking data, without the estimation of gait or posture 

specific parameters. Although different, all these methodologies are designed to operate in supervised 

context.  

This study presents an optical solution based on the new Microsoft Kinect Azure DK to evaluate 

gait and postural stability. With respect to the aforementioned approaches, ours considers an 

integrated analysis based on static (i.e., during the standing task) and dynamic (i.e., during the 

walking task) conditions, which allows for a more comprehensive evaluation of postural alterations, 

balance dysfunctions, and changes in the habitual motor behaviors. Moreover, recent validation 

studies have demonstrated the high potential of the new Kinect sensor versus previous device models 

and other commercial optical sensors, both in terms of  performance (i.e., accuracy and reliability) as 

in [27] and of the real-time body tracking algorithm (i.e., accuracy and robustness) as in [28]. Last but 

not least, our approach is designed to be suitable for domestic contexts or, at least, semi-supervised 

scenarios (e.g., private patients’ associations). This aspect could allow to fill the gap between seldom 

“in hospital” testing and continuous “at home” monitoring, which, at the state of the art, can be easily 

achieved only through wearable devices [29]. The system is able to capture body movements during 

gait and postural stability tasks executed by the subjects in front of the Kinect Azure camera at 

definite times of the day, according to medical prescription, and then estimate sets of functional 

parameters to characterize performance in at-risk subjects automatically. Dedicated human-computer 

interaction and user interfaces, based on natural body movements and the same tracking algorithm, 

are part of the system to allow for high usability and self-management at home and without specific 

technological skills. Preliminary results on a small group of healthy volunteers indicate the solution’s 

ability to intercept changes in gait patterns and postural stability, suggesting the possibility of using it 

as an intelligent and automatic instrument to remotely monitor alterations of these functionalities in 

at-risk pathological and non-pathological populations.    

 

 

 

 



2. Material and Methods 
2.1. The Kinect-based solution: Hardware, Software and Setup 

The Kinect-based system has been designed to consider some specific needs of unsupervised 

environments, as the domestic contexts, including non-invasiveness, portability, and limited available 

spaces. In addition, to ensure high usability, particular attention has been paid to the development of 

the human-computer interaction and the graphical user interface to support subjects and caregivers in 

the acquisition of specific gait and balance tasks. 

The system hardware is composed of a mini-pc, an RGB-Depth camera (i.e., Microsoft Kinect 

Azure), and a monitor. Microsoft Kinect Azure records synchronized colour and depth streams at up 

to 30 fps, with different camera modes available [27]. A default configuration consisting of 1080p 

resolution for the colour stream, Narrow Field of View (NFW) for the depth stream, and 30 fps 

framerate for both was employed for this study.  

The RGB-Depth sensor is connected to the mini-pc: for this study, a ZOTAC ZBOX EN52060-V 

was used. The mini-pc model was chosen to fulfill the real-time processing requirements of the body 

tracking algorithm provided by the Azure Kinect Body Tracking Software Development Kit (SDK). 

An off-the-shelf monitor was employed to visualize the system Graphical User Interface (GUI) and 

provide visual feedback during tasks execution.    

The system software is based on the Azure Kinect Sensor SDK and the Azure Kinect Body 

Tracking SDK. The former includes all the Application Programming Interfaces (APIs) for managing 

the device and recording, processing, and storing the video streams; the latter includes the tracking 

algorithm used for the 3D reconstruction of body movements. Unlike the previous Kinect model, the 

new Azure Kinect tracking algorithm implements a Deep Learning (DL) architecture that exploits the 

Part Affinity Field (PAF) [30] to compute 32 body joints that connect in a 2D skeleton. The 2D 

skeleton is then uplifted to a 3D model, exploiting the information from the depth camera. The 

developers trained the learning model on tons of real and synthetic images [31], so the tracking 

algorithm  can be directly used on the RGB-D stream through the routines available in the SDK. Fig. 

1 shows the physical setup of the system. 

 

Figure 1: Physical setup of the acquisition system. 
 

The acquisition software was developed in Unity, as it contains all the tools for an easy and 

effective design of the GUI and the Augmented Reality (AR) setting in which the user performs the 

required task. Unity, however, enables interaction and behaviour control of its objects only through 

C# scripting. Hence, a porting of the two SDK mentioned above (written in C++) was achieved by 

implementing a C# middleware.   

The GUI was designed for two possible scenarios: user-alone or user-supported by a 

clinician/caregiver. As an example, Fig. 2 shows the main GUI implemented for the user-supported 

scenario. In the user-supported scenario, the caregiver is in charge of the Human-Computer 



Interaction, selecting with a mouse which task to execute (stability evaluation or gait) and when to 

start and to stop the recordings. This use case was designed to support subjects with severe motor 

disabilities who need help in using and interacting with the system, limiting their involvement in 

executing motor tasks. On the contrary, in the user-alone scenario, the subject is able to self-manage 

the system and is guided in the use and execution of motor tasks by textual and vocal messages 

provided by the user interface. The vocal messages are delivered through a Text-To-Speech (TTS) 

solution for Unity based on Microsoft Speech API 5.3. Interaction with GUI objects (e.g., buttons) is 

realized by tracking the dominant (or the healthiest) hand, which is configurable before software 

execution through a JSON configuration file. All the interactive objects are adequately scaled to be 

visible for patients with reduced sight (as typical in elderly) and are organised on the screen to be 

easily reachable, thus limiting the range of motion required in the perspective of system usage by 

subjects with reduced mobility.   

 

 
Figure 2: GUI during gait acquisition (“user-supported” scenario).  

In addition, the system saves the skeletal model data at the end of each task execution in a JSON 

file: this file contains the position and rotation of the body joints according to the 3D reference system 

and a confidence estimation of the tracking accuracy. These data are then processed offline using 

custom-written MATLAB scripts to extract relevant gait and postural parameters. 

2.2. Participants, Experimental procedure and Data Acquisition 

For this preliminary study, the aim was to recruit a small number of healthy subjects to verify the 

capability of the system to quantify relevant postural and gait features. Moreover, the subjects were 

asked to simulate some motor anomalies (e.g. short steps, slow pace, dangling walking), to investigate 

if the system was able to detect them without direct involvement, at this stage, of neurological 

patients. Eventually, eight healthy volunteers (4 male and 4 female) were recruited. The average age 

is 49.5±16.4 years (range: 25-65 years). Subjects performed the tasks under the supervision of 

technical personnel and after being properly instructed on the system and experimental procedure. 

Stability tasks were executed in the user-alone scenario, whereas the user-supported scenario was 

used for gait tasks in which the caregiver controls the beginning and end of the execution.  

The acquisitions were performed in a home setting to simulate the expected working conditions of 

the system. Each session included: postural stability task (initial); walking towards the 3D camera 

along a 5m-long straight path (repeated three times); postural stability task (final). Each subject 

performed three sessions with a different pace and gait pattern: the first, with a natural pace at normal 

speed (NW); the second, with slower speed and shorter steps (SW); the third, with a dandling and 

low-speed walking (DW). The last two sessions were used to simulate some typical behaviour of 



elderly and subjects with altered gait due to neurological diseases: the altered gait patterns can be 

faithfully replicated also by healthy subjects of a different age group than the older target. It is 

important to remember that our goal, at this stage, is to verify the potential of the proposed system in 

detecting alterations of the motor pattern that are typical in elderly subjects with and without 

neurological pathologies. Instead, the postural stability tasks were included to assess changes in 

balance conditions before and after walking: postural stability task consists in standing still with eyes 

open for 30 seconds, in front of the camera at about 2 m away. 

All participants were able to perform all planned walking and postural stability trials. In total, 69 

walking and 48 postural stability trials were collected: for three subjects, only two walking trials 

(instead of the three expected) in the SW condition were considered valid due to external disturbance.   

2.3. Characterization of gait and postural stability 

The pre-processing phase involves resampling and filtering techniques of the recorded data. First, 

the 3D trajectories of the joints are resampled at 30 Hz and then filtered using a Butterworth low pass 

filter (third order, 10 Hz cutoff) to remove jitter and high-frequency noise. Some joints of the skeletal 

model are then used to characterize gait and postural stability. The 3D body center of mass 

(COMBODY) is estimated for both analyses, as in [32][33]: the COMBODY is the 3D weighted average 

of six body segments relating to head, trunk, arms, and legs.  

As in [33], a custom-written MATLAB script calculates the 3D COMBODY distance from the 3D 

camera to determine the gait analysis time window (GATW) and estimate spatiotemporal gait 

parameters inside the virtual gait analysis path (VGAP). The GATW starts when the subject enters the 

VGAP (about 5m from the camera) and ends when the subject leaves the VGAP established to 

capture the total body (about 2m from the camera). Additionally, the 3D torso center of mass 

(COMTORSO) is estimated to evaluate mediolateral and vertical sways during walking as potential 

indices of lateral and forward instability under dynamic conditions, thus avoiding the effects of head 

and arm movements. Instead, the ankle joints of the skeletal model are used by the step segmentation 

algorithm to identify each step and the related gait pattern features. Table 1 shows the list of gait 

parameters automatically estimated by the analysis scripts. 

For the analysis of postural stability, as in [32], the movements of the COMBODY are used to 

estimate the maximum sways along the anteroposterior (i.e., forward and backward) and mediolateral 

(i.e., right and left) directions and other related functional parameters compared to the initial position. 

Table 2 shows the list of functional parameters related to postural stability and COMBODY sways 

automatically estimated by the analysis scripts. 

 
Table 1 
List of spatiotemporal and COMTORSO parameters estimated for gait 

Parameter Unit Meaning 

Step Length (SL) [cm] Length of steps 
Step Time (ST) [s] Duration of steps 

Stance Duration (SD%) [%] Duration of stance phases (% of gait cycles) 
Stance Duration (SDT) [s] Duration of stance phases 

Swing Duration (SWD%) [%] Duration of swing phases (% of gait cycles) 
Swing Duration (SWDT) [s] Duration of swing phases 

Speed (SP) [cm/s] Average gait speed 
Cadence (CD) [step/min] Number of steps per minute 

Step Number (SN) [-] Number of steps 
Gait Cycle Number (GCN) [-] Number of gait cycles 

Mediolateral sway range (MLR) [cm] Mediolateral excursion range of COMTORSO 

Vertical sway range (VR) [cm] Vertical excursion range of COMTORSO 

 
 



Table 2 
List of COMBODY parameters estimated for postural stability 

Parameter Unit Meaning 

Anteroposterior sway (APR) [cm] Maximum AP sway range 

Anteroposterior total sway (APT) [cm] Total AP sway range 
Anteroposterior speed (APS) [cm/s] Maximum AP sway speed 

Mediolateral sway (MLR) [cm] Maximum ML sway range 
Mediolateral total sway (MLT) [cm] Total ML sway range 

Mediolateral speed (MLS) [cm/s] Maximum ML sway speed 
Sway area (SA) [cm2] Maximum sway area 

3. Results 

This section presents and discusses some preliminary results. The analysis of walking trials on 

normal and simulated abnormal conditions indicates that the system is able to quantify differences in 

walking parameters and altered patterns, a highly probable condition in elderly subjects with and 

without pathologies related to motor dysfunctions. The postural stability analysis, before and after 

walking trials, suggests that the system can detect differences in balance parameters, for example after 

ordinary quotidian activities such as walking, that, however, represent challenging motor actions for 

frail subjects and could aggravate the risk of falls.  

3.1. Automatic characterization of gait patterns  

The dataset for gait analysis contains 69 trials, divided into 24 NW, 21 SW, and 24 DW, 

respectively. Each trial was automatically analyzed to estimate spatiotemporal and COMTORSO 

parameters. In order to verify the ability of the system to capture the main features of gait patterns, the 

following figures show an example of NW (Fig. 3), SW (Fig. 4), and DW (Fig. 5) gait trials of the 

same subject, and the outcome of the step segmentation algorithm. The graphical representation of 

walking trajectories and estimated parameters provides qualitative information on gait patterns, 

including the quantity, length, and duration of steps (for the right and left leg), the trajectory and 

mediolateral sways of the center of mass during walking. The visual comparison highlights significant 

differences between the three trials. A greater number of shorter steps characterize the SW trial, 

whereas the DW trial is characterized by more significant lateral sway than normal walking (NW). 

The qualitative analysis suggests that the system is capable of intercepting differences in gait patterns. 

  

 
Figure 3: Example of gait patterns and COMTORSO sways captured for the Natural Walking (NW) and 
reconstructed from the analysis of the skeletal model recorded. 



 

Figure 4: Example of gait patterns and COMTORSO sways captured for the Slow Walking (SW) and 
reconstructed from the analysis of the skeletal model recorded: it is characterized by shorter steps 
than NW. 

 

Figure 5: Example of gait patterns and COMTORSO sways captured for the Dangling Walking (DW) and 
reconstructed from the analysis of the skeletal model recorded: it is characterized by shorter steps 
and higher mediolateral sways than NW and SW. 

The visual analysis suggested we carry out a quantitative evaluation of the three types of walking. 

To this end, we grouped the gait trials according to the session type and computed the average value 

of each parameter to support the qualitative analysis with objective measures. Table 3 shows the mean 

and standard deviation values concerning the three types of sessions. 

 

Table 3 
Mean and standard deviation of spatiotemporal and COMTORSO parameters for NW, SW and DW 
sessions 

Parameter Unit NW Sessions SW Sessions DW Sessions 

SL [cm] 55.68±0.07 35.08±0.08 32.73±0.08 
ST [s] 0.68±0.09 0.93±0.23 0.96±0.0.27 

SD% [%] 54.12±6.78 71.88±6.03 72.24±7.51 
SDT [s] 0.77±0.20 1.39±0.44 1.45±0.54 

SWD% [%] 42.77±7.26 25.06±5.69 25.06±7.63 
SWDT [s] 0.59±0.04 0.46±0.08 0.47±0.11 

SP [cm/s] 80.07±0.19 36.87±0.09 36.06±0.08 
CD [steps/min] 85.96±11.31 65.15±14.17 64.15±15.13 
SN [-] 2.31±0.47 3.95±0.94 4.06±0.91 

GCN [-] 1.83±0.56 3.52±0.99 3.60±0.89 
MLR [cm] 7.10±2.18 11.92±3.42 18.21±5.18 
VR [cm] 4.57±1.17 3.94±0.88 4.37±1.00 

 

Fig. 6 shows a graphical representation of the average parameters for the three types of sessions 

according to Table 3. A normalization procedure has been applied to avoid different scaling issues by 

considering the minimum and maximum per-parameter values on all the trials collected. Each 

parameter was scaled in the [0-1] range to provide an immediate and easy-to-compare bar chart 

representation.   



 

Figure 6: Graphical representation of the average differences between the three sessions. 
 

The bar chart highlights significant quantitative differences between the three sessions. On 

average, the SW and DW trials show greater values for SN and GCN, denoting a higher number of 

steps and gait cycles than NW due to shorter steps both in length (SL) and time (ST) parameters, as 

expected. The same occurs for speed (SP) and cadence (CD) parameters that show slower values than 

NW due to the simulated abnormal condition during walking. The stance and swing phases of the gait 

cycle are relevant both as time and percentage parameters: the stance phase is slower when no 

abnormal condition is present (NW); on the contrary, the swing phase increases in normal (NW) and 

decreases in abnormal condition (SW and DW) as expected. The SW and DW sessions are similar for 

spatiotemporal parameters, confirming compliance with the dandling and slower walking 

requirements established by the acquisition protocol. Nevertheless, SW and DW sessions differ in 

mediolateral sways that are more significant in DW sessions than in SW sessions. These outcomes 

confirm the ability of the system to quantitatively characterize different gait patterns, intercepting 

features that could be associated with gait disorders linked to pathological conditions. 

3.2. Automatic characterization of postural stability  

The dataset for postural stability analysis contains 48 trials, divided into 24 before walking and 24 

after walking. Each trial was automatically analyzed to estimate COMBODY parameters. The postural 

stability analysis before and after three gait trials aims to highlight alteration due to fatigue, a 

widespread condition in neurological diseases that enhance balance disorders.  

The postural stability trials were grouped in “before” and “after” walking trials: the average value 

of each parameter was computed to support the analysis with objective measures. A normalization 

procedure has been applied to avoid different scaling issues by considering the minimum and 

maximum per-parameter values on all the trials collected. Each parameter was scaled in the [0-1] 

range to provide an immediate and easy-to-compare bar chart representation (Fig. 7). 

 

Figure 7: Graphical representation of the average differences between the three sessions. 
     



The bar chart highlights an increase of all parameters related to COMBODY after walking, in the 

anteroposterior and mediolateral directions, compared to before walking trials. The percentage 

increase, estimated on normalized parameters, ranges from 51% for APR to over 100% for MLR and 

SA. The other parameters show a percentage increase of about 60%. These outcomes confirm the 

system’s ability to quantitatively measure different stability conditions in healthy subjects, 

intercepting features that could be associated with fatigue and alteration of balance related to 

pathological conditions. 

4. Conclusions 

This work proposes a solution for the automatic and remote evaluation of gait patterns and balance 

dysfunctions due to age-related motor deterioration or the presence of neurological comorbidities 

characterized by movement disorders (e.g., Parkinson’s disease or post-stroke). Since gait and balance 

disorders are closely associated with a high risk of falling, especially in the elderly, early detection of 

any changes is essential to activate training and rehabilitation protocols to prevent serious 

consequences. 

The proposed solution consists of a vision-based system built around the new Microsoft Kinect 

Azure DK, the last model of Kinect technologies, featuring improved performance and body tracking 

accuracy compared to its predecessors and other commercial devices, as demonstrated by recent 

studies. The solution captures the 3D trajectories of body movements during walking and postural 

stability tasks using a deep learning approach in real-time, allowing the estimation of spatiotemporal, 

postural and center of mass parameters. The system is also equipped with dedicated interactive GUIs, 

implemented in Unity, to support user-alone and user-supported scenarios. Thanks to the limited 

hardware equipment and the ease of use, the system is thought as an evaluation tool that could be 

employed in unsupervised or semi-supervised environments, like home settings and patients’ 

associations. Clinicians could disseminate the system to at-risk patients and prescribe them to perform 

the tasks in front of the 3D camera in different sessions throughout the day, to identify abnormalities 

or to evaluate, for example, variations due to pharmacological therapy. We recruited a group of 

healthy volunteers to test the implemented solution and the ability to intercept changes in both gait 

patterns and postural stability after walking. To this end, the acquisition protocol involved three types 

of walking to be analyzed. Preliminary results on gait analysis indicate the system’s ability to detect 

alterations in gait patterns and mediolateral sways, highlighting average differences between sessions 

at normal pace, slower pace, and dangling walk. This outcome suggests the system could intercept 

gait alterations typical of the elderly and subjects with neurological diseases. Even though this was 

achieved from simulated alterations, we expect that the system will prove effective also on 

pathological subjects, in which this kind of altered conditions are accentuated. To prove this aspect, 

we are currently planning to carry out a more comprehensive study including also the target group of 

subjects, to correlate the results that will be obtained to standardize clinical evaluation. 

Furthermore, postural stability analysis denotes an average worsening of the parameters relating to 

mediolateral and anteroposterior sways of the body center of mass after the walking tests. This 

behavior suggests the system’s ability to intercept changes in balance in healthy subjects due to 

fatigue, which is also common in the elderly and subjects with pathological conditions. Based on this 

result and thanks to the system scalability, we plan to improve the analysis of stability dysfunctions 

by introducing additional exercises for automatic balance evaluation according to dedicated clinical 

reference scales, for example, the Berg Balance Scale (BBS) as in [20]. However, as the proposed 

system mainly addresses unsupervised or semi-supervised scenarios, only a subset of the BBS tasks 

will be considered and implemented to avoid risks for the patients’ safety in unsupervised scenarios. 

In conclusion, the non-invasiveness, portability, and easy-to-use facilities make the solution a 

feasible tool for remote monitoring of gait and balance dysfunctions in the home environment on 

subjects at risk of falling.     
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