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Abstract  
Computer research of algorithm and programs realization of differentiating and integrating 
fractional order parts, as components of PIλDμ controllers, has shown the application efficiency 
of fractional order transfer function approximation. The application of the decomposition 
theorem of rational fractions allowed to construct structural schemes from parallel connected 
aperiodic parts for the realization of approximated arbitrary order transfer functions. It has been 
experimentally proved that the implementation of fractional order controllers based on 
approximated transfer functions can work in real time as the integral part of highly dynamic 
automatic control systems. Tests of the frequency converter MFC 710 option with the PIλDμ 
fractional order controller in the speed control system using the Twerd experimental stand have 
confirmed its efficiency in terms of expanding the regulatory capabilities of such automatic 
control systems. 
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1. Introduction 

Construction of automatic control systems (ACS) using fractional order controllers significantly 
expands the possibilities compared to conventional controllers. Control influences, which are formed 
by controllers, provide the specified indicators of control of electric power and technological processes. 
In [1-9] the advantages of ACS for the use of fractional PIλDμ controller with transfer function are 
shown  

𝑊(𝑠) = 𝑘 + 𝑘𝑠ିఒ + 𝑘ௗ𝑠ఓ .  
In such controller I- and D-fractional order components give a wider range of settings. Naturally, in 

addition to the values of proportional, differential and integral components 𝑘, 𝑘 and 𝑘ௗ, the fractional 
order controller has two more parameters: fractional powers λ and μ of the Laplace operator s in the 
integrator and differentiator, respectively. 

2. Research Analysis 

In order to find possible ways to implement fractional order controllers, an analysis of the use of 
Riemann, Riemann-Liouville and Grunwald-Letnikov representations for the construction of such 
controllers was carried out. To calculate the transition functions for the fractional order integrating 
controller in the Riemann representation. 

𝐷௧
ିఈ𝑓(𝑡) =

1

Γ(α)
න(𝑡 − 𝜏)ఈିଵ
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and a differential fractional order controller in the Riemann-Liouville representation 

𝐷௧
ఈ𝑓(𝑡) =

1

Γ(n − α)
(

𝑑

𝑑𝑡
) න

𝑓(𝜏)𝑑𝑡

(𝑡 − 𝜏)ఈିାଵ

௧



, 
(2) 

appropriate programs have been developed. Based on the analysis of the obtained results, the following 
problems were revealed: 

 the right integration limit for expressions (1) and (2) gives a division by zero; 
 the calculation of each subsequent point of the transition process of the integral fractional part 
requires the presence of all previous values of the sub integral function (process input signal) starting 
from zero, and therefore each subsequent point requires a larger amount of calculations. To calculate 
the current value of the function, it is necessary to remember the value of the function at all previous 
points in time. Thus, the CPU load increases and thus significantly complicates the work of such 
controllers in the ACS, where there are transition processes. 
In the literature on the implementation of fractional order controllers, there is a reference to the 

integral-differential fractional order controller model with TF s±α in the representation of Grunwald-
Letnikov [10-11]: 

𝐷௧
ఈ𝑓(𝑡) = lim

→
ℎିఈ  (−1)

ቂ
௧ି


ቃ

ୀ

Γ(α + 1)f(t − jh)

Γ(j + 1)Γ(α − j + 1)
. 

 

The advantages of this presentation are: 
 the formula is easy to use because it is written on the basis of a finite sum, not an integral; 
 the model for the representation of integrative-differentiating controllers by the Grunwald-
Letnikov formula provides a higher, compared to the above models, the speed of calculations; 
 the same formula is used to represent the integrating or differentiating fractional order 
controller, only the sign of fractional order is changed ("+" for differentiator, "-" for integrator). 

The main disadvantages of this model are that the calculation of the transition process of the 
integrating or differentiating of fractional order controller is complicated by the presence in the formula 
of gamma functions, attempts to increase the accuracy of determining which significantly increases the 
calculation time of the transition process. 

Thus, the application of these methods for the physical implementation of fractional order 
controllers actually makes it impossible to use them in high-speed systems with long-term operating 
conditions. Such shortcomings have been partially eliminated in [12-13], where fractional order 
controllers are used in indoor climate automation and supercapacitor charge systems. It should be noted 
that such systems are characterized by low speed. 

If we consider ACS with fractional order controllers that form control effects for various electric 
power and electromechanical systems, the main problem to be solved is the operation of such controllers 
in real time, when dynamic processes are characterized by high speed. 

3. Problem Solving 

Given that the implementation of integer-order controllers is well developed in both analog and 
digital execution, the problem of technical implementation of synthesized fractional order controllers 
in such systems can be solved by equivalent replacement (approximation) of their transfer functions 
(TF) to integer order TF. Equivalence implies the provision of the same transition functions and 
frequency characteristics in the appropriate frequency range for both TF representations. Such an 
approximation can be performed using the known formulas of Oustaloup (Oustaloup A.) transformation 
[14]. According to this method, given the lower and upper levels of the frequency range 𝜔, 𝜔, for 
which the equivalence of the frequency characteristics of fractional controllers both representations, we 
can write the following expression of the approximation of the integrating and differentiating fractional 
order parts α 
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𝑠±ఈ = ൬
𝜔௨

𝜔
൰

ఈ

ි
1 + 𝑠 𝜔ᇱ

⁄

1 + 𝑠 𝜔⁄

ୀே

ୀିே

, 

 (3) 

where 𝜔௨ = ඥ𝜔𝜔; N – order of approximation to be specified; 𝜔ᇱ
, 𝜔, − zeros and poles of 

equivalent integer order TF, respectively.  
The calculation of zeros and poles of the approximate integer order TF is carried out 

according to the following expressions: 

𝜔ᇱ
 = 𝜔 ൬

𝜔

𝜔
൰

(ାேା,ହି,ହ⋅ఈ)/(ଶேାଵ)

, 
(4) 

𝜔 = 𝜔 ൬
𝜔

𝜔
൰

(ାேା,ହା,ହ⋅ఈ)/(ଶேାଵ)

. 
(5) 

Let us denote 𝑘п = ቀ
ఠೠ

ఠ
ቁ

ఈ
 the gain of the approximating TF. 

In the general case, the order of approximation is possible at (2N + 1) levels. The idea is that to 
replace of the fractional order TF with the whole order TF, the coefficient, zeros and poles of the 
expected TF are first calculated. In the next step, using the found zeros and poles, the TF is written in 
the form 

𝑊(𝑠) = 𝑘
(𝑠 − 𝜔ଵ

ᇱ )(𝑠 − 𝜔ଶ
ᇱ ) … (𝑠 − 𝜔ଶேାଵ

ᇱ )

(𝑠 − 𝜔ଵ)(𝑠 − 𝜔ଶ) … (𝑠 − 𝜔ଶேାଵ)
, 

(6) 

where 𝜔ଵ
ᇱ , 𝜔ଶ

ᇱ  … 𝜔ଶேାଵ
ᇱ  calculated according to (4) the values of the zeros of the integer order TF; 

𝜔ଵ, 𝜔ଶ … 𝜔ଶேାଵ − calculated according to (5) the poles of the integer order TF. 
We present TF (6) as the ratio of polynomials  

𝑊(𝑠) = 𝑘
𝑏ଶேାଵ𝑠ଶேାଵ + 𝑏ଶே𝑠ଶே + ⋯ + 𝑏ଵ𝑠 + 𝑏

𝑎ଶேାଵ𝑠ଶேାଵ + 𝑎ଶே𝑠ଶே + ⋯ + 𝑎ଵ𝑠 + 𝑎
=

𝑃(𝑠)

𝑄(𝑠)
.  

(7) 

To verify the adequacy of the replacement of fractional order TF by the integer order TF, a 
comparative analysis of their logarithmic frequency characteristics was performed. For this purpose, 
given the order of approximation (2N+1), the frequency characteristics of both TFs were calculated. 

The expression 𝑠±ఈ can be interpreted as the expression of fractional differentiator (+α) or 
integrator (-α), by means of which the total TF of fractional PIλDμ controllers is formed. Therefore, the 
following analysis is devoted to such TF. To implement it in the MATLAB environment, a program 
was developed that implements the Oustaloup method according to (3) to approximate 𝑠±ఈ by the 
integer order TF.  

Using the developed program, it is possible to transform differential-integral parts of fractional 
order TF with different degrees α in a certain frequency range provided that the order of approximation 
changes within N = 1÷5. The frequency range for the differential part is selected within (0.01÷100)s-1, 
and for the integral - the range (0.001 ÷ 1000) s-1. 

Let us represent the differential and integral fractional order parts 𝑠±ఈ with powers: α = -1; -
0.75; -0.5; -0.25; 0; 0.25; 0.5; 0.75; 1 by the integer order TF parts. 

Using the developed program, we found approximating TF of differentiation and integrating 
fractional order parts in the frequency range 0.01-100 s-1 for different orders of approximation N. 
Some of them are shown in Table 1. 

Logarithmic frequency characteristics were constructed for the TF approximation expressions 
obtained in this way. 

As shown in [14], the frequency characteristics obtained for the corresponding components of 
the integer order controller (α = ± 1.0) based on the Oustaloup A. approximation completely coincide 
with the well-known results for integer TFs. This confirms the correctness of using the Oustaloup A. 
approximation for the partial case of PIλDμ controllers when λ and μ are integers. In addition, it is shown 
that the value of N does not affect these frequency characteristics. 

In the case of fractional differential components of the controllers, the logarithmic frequency 
characteristics are shown in Figure 1a and Figure 1b. 

Figure 1a and Figure 1b show the Bode diagrams of differential (α = 1.0) and integral (α = -1.0) 
parts when N = 1 (curve 1), N = 2 (curve 2), N = 3 (curve 3), N = 4 (curve 4). 



11 
 

Table 1 
Approximating integer order TF obtained using the Oustaloup transformation for N=1 and N=2 

α N W(s) 
-1.0 N=1 0.01𝑠ଷ + 1.049𝑠ଶ + 4.867𝑠 + 1

𝑠ଷ + 4.867𝑠ଶ + 1.049𝑠 + 0.01
 

N=2 0.01𝑠ହ + 1.188𝑠ସ + 19.31𝑠ଷ + 48.49𝑠ଶ + 18.83𝑠 + 1

𝑠ହ + 18.83𝑠ସ + 48.49𝑠ଷ + 19.31𝑠ଶ + 1.188 + 0.01
 

-0.75 N=1 0.03162𝑠ଷ + 2.259𝑠ଶ + 7.144𝑠 + 1

𝑠ଷ + 7.144𝑠ଶ + 2.259𝑠 + 0.03162
 

N=2 0.03162𝑠ହ + 2.985𝑠ସ + 38.52𝑠ଷ + 76.85𝑠ଶ + 23.71𝑠 + 1

𝑠ହ + 23.71𝑠ସ + 76.85𝑠ଷ + 38.52𝑠ଶ + 2.985 + 0.03162
 

-0.5 N=1 0.1𝑠ଷ + 4.867𝑠ଶ + 10.49𝑠 + 1

𝑠ଷ + 10.49𝑠ଶ + 4.867𝑠 + 0.1
 

N=2 0.1𝑠ହ + 7.497𝑠ସ + 76.85𝑠ଷ + 121.8𝑠ଶ + 29.85𝑠 + 1

𝑠ହ + 29.85𝑠ସ + 121.8𝑠ଷ + 76.85𝑠ଶ + 7.497 + 0.1
 

-0.25 N=1 
 

0.3162𝑠ଷ + 10.49𝑠ଶ + 15.39𝑠 + 1

𝑠ଷ + 15.39𝑠ଶ + 10.49𝑠 + 0.3162
 

N=2 
 

0.3162𝑠ହ + 18.83𝑠ସ + 153.3𝑠ଷ + 193.1𝑠ଶ + 37.57𝑠 + 1

𝑠ହ + 37.57𝑠ସ + 193.1𝑠ଷ + 153.3𝑠ଶ + 18.83 + 0.3162
 

0 N=1 
 

𝑠ଷ + 22.59𝑠ଶ + 22.59𝑠 + 1

𝑠ଷ + 22.59𝑠ଶ + 22.59𝑠 + 1
 

N=2 
 

𝑠ହ + 47.3𝑠ସ + 306𝑠ଷ + 306𝑠ଶ + 47.3𝑠 + 1

𝑠ହ + 47.3𝑠ସ + 306𝑠ଷ + 306𝑠ଶ + 47.3𝑠 + 1
 

0.25 N=1 
 

3.162𝑠ଷ + 48.67𝑠ଶ + 33.16𝑠 + 1

𝑠ଷ + 33.16𝑠ଶ + 48.67𝑠 + 3.162
 

N=2 
 

3.162𝑠ହ + 118.8𝑠ସ + 610.5𝑠ଷ + 484.9𝑠ଶ + 59.55𝑠 + 1

𝑠ହ + 59.55𝑠ସ + 484.9𝑠ଷ + 610.5𝑠ଶ + 118.8 + 3.162
 

0.5 N=1 
 

10𝑠ଷ + 104.9𝑠ଶ + 48.67𝑠 + 1

𝑠ଷ + 48.67𝑠ଶ + 104.9𝑠 + 10
 

N=2 
 

10𝑠ହ + 298.5𝑠ସ + 1218𝑠ଷ + 768.5𝑠ଶ + 74.97𝑠 + 1

𝑠ହ + 74.97𝑠ସ + 768.5𝑠ଷ + 1218𝑠ଶ + 298.5 + 10
 

0.75 N=1 
 

31.62𝑠ଷ + 225.9𝑠ଶ + 71.44𝑠 + 1

𝑠ଷ + 71.44𝑠ଶ + 225.9𝑠 + 31.62
 

N=2 
 

31.62𝑠ହ + 749.7𝑠ସ + 2430𝑠ଷ + 1218𝑠ଶ + 94.38𝑠 + 1

𝑠ହ + 94.38𝑠ସ + 1218𝑠ଷ + 2430𝑠ଶ + 749.7𝑠 + 31.62
 

1.0 N=1 
 

100𝑠ଷ + 486.7𝑠ଶ + 104.9𝑠 + 1

𝑠ଷ + 104.9𝑠ଶ + 486.7𝑠 + 100
 

N=2 
 

100𝑠ହ + 1883𝑠ସ + 4849𝑠ଷ + 1931𝑠ଶ + 118.8𝑠 + 1

𝑠ହ + 118.8𝑠ସ + 1931𝑠ଷ + 4849𝑠ଶ + 1883𝑠 + 100
 

   
As can be seen from the above characteristics, the phase of each of the parts approaches the value 

of 𝜑 = ±𝛼𝜋/2. This is the result obtained analytically for fractional differential parts. 
Analysing the obtained results, we can say that the accuracy of the approximation depends on the 

value of N, and already at N = 4 the curves almost coincide with the real frequency characteristics of 
the respective parts. 

Similar results were obtained for other fractional values of α. 
Thus, applying the Oustaloup approximation to fractional order controllers of ACS under the 

condition N≥4, the approximating TF is described by polynomials P(s) and Q(s) not lower than the 9th 
order (n≥9). Reducing the value of N simplifies the expression of the approximating TF and facilitates 
its practical implementation. Given the need to ensure the highest adequacy of the approximation, it 
seems that there is, at first glance, almost impossible to implement controllers with such high order TF. 
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   a      b 
Figure 1: Bode diagrams of fractional differential (a) and integral (b) (α = 0.75) parts 

 
This problem can be solved by applying to the expression TF (7) the theorem on the 

decomposition of a rational fraction into elementary ones. Then expression (6), and hence (7), can 
be represented as follows: 

𝑊(𝑠) = 𝐴ଵ

1

𝑠 − 𝜔ଵ
+ 𝐴ଶ

1

𝑠 − 𝜔ଶ
+ ⋯ + 𝐴

1

𝑠 − 𝜔
. 

(8) 

The coefficients 𝐴ଵ, 𝐴ଶ … 𝐴 according to the theorem are by expression.  

𝐴 =
𝑃(𝑠)

𝑄′(𝑠)
 𝑓𝑜𝑟 𝑠 = 𝜔. 

 

Thus, the integral and differential fractional order parts on the basis of (8) can be represented by a 
block diagram, which is shown in Figure 2. In this form, the TF expressions of the components of the 
fractional order controller can be easily implemented in any software environment (C, C#, C ++, 
Assembler, etc.), or in analog. 

Below, as an example, are approximating expressions of TF obtained by applying the Oustaloup 
transformation with N = 2 with respect to the differential and integrating fractional order parts with TF 
𝑊(𝑠) = 𝑠±.ହ  [14]. 

1. Integral fractional order parts  𝑊(𝑠) = 𝑠ି.ହ  

𝑠ି.ହ  =
0.1𝑠ହ + 7.497𝑠ସ + 76.85𝑠ଷ + 121.8𝑠ଶ + 29.85𝑠 + 1

𝑠ହ + 29.85𝑠ସ + 121.8𝑠ଷ + 76.85𝑠ଶ + 7.497 + 0.1
⇒ 

⇒ 𝑊(𝑠) = 0.1 +
0.1082

𝑠 + 0.0158
+

0.1942

𝑠 + 0.1
+

0.4678

𝑠 + 0.6310
+

1.1501

𝑠 + 3.9811
+

2.5922

𝑠 + 25.1189
. 

 

2. Differential fractional order parts 𝑊(𝑠) = 𝑠.ହ    

𝑠.ହ  =
10𝑠ହ + 298.5𝑠ସ + 1218𝑠ଷ + 768.5𝑠ଶ + 74.97𝑠 + 1

𝑠ହ + 74.97𝑠ସ + 768.5𝑠ଷ + 1218𝑠ଶ + 298.5 + 10
⇒ 

⇒ 𝑊(𝑠) = 10 +
0.0041

𝑠 + 0.0398
+

0.0726

𝑠 + 0.2512
+

1.1750

𝑠 + 1.5849
+

19.4241

𝑠 + 10
+

430.573

𝑠 + 63.0957
. 

 

  

 
Figure 2: Block diagram of the integral or differential fractional order parts in the integer order TF form 
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To implement practical programming of a fractional PIλDμ controller on a microcontroller or 
signal processor, a requirement is set that it is not possible to use ready-built functions already built into 
MATLAB or another programming language, for example, step, etc. That is, the solution must: 

 be as simple as possible; 
 provide a minimum of computational operations (maximum performance of the processor); 
 provide high accuracy; 
 provide the ability to choose the calculation step in a wide range; 
 do not limit the time range of the calculation. 

Based on a pre-designed and debugged program in MATLAB, the fractional order controller at 
the stage of development and improvement of the algorithm is implemented using the C programming 
language and Arduino Mega 2560 and Arduino DUE due to the possibility of such boards working with 
a computer. The Arduino Mega 2560 board is built using the Atmel ATMega2560 microcontroller and 
has the following main technical characteristics: operating voltage - 5V; clock frequency 16 MHz. The 
Arduino DUE board is built using the Atmel ATSAM3X8E ARM microcontroller and its main 
differences from the Arduino Mega 2560 board are a higher clock frequency of 84 MHz and the 
presence of two 12-bit DACs, i.e. analog outputs. 

Physical implementation of fractional order controller is possible in two ways. 
The first method involves the possibility of implementing the integrated and differential parts of 

the fractional order controller using the complexes "computer - board Arduino Mega 2560" and 
"computer - board Arduino DUE". In this case, all calculations are performed by the computer, and 
synchronized with the external board "I/O" inputs a hopping input signal x = 1V to the input of the 
controller and output the calculated signal "y" to the specified board terminals, which are the output 
controller voltage . 

The second method involves the possibility of implementing the integrated and differential parts 
of the fractional order controller by adapting to the software environment Arduino (programming 
language C). After debugging the programs, they were written to the memory of the Arduino Mega 
2560 and Arduino DUE, respectively. At that time, their research was conducted autonomous without 
the use of computer calculations. In this case, the computer was used only to power the board and to 
register the transition processes (output of the calculated analog output signal according to the specified 
conversion option). If you provide another power source (battery or original power supply) and 
recording devices, you may not use the computer. 

In Figure 3a shows the results of the study of transition processes (functions) of integral fractional 
order parts with TF 𝑊ଵ(𝑠) = 𝑠ି.ଵ− curve 1, 𝑊ଶ(𝑠) = 𝑠ି.ଷ− curve 2, 𝑊ଷ(𝑠) = 𝑠ି.ହ− curve 3, 
𝑊ସ(𝑠) = 𝑠ି.− curve 4 and  𝑊ହ(𝑠) = 𝑠ି.ଽ− curve 5, and Figure 3b − differential fractional units with 
TF 𝑊ଵ(𝑠) = 𝑠.ଵ curve 1, 𝑊ଶ(𝑠) = 𝑠.ଷ− curve 2, 𝑊ଷ(𝑠) = 𝑠.ହ− curve 3, 𝑊ସ(𝑠) = 𝑠.− curve 4 and 
𝑊ହ(𝑠) = 𝑠.ଽ− curve 5. These dynamic processes are obtained under the condition of autonomous 
operation of the external board Arduino DUE, programmed according to the application of the 
Oustaloup transformation. The points of the transition functions of the parts are obtained in the 
calculation cycle at the output of the board before writing to the output port. 

  
   a      b 
Figure 3: Transition functions of integral (a) and differential (b) fractional order parts with changes α 
within 0.1÷1.0 for the order of approximation N=2 
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Based on a pre-designed and debugged program in the MATLAB environment [14] implemented 
fractional order PIλDμ controller using the programming language C and boards Arduino Mega 2560 
and Arduino DUE that can work with a computer. 

Each of these methods of implementing PIλDμ controller has disadvantages and advantages. There 
are advantages to using the MATLAB software environment on a computer with an Arduino Mega 
2560 motherboard connected, because in this case the programming language is at a higher level and 
provides easy and convenient programming and debugging of the controller. Disadvantages of this 
approach include the effect of computer load on the speed of calculations, which sometimes leads to a 
twofold increase in calculation time. In addition, the exchange rate between the computer and the board 
is limited to 115,500 baud, which also significantly affects the signal delay at the output of the 
controller. It should be noted that this version of the implementation of the fractional controller is 
appropriate for the use of computer control of the frequency converter. 

The use of Arduino Mega 2560 and Arduino DUE boards autonomous using the proposed method 
of calculating the instantaneous value of the output voltage of the controller has shown its effectiveness. 
It consists in the fact that it is possible to provide a sampling period of calculations at the level of 
0.0025s, ie a significant increase in the speed of obtaining the signal of the controller. In addition, there 
is the possibility of long-term operation of fractional controllers in stand-alone mode compared to the 
option when using a computer. The speed of information exchange between the computer and the 
Arduino DUE board in the mode when the computer needs to control it in this case increases 
significantly and is 250,000 baud. 

Appropriate software has been developed that implements the digital PIλDμ fractional order 
controller. As an example, consider a TF of fractional order controller (the question of synthesis of 
PIλDμ controller is not considered in this paper), namely: 

𝑊(𝑠) = 3 +
1

1.0𝑠.ହ
+ 1.0𝑠.ହ. 

(9) 

Experimental studies of fractional order controllers were performed, in particular, according to 
expression (9). To build them, we used [15] the frequency converter board MFC1000/10 induction 
electric drive. Figure 4a shows the transition process of the of integer order PIλDμ controller, and on 
Figure 4b – fractional order (λ = 0.5, μ = 0.5). 

 

  
   a      b 
Figure 4: Transition process of the integer order PIλDμ controller (λ = 1, μ = 1), implemented using the 
converter board MFC1000/10 (a) and transition process of the fractional order PIλDμ controller (λ = 
0.5, μ = 0.5) implemented using the converter board MFC1000/10 (b) 

 
Of course, of considerable interest are the possibility of implementing fractional controllers in 

the ACS. For this purpose, a PIλDμ controller was used as a part of the system “frequency converter - 
induction motor” (FC-IM). 

Figure 5a shows the transition speed, which corresponds to TF (9).  
The green graph corresponds to the signal at the output of the PIλDμ controller, the red graph 

corresponds to the signal at the output of the speed sensor, and the blue colour indicates the set speed. 
All curves have the appropriate scaling. 

The oscillogram clearly shows the effect of fractional Iλ – component on the speed of the FC - 
IM system. 
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It is of interest to implement a fractional order controller, if the result of its synthesis is a 
fractional and integer component of the TF controller. It turned out that it is possible to implement such 
a setting. Figure 5b shows the oscillogram of the dynamic processes of the ACS with such a controller.  

Obviously, in such a system it is possible to provide dynamic processes based on the results of 
the corresponding synthesis of ACS. 

In the above studies, PIλDμ controllers were considered, in which the fractional order is in the 
range from 0 to 1. It may be necessary to implement fractional order controllers, where this condition 
is not met. Therefore, experimental studies were conducted for this case. 

In Figure 5c shows the transition process of the speed, which corresponds to the TF of the 
controller with Іλ – component when λ = 1.5 and Dμ – component when μ = 0.5. The oscillogram 
demonstrates the possibility of operation of the developed PIλDμ controller if λ> 1. 

 

 
   a      b 

 
      c 
Figure 5: Transition process of speed in the system FC-IM with PIλDμ controller 𝑊(𝑠) = 3 + 3𝑠ି.ହ +

1.0𝑠.ହ (𝑘 = 3, 𝑘  = 3, 𝑘ௗ = 1, λ = -0,5, μ = 0,5) (a), 𝑊(𝑠) = 3 + 5𝑠ିଵ. + 1.0𝑠.ହ (𝑘 = 3, 𝑘  = 5, 𝑘ௗ = 
1, λ = -1, μ = 0,5) (b), controller 𝑊(𝑠) = 3 + 3𝑠ିଵ.ହ + 1.0𝑠.ହ (𝑘 = 3, 𝑘  = 1/𝑇 = 3, 𝑇ௗ = 1s, λ = -1,5, 
μ = 0,5) (c) 

 
The speed of such ACS decreases with a simultaneous increase in the amount of overshooting. These 

parameters of dynamic processes can change due to the implementation of other criteria for the 
synthesis of the system. 

4. Conclusions 

Computer research of algorithm and programs realization of differentiating and integrating 
fractional order parts, as components of PIλDμ controllers has shown efficiency of application of 
approximation of fractional order TF. 

The application of the decomposition theorem of rational fractions allowed to construct structural 
schemes from parallel connected aperiodic units for the realization of approximated arbitrary order TFs. 

It is experimentally proved that the implementation of fractional order controllers based on 
approximated TFs can work in real time as a part of highly dynamic ACS. Tests of the FC MFC 710 
option with the PIλDμ - fractional order controller in the speed control system using the Twerd 
experimental stand have confirmed its efficiency in terms of expanding the regulatory capabilities of 
such ACS.  
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