CEUR-WS.org/Vol-3110/paperl.pdf

Enabling the Scholarly Discourse of the
Future: Versioning RDF Data in the
Digital Humanities

Martina Biirgermeister
University of Graz
Graz, Austria

Abstract

The dynamic and collaborative scholarly landscape of the humanities
and cultural sciences is in urgent need of reliable knowledge about the
origin and genesis of its data. Versioning, with its capability to docu-
ment data and its modifications, can be used to integrate and provide
this critical information. In the following paper, the versioning of RDF
data is presented as a method to make research more trustworthy, and
as a means of turning the processes through which data is changed over
time into objects of study within the digital humanities.

1 Introduction

Scholarly work and the knowledge that it generates are the result of iterat-
ive processes. Making these processes transparent is an indispensable part
of scholarly communication: it serves as the basis for trust in data, which in
turn encourages the use of that data in subsequent research (Borgman, 2010;
Zimmerman, 2008).

The social need for trust in data is reflected in the concept of the Semantic
Web, where the legitimacy of data plays a fundamental role. There are sev-
eral ways to render data more trustworthy, one of them being the provision

Creative Commons License Attribution 4.0 International (CC BY 4.0).

In: Tara Andrews, Franziska Diehr, Thomas Efer, Andreas Kuczera and Joris van Zun-
dert (eds.): Graph Technologies in the Humanities - Proceedings 2020, published at
http://ceur-ws.org.

https://orcid.org/0000-0003-0594-1902

of metadata concerning the origin of data and the modifications it has un-
dergone over time:

[N]ot only could such provenance metadata be used as selection cri-
teria, their existence may encourage scholars to contribute data to the
community, as credit could be assigned more accurately and publicly.
Provenance metadata also could enable processed data to be ‘rolled back’
through transformations for the purposes of correcting errors at in-
terim stages or computing different transformations (Borgman|, 2010,
pp- 131-132).

Documenting data and its modifications and, if necessary, reversing those
modifications, is precisely the function that versioning can fulfill. This paper
presents versioning as a method to make research in the humanities and cul-
tural sciences more trustworthy by providing researchers with greater know-
ledge about the origin and genesis of their data.

To date, the various approaches that have emerged over the last 15 years
have not produced a universally accepted versioning standard for RDF data.
The suitability and usefulness of these approaches for the digital humanities
will be evaluated in the final section of the present paper (5), where typical re-
search scenarios will demonstrate the different requirements for versioning
mechanisms. First, however, I will address the extent to which versioning
can contribute to the trustworthiness of data (2). This will be followed by a
discussion of the various approaches to the versioning of RDF data (3), and
of the question as to which archiving models are suitable for which applica-
tion (4).

2 Versioning as a Dimension of Provenance

In 2000, Tim Berners-Lee launched his seminal idea of the Semantic Web
Stack (Berners-Lee, 2000) (Figurem). Significantly, it is not only concerned
with the development of technical standards to make information machine-
understandable, but also incorporates social needs that arise out of dealing
with the Semantic Web, with the layers of ‘proof” and ‘trust’ representing
essential preconditions for broad acceptance and use of shared content.

Since the debut of Berners-Lee’s stack, many of the technologies featured
in Figurem have become W3C standards (XML, RDEF(S), OWL, etc.). When
it comes to ‘proof’ and ‘trust,” however, the situation is quite different. As
becomes clear from Berners-Lee’s diagram, the task of the proof layer is to
explain the conclusions drawn from the logical layer and to make their origin
traceable — Sergei Sizov has referred to the former as “the layer of provenance
knowledge” (Sizov, 2007, p. 94). It is this knowledge about resources and
what has become of them that engenders trust in the Semantic Web.

Trust

Proof

Logic

RDF + rdfschema

Digital Signature

Ontology vocabulary

XML + NS + xmlschema

Unicode URI

Figure 1: Semantic Web Stack with proof and trust layers highlighted

The World Wide Web Consortium (W3C) is an institution that pro-
motes the development and implementation of internet-related standards.
Between September 2009 and December 2010, the W3C sponsored the
formation of a Provenance Incubator Group, whose goal was to define the
phenomenon of provenance in the context of data management as compre-
hensively as possible. Their final report presents 14 dimensions of proven-
ance — one of which is versioning, defined as “records of changes to an ar-
tifact over time and what entities and processes were associated with those
changes” (Gil et al., 2010). Having emphasized that changes must be con-
sidered in context, the report goes on to explain that this kind of record is
considered a dimension of provenance precisely because

[d]ealing with evolution and versioning is a critical requirement for a
provenance representation. As an artifact evolves over time, its proven-
ance should be augmented in specific ways that reflect the changes made
over prior versions and what entities and processes were associated with
those changes (Gil et al;, 2010).

Recording versions of digital resources to document change over time is an
important part of describing provenance. Versioning enables us to refer to
intermediate stages in the research process, but it also allows us to trace a
‘version history’ and to identify and analyze very specific changes between
versions. In this respect, versioning functions as a mechanism of the proof
layer and helps to foster confidence in digital resources.

3 RDF Versioning Approaches

RDF versioning can be implemented in different ways. Three different ap-
proaches are presented in this section, the first of which is reification (3.1),
a way of attaching provenance information or change descriptions to indi-
vidual triples. The concept of named graphs is then discussed as a possible
alternative (3.2), before the final subsection addresses the extent to which
traditional version control systems are suitable for the versioning of RDF

graphs (3.3).

3.1 Reification

In RDF, it is possible to further describe each RDF statement through a
built-in vocabulary.ﬁl This process is called reification, and describes the re-
lationship between an instance of a triple and those resources to which the
triple refers: “reification is a method of formally modeling a statement in
such a way that it can actually be attached as a property to the new state-
ment” (Powers, 2003, p. 69). A reified statement can also contain informa-
tion on provenance (who made the statement and when), which strengthens
confidence in the statement:

[TThe key component of reification is the ability to make a statement
and have the statement be treated as fact, without any implication that
the contents of the statement are themselves facts. This has particular
interest when it comes to trust (Powers, 2003, p. 78).

In order to version a dataset via reification, it is necessary to furnish indi-
vidual triples or a set of triples with information on authors, a version num-
ber, or a timestamp. Ideally, the nature of the change itself is also described.
For this purpose, separate vocabularies such as the Changeset Vocabulary
by [Tunnicliffe and Davig (2005-2009) have been developed,E which makes
it possible to express an exact delta between two versions of a resource by
means of two sets of triples (additions and removals). An example descrip-
tion in RDF/XMUL appears as follows:

<rdf:RDF xmlns:rdf="http://wiw.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:dc="http://purl.org/dc/elements/1.1/">
<rdf:Description rdf:about="http://example.com/res#thing"/>
<dc:title>Original Title</dc:title>
<dc:description>A short description of this resource</dc:description>

"There is a rdfs:class called rdf:Statement, with the properties rdf:predicate, rdf:subject
and rdf:object, nttps://wwi.u3.org/TR/rdf-schema/#ch reificationvocab.
Zhttp: //purl.org/vocab/changeset

https://www.w3.org/TR/rdf-schema/##ch_reificationvocab
http://purl.org/vocab/changeset

</rdf :Description>
</rdf :RDF>

This example shows a resource with a description and a title. Then the title
is modified:

<rdf:RDF xmlns:rdf="http://waw.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:dc="http://purl.org/dc/elenents/1.1/">
<rdf:Description rdf:about="http://example.com/res#thing"/>
<dc:title>New Title</dc:title>
<dc:description>A short description of this resource</dc:description>
</rdf :Description>
</rdf:RDF>

Describing this kind of modification as a reified statement would look like
this:

<rdf:RDF xmlns:rdf="http://wiw.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:cs="http://purl.org/vocab/changeset/schema#">
<cs:ChangeSet rdf:about="http://example.com/changesets#change">
<cs:subject0fChange rdf:resource="http://example.com/res#thing"/>
<cs:createdDate>2006-01-01T00:00: 00Z</cs: createdDate>
<cs:creatorName>Anne Onymous</cs:creatorName>
<cs:changeReason>Change of title</cs:changeReason>
<cs:removal>
<rdf:Statement>
<rdf:subject rdf:resource="http://example.com/res#thing"/>
<rdf:predicate rdf:resource="http://purl.org/dc/elements/1.1/title"/>
<rdf:object>0riginal Title</rdf:object>
</rdf:Statement>
</cs:removal>
<cs:addition>
<rdf:Statement>
<rdf:subject rdf:resource="http://example.com/res#thing"/>
<rdf:predicate rdf:resource="http://purl.org/dc/elements/1.1/title"/>
<rdf:object>New Title</rdf:object>
</rdf:Statement>
</cs:addition>
</cs:ChangeSet>
</xdf :RDF>

JUUEEEEE T <http://example.org/graph>

Figure 2: Named graph

While the changes are described precisely by the vocabulary, the change de-
scription ends up being much longer than the statement itself. Even if no
exact description of changes is given, each reification of triples involves the
addition of a whole statement with subject, predicate, and object (Seaborne
and Davis, 2010). This syntactical overhead is a major reason why versioning
is often implemented in a different way that reduces memory requirements
(see section 4).

3.2 Named Graphs

The semantic concept of named graphs goes back to an essay by Carroll et al,
(2005). One of their main concerns was to establish a framework that makes
resources more trustworthy. When version 1.1 of the RDF standard was in-
troduced in 2014, named graphs were included. Since then, it has been pos-
sible to name graphs and extend triple statements with an additional com-
ponent (IRI):

An RDF dataset is a collection of RDF graphs. All but one of these
graphs have an associated IRI or blank node. They are called named
graphs, and the IRT or blank node is called the graph name. The remain-
ing graph does not have an associated IRI, and is called the default graph
of the RDF dataset (Schreiber and Raimond, 2014).

Figure E shows a graph (A), which is assigned a name (B). This named graph
then forms part of a new graph (C), which contextualizes the original graph
and associates it with other statements. Compared to the mechanism of re-
ification, a named RDF graph is easier to read and much more space efficient,
which is precisely why current approaches to RDF versioning tend to use this
type of information linkage. If a triple is modified, i.e. added or deleted, it

can be provided with an IRI, which in turn can be described by other state-
ments.

3.3 Version Control Systems

Traditional version control systems have their uses, especially in software de-
velopment. They store and manage text files which, when modified, lead to
new versions with a unique identifier, a timestamp, and the author’s name.
It is always possible to determine who changed what and when: every file
in the system has a version history, which allows versions to be compared.
This comparison is done using dift algorithms, which detect any change to
the file, be it in the addition of spaces or the correction of a spelling mistake.
Each saved change automatically establishes a new version, allowing the res-
toration of each individual saved text state. But how useful is it in practical
terms to manage graphs in line form?

Serialization techniques allow RDF graphs to be managed as text in line
form with traditional version control systems. The best way to accomplish
this is to use N-Triples notation, in which the individual triples of an RDF
graph are written in one line. Because the N-Triples format employs neither
prefixes nor truncated notation, the serialized result of the same RDF graph
always looks the same. Sorted N-Triples provide a canonical representation
of RDF that is easy to parse and serialize. However, this format has the dis-
advantage of being verbose and tedious to read.

The followinﬂg example describes an entry from the Getty Art & Architec-
ture Thesaurus in N-Triples:

<http://vocab.getty.edu/aat/300343387>
<http://www.w3.0rg/2000/01/rdf-schemattlabel>

"national libraries (institutions)"@en .
<http://vocab.getty.edu/aat/300343387>
<http://purl.org/dc/terms/license>
<http://opendatacommons.org/licenses/by/1.0/> .
<http://vocab.getty.edu/aat/300343387>
<http://purl.org/dc/terns/created>
"2010-06-10T15:11:49"~"<http://www.w3.0rg/2001/XMLSchema#dateTime> .

By comparison, the same statements in Turtle appear as follows:

Oprefix aat: <http://vocab.getty.edu/aat/> .
Oprefix rdfs: <http://www.w3.org/2000/01/rdf-schematt> .

3nttp: //ww.getty. edu/research/tools/vocabularies/aat/

http://www.getty.edu/research/tools/vocabularies/aat/

Oprefix det: <http://purl.org/dc/terns/> .
Oprefix xsd: <http://ww.u3.org/2001/XMLSchema .

aat: 300343387

rdfs:label "national libraries (institutions)"@en ;
dct:license <http://opendatacommons.org/licenses/by/1.0/> ;
dct:created "2010-06-10T15:11:49"""xsd:dateTime .

Especially for small datasets, version management with traditional systems
can be a viable choice (Meinhardt et al;, 2015), but using them to version
RDF graphs comes with several disadvantages:

1. If changes to the graphs are to be tracked, the differences between two
graphs must be calculated. The result (delta) is large even for small
changes (for example, even a minute change to the URI of the subject
entails changes in all other lines that make statements about the sub-
ject).

2. Asaconsequence, the quality criteria which should be fulfilled by a diff

algorithm are not met:

[TThe dift should construct a minimum set of changes to trans-
form one version into the next one. Minimality is important
because it captures to some extent the semantics that a human
would give when presented with the two versions. It is import-
ant also in that more compact deltas provide savings in storage
(Cobena et al}, 2002).

3. If a change is made to the text that does not lead to a change in the
graph, because, for example, a space is inserted before the period at the
end of the statement, the dependence of delta on the serialization of the
text means that a delta is calculated that indicates that a textual change
has occurred.

4. This also means that it is impossible to materialize a past version of a
given graph together with the delta — what is required is the graph in
the exact same serialization that was used to create the delta.

4 RDF Archiving

The main challenges in versioning RDF data are the storage of versions,
the performance of the archive, and the associated possibilities of informa-
tion retrieval (Fernandez Garcia et al}, 2018; Ferndndez et al), 2015). There
are three major strategies for archiving versions: ‘independent copies’ (4.1),
where a snapshot or a complete copy is stored; the ‘change-based’ approach
(4.2), where only the changes to the graphs are recorded; and the ‘time-based’

approach (4.3), which takes the lifetime of triples into account by archiv-
ing the validity period for statements. In real-world technical implementa-
tions, these three approaches to archiving frequently appear in combination,
which helps to bring the requirements of the respective archive situation and
the desired retrieval functionalities into line with available resources in terms
of performance and storage capacity.

4.1 Independent Copies

An important advantage of the ‘independent copies’ strategy is the low tech-
nical effort required to implement the storage of data record versions. Each
version is stored and managed as a new, isolated dataset. The DBpedia pro-
ject, initiated by the Freie Universitit Berlin and Leipzig University in co-
operation with OpenLink Software with the goal of extracting data from
Wikipedia and making it available as Linked Open Data (LOD), has used
this method to archive 18 versions of their entire data pool over the course
of the regular updates undertaken between its initial release in 2007 and Oc-
tober 2016.

\Wikidalta,E a project of Wikimedia Germany, also archives independent
datasets. The project started in 2012 with the objective of providing data
that can be used by any Wikimedia project, including Wikipedia. Since 2015,
data dumps have been made available on the Internet Archive, amounting to
atotal of 162 Wikidata versions by the time of writing this paper.B Inorderto
make these versions queryable and comparable, each version could be stored
asagraph in a triple store and provided with additional metadata concerning
provenalnce.ﬂ This way of dealing with multiple versions is very well suited
for playing back entire versions and querying individual versions.B However,
the disadvantage of this approach is that it is very memory-intensive: the
process of archiving each version is accompanied by an increasing number
of duplicated triples, because there is a static core of unchanged triples that
occurs in every version.

“http://viki.dbpedia.org/

Shttps:/ /. wikidata.org/w/index. php?title=Wikidata:Main Pageioldid=1086709037

®nttps://archive.org/details/wikimediadownloads

"The user Tbt (attps://ww.wikidata.org/wiki/Nikidata:History_Query Service) is working on
a tool to query past Wikidata versions. In the future, all deletions in a named graph and all
additions in a separate named graph will be available for query. On the discussion page, the
author writes the following: “This tool ingests data from the XML revision dumps, so it
follows what is done for dumps regarding oversight. I do not know exactly what is done for
XML dumps.” Tpt (talk) 16:57, 9 April 2019 (UTC)

80n query requirements, (Fernandez Garcia et al}, 2018; Ferndndez et all, 2015).

http://wiki.dbpedia.org/
https://www.wikidata.org/w/index.php?title=Wikidata:Main_Page&oldid=1086709037
https://archive.org/details/wikimediadownloads
https://www.wikidata.org/wiki/Wikidata:History_Query_Service

4.2 Change-Based Approach

The redundancies discussed in the previous subsection do not occur with
change-based archiving. The amount of memory required is kept to a min-
imum. Only the changes (deltas) are archived, while static elements do not
have to be repeated. The delta of each triple consists of the change descrip-
tion and the change relationship (delete or add).E Because triples, unlike text,
can be localized without reference to lines, a version consists of a set of de-
leted triples and a set of added triples (Graube et al., 2014).E

Many practical features of version control systems can also be found in
the implementation of systems adapted to RDF such as R&Wbase, a system
proposed by Vander Sande et al. (2013) that is based on the core concept of
distributed version control, which enables triple read and write. Here, vari-
ous functionalities known from version control systems such as committing,
merging, branching, and tagging are made available for collaborative work
on RDF datasets. Commits, for example, are described using the PROV on-
tology, with each commit including a timestamp, the previous version, the
name of the version just created, a title, and a responsible user. In effect,
R&Whbase thus works as a separate versioning layer in a quad store.

In many respects, R43ples, the implementation developed by Graube
et al) (2014), is very similar. It does, however, employ an additional triple
store which acts as what we could call a ‘versioning proxy.” As the applica-
tion discussed before, the versions can be queried and updated via SPARQL
— Graube et al| (2014) have introduced specific SPARQL keywords for this
purpose, namely REVISION, BRANCH, and TAG.

Archives that store triple versions via a change-based approach are de-
signed to record the changes to versions. When querying a specific state of
the dataset at a certain point in time, the system’s computational effort in-
creases: first, all deltas up to the first entry (or the next full version/snapshot)
must be recalculated, followed by the deltas from the reconstructed first ver-
sion to the desired version. In order to cut down on the amount of pro-
cessing power required, Im et al) (2012) introduced the concept of aggreg-
ated delta, which is independent from its predecessor version because it com-
bines all change information in compressed form and as such reduces re-
sponse time significantly.

?Barabucci 2016 defines delta as follows: “A delta [...] is a tuple of changes (C) and
change relations (R) that describes how to transform the source document (S) into the tar-
get document (T')” (Barabucci et al}, 2014, 50).

19The deltas are calculated from syntactic changes to the data. Changes in semantics
(e.g. when a class is renamed) are much more complex to calculate — these are referred to
as high-level deltas (Fiorelli et al!, 2017, pp. 147-148). Some version control systems (e.g.
Subversion, https://subversion.apache.org/) solely save changes.

10

https://subversion.apache.org/

4.3 Time-Based Approach

As mentioned above, there are also approaches that add a time component
to the previously discussed storage forms (snapshot or delta) with the goal of
optimizing system performance for very specific queries (e.g. the query for
valid triples at a certain time or interval).

A time-based strategy can be implemented in two ways. One possibility
is to assign to each triple, for as long as it exists, meta information in the
form of a time stamp as each new version is created. However, with this ap-
proach, there is always write work for the system, since it also assigns a new
time stamp to triples that remain unchanged. An alternative would be to
only annotate triples when they are added or deleted, meaning that a max-
imum of just two data fields is added to the triple.

This implementation can be found, for example, in X-RDF-3X, a plat-
form developed by Neumann and Weikum (2010) which adds two addi-
tional fields to the triple: one timestamp for creation and one for deletion,
with the latter having a zero value for valid triple versions. The interval
between the created and deleted timestamp represents the lifetime of the
triple version. The state of a database at a certain point in time can thus be
reconstructed by returning all triples for which the point in time falls within
the corresponding lifetime intervals (Neumann and Weikum, 2010, p. 258)
—asystem which allows a quick representation of what has changed from one
version to the next, because a change means that the respective triple must be
recorded with a time stamp. This procedure is therefore also change-based,
but the delta consists of timestamps as opposed to deleted and added triples
in different named graphs.

There are also systems that combine all three of these archiving strategies
in order to get the best of all worlds. In the implementation by Meinhardt
et al) (2015), each version in the archive exists as a changeset that contains
information about modifications at a certain point in time. The changeset
contains at least one snapshot. If triples are added, they are stored as a delta
to a snapshot with a time stamps; if a triple is deleted, a new snapshot is cre-
ated, also carrying a time stamp. When a version is to be materialized, then
the snapshot closest to the requested time is retrieved and the corresponding
delta is added. The approach of [Taelman et al) (2019) also combines snap-
shot and delta archiving. In addition, they rely on special indexing methods
for enhanced efficiency in “evaluating queries at a certain version, between
any two versions, and for versions” (Taelman et al}, 2019, p. 4).

11

5 Use Cases in the Digital Humanities

The models for version storage discussed in the present paper allow for a wide
range of query requirements to be met. But whatkind of demands regarding
the versioning of RDF or Linked Open Data exist within the context of the
digital humanities?

Fiorelli etal|(2017) define the requirements for an RDF versioning system
by distinguishing between user and developer. The user is primarily inter-
ested in being able to reference saved versions, whereas the developer wishes
to track changes. In actual scholarly practice, however, the requirement pro-
files cannot be separated so neatly — in many cases, there is a need for both
perspectives. This section presents three likely user scenarios to showcase the
importance of versioning in the digital humanities, and to demonstrate how
well the RDF versioning approaches discussed so far perform when confron-
ted with real-life challenges. The first scenario addresses the problem of data
consistency (5.1), scenario two deals with the issue of collaborative research
(5.2), and scenario three is concerned with the specific nature of scholarly
discourse in the humanities (5.3).

5.1 Version Reference and Data Consistency

Scenario 1: Occasional Data Updates for a Digital Scholarly Edition (DSE)

Iam the editor of a digital scholarly edition of account books. I modeled
my data in RDF and published it. I did a statistical analysis of the data
and displayed it to the users. Now I want to add another account book,
but the evaluation of my analysis is based on a closed database. How can
I make the current state of research accessible and still publish new RDF
data?

On the one hand, this scenario describes a basic retrieval task, namely the re-
trieval of a specific version of the recorded data. On the other, there is also
the need to query this past version, for example in order to keep statistical
values verifiable. The ‘independent copy’ approach is perfectly adequate to
fulfill these requirements, as each historical version dumps in an ordinary
RDF memory. It is easy to provide full versions in the form of snapshots
and to enrich these snapshots with additional metadata — for example, the
PROV ontology can be used to create a version catalog or to provide addi-
tional provenance data, whereas different graphs (versions) can be queried
via SPARQL.

A time-based strategy involving the annotation of individual triples with
their validity range could also work well. Materializing a specific past version
is the most computationally demanding task when using an approach that

12

only stores deltas, since all deltas must be re-calculated when requesting a full
version. Assuming that the deltas are stored in such a way that they are only
connected to the previous delta, the change chain is calculated back to the
first complete version and then, in order to be able to materialize a certain
later state, the deltas are calculated forward again up to the desired version.
In this scenario, combined storage approaches that record both snapshots
and deltas can help to keep the computational effort manageable.

5.2 Change Inspection and Evolution Tracking
Scenario 2: Collaborative Ontology Development

I work for the National Library, and we want to develop a cross-
institutional common ontology that is maintained collaboratively.
With these collaborative processes, would it not be useful to track the
changes and to analyze how and why they occurred?

This scenario focuses on the problem of collaborative editing. There isa need
to query the changes that occurred between two or more versions. Here,
functionalities provided by version control systems are expected — these in-
volve merging branches, highlighting conflicts, quickly undoing changes,
and so on. Yet a second requirement is also formulated, namely the track-
ing of very specific changes.

Calculating the difference between the versions of the datasets with an
‘independent copy’ approach requires significant computational assets given
that the calculation of specific deltas takes place at query time. With a time-
based approach, however, this task can be accomplished with little effort,
provided that the time of adding and deleting the triple is available as meta in-
formation for each triple. In either case, the change-based implementations
by Vander Sande et al. (2013) and Graube et al| (2014) discussed in subsec-
tion @ are useful because they include practical functionalities of version
control systems that can be queried using an extended SPARQL vocabulary.
They also offer the possibility to use the ‘commit’ function to describe the
changes in the collaborative process in more detail.

5.3 Qualitative/Quantitative Analysis of Data Evolution
Scenario 3: Analysis of Historical Topic Evolution in Wikidata

I am a historian, and I want to analyze historical topic development in
Wikidata from the beginning of Wikidata until today. I am interested
in the evolution of knowledge and its representation. For instance, how
are historical events and persons perceived and described? What are the
primary topics, and how have certain aspects evolved and changed over
time? How can I retrieve this kind of data?

13

In this scenario, the goal is to discover patterns that arise and develop over
time. This results in specific requirements: not only should it be possible to
compare past versions with each other, but the system should also allow users
to query the changes that have taken place. To query information that is
present in several versions, or specific changes that take place between them,
is a task that is very difficult to accomplish with a straightforward ‘independ-
ent copy’ approach — it is far easier to query the validity of triples using a
time-based solution. However, when it comes to tracking concept changes,
the ability to query deltas is required. The approach developed by Meinhardt
et al! (2015) makes it possible to search for changes with certain timestamps
by using the MEMENTO protocol. The solutions proposed by Taclman
et al| (2019) are another promising way to address this retrieval challenge.

6 Conclusion

When versioning data and archiving it for research purposes, its usability for
future scholarship is a major concern. The choice of a specific versioning
strategy depends on how often and how much our research data changes and,
above all, on which information is to be made retrievable. This paper has
illustrated the different requirements for versioning systems with user scen-
arios that are likely to occur in the context of the digital humanities. As has
become clear, there are technically simple solutions to the problem of render-
ing RDF data and the changes that it is subjected to referenceable and retriev-
able. System requirements are bound to increase with a higher frequency
of changes and mounting demands concerning their traceability, especially
in collaborative research. For the collaborative development of graph data,
versioning models are required that adopt functionalities from collaborative
software development. Additional features permitting detailed analysis of
changes over time are also desirable, and will empower scholars to undertake
increasingly complex research projects as more and more RDF data is being
published — and changed - in years to come.

As scholars working in the digital humanities, we are particularly inter-
ested in the origin and development of our research data. Versioning can be
used to integrate and provide this critical information, whose importance for
scholarly practice cannot be overstated. Moreover, versioning mechanisms
ensure that our data can itself be used as an object of study. Not only does
versioning create trust — it also enables the scholarly discourse of the future.

References

Barabucci, G., Ciancarini, P., Di Iorio, A., and Vitali, F. (2016). Measuring
the Quality of Diff Algorithms: A Formalization. Computer Standards

14

&7 Interfaces, 46:52—65, DOI: 10.1016/5.csi.2015.12.005.

Berners-Lee, T. (2000). Semantic Web on XML. https://wwi.u3.org/2000/
Talks/1206-xm]12k-tbl/s1idel-0.html.

Borgman, C. L. (2010). Scholarship in the Digital Age. Information,
Infrastructure, and the Internet. MIT Press, Cambridge, MA, DOI:
10.7551/mitpress/7434.001.0001.

Carroll, J., Bizer, C., Hayes, P., and Stickler, P. (2005). Named
Graphs, Provenance and Trust. In WIWW05: Proceedings of the 14th
international conference on World Wide Web, pages 613-622. DOI:
10.1145/1060745.1060835.

Cobena, G., Abiteboul, S., and Marian, A. (2002). Detecting Changes in
XML Documents. In Proceedings 18th International Conference on Data
Engineering, pages 41-52. DOLI: 10. 1109/ICDE.2002.994696.

Fernidndez, J. D., Umbrich, J., Polleres, A., and Knuth, M. (2015). To-
wards Efficient Archiving of Dynamic Linked Open Data. In Debat-
tista, J., dAquin, M., and Lange, C., editors, Proceedings of the First DIA-
CHRON Workshop on Managing the Evolution and Preservation of the
Data Web, volume 1377 of CEUR Workshop Proceedings, pages 34—49.
nttp://ceur-ws.org/Vol-1377/.

Fernandez Garcia, J. D., Umbrich, J., Polleres, A., and Knuth, M. (2018).
Evaluating Query and Storage Strategies for RDF Archives. Semantic
Web Journal, http://epub.wu.ac.at/6488/.

Fiorelli, M., Pazienza, M. T., Stellato, A., and Andrea, T. (2017). Change
Management and Validation for Collaborative Editing of RDF Data-

sets. International Journal of Metadata, Semantics and Ontologies,
12(2/3):142-154, DOI: 10.1504/1JMS0.2017.090783.

Gil, Y., Cheney, J., Groth, P., Groth, P,, et al. (2010). Provenance XG Final
Report. Technical report, W3C Incubator Group.

Graube, M., Hensel, S., and Urbas, L. (2014). R43ples: Revisions for triples
- An Approach for Version Control in the Semantic Web. In Proceedings
of the 1st Workshop on Linked Data Quality co-located with 10th Interna-
tional Conference on Semantic Systems, SEMANTECS.

Im, D.-H., Lee, S.-W,, and Kim, H.-J. (2012). A Version Manage-
ment Framework for RDF Triple Stores. International Journal of

15

https://dx.doi.org/10.1016/j.csi.2015.12.005
https://www.w3.org/2000/Talks/1206-xml2k-tbl/slide1-0.html
https://www.w3.org/2000/Talks/1206-xml2k-tbl/slide1-0.html
https://dx.doi.org/10.7551/mitpress/7434.001.0001
https://dx.doi.org/10.1145/1060745.1060835
https://dx.doi.org/10.1109/ICDE.2002.994696
http://ceur-ws.org/Vol-1377/
http://epub.wu.ac.at/6488/
https://dx.doi.org/10.1504/IJMSO.2017.090783

Software Engineering and Knowledge Engineering, 22(1):85-106, DOI:
10.1142/50218194012500040.

Meinhardt, P., Knuth, M., and Sack, H. (2015). TailR: A Platform for Pre-
serving History on the Web of Data. In Proceedings of the 11th Interna-
tional Conference on Semantic Systems, ACM, SEMANTICS ’15, pages
57-64, New York, NY. Association for Computing Machinery, DOI:
10.1145/2814864 .2314875.

Neumann, T. and Weikum, G. (2010). X-RDF-3X: Fast Querying, High
Update Rates, and Consistency for RDF Databases. Proc. VLDB Endow-
ment, 3(1/2):256-263.

Powers, S. (2003). Practical RDF. O’Reilly, Beijing/Cambridge.

Schreiber, G. and Raimond, Y. (2014). RDF 1.1 Primer. Technical report,
W3C.

Seaborne, A. and Davis, I. (2010). Supporting Change Propagation in RDF.
In Proceedings of the W3C Workshop — RDF Next Steps.

Sizov, S. (2007). What Makes You Think That? The Semantic Web’s Proof
Layer. IEEE Intelligent Systems, 22(6):94-99, DOI: 10.1109/MIS.2007.120.

Taelman, R., Vander Sande, M., and Van Herwegen,]J. (2019). Triple Stor-
age for Random-Access Versioned Querying of RDF Archives. Web Se-
mantics: Science, Services and Agents on the World Wide Web, 54:4-28,
DOI: https://doi.org/10.1016/].websen.2018.08.001.

Tunnicliffe, S. and Davis, I. (2005-2009). Changeset Vocabulary. https://
vocab.org/changeset/.

Vander Sande, M., Colpaert, P., Verborgh, R., Coppens, et al. (2013). R &
Whase: Git for Triples. In Bizer, C., Heath, T., Berners-Lee, T., Hausen-
blas, M., and Auer, S., editors, Proceedings of the 6th Workshop on Linked
Data on the Web. http://ceur-vs.org/Vol-996/papers/1dow2013-paper-01.pdf.

Zimmerman, A. S. (2008). New Knowledge from Old Data: The Role of
Standards in the Sharing and Reuse of Ecological Data. Science, Techno-
Zogy, €9 Human Values, 33(5):631-652, DOI: 10.1177/0162243907306704.

16

https://dx.doi.org/10.1142/S0218194012500040
https://dx.doi.org/10.1145/2814864.2814875
https://dx.doi.org/10.1109/MIS.2007.120
https://dx.doi.org/https://doi.org/10.1016/j.websem.2018.08.001
https://vocab.org/changeset/
https://vocab.org/changeset/
http://ceur-ws.org/Vol-996/papers/ldow2013-paper-01.pdf
https://dx.doi.org/10.1177/0162243907306704

	Introduction
	Versioning as a Dimension of Provenance
	RDF Versioning Approaches
	Reification
	Named Graphs
	Version Control Systems

	RDF Archiving
	Independent Copies
	Change-Based Approach
	Time-Based Approach

	Use Cases in the Digital Humanities
	Version Reference and Data Consistency
	Change Inspection and Evolution Tracking
	Qualitative/Quantitative Analysis of Data Evolution

	Conclusion

