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Abstract

The following contribution summarizes a number of problems asso-
ciated with a methodological focus on statistical measures in corpus
linguistics, specifically in the subfield of lexical and lexicosyntactic ana-
lysis: the practical impossibility of collecting sufficient amounts of data
to fully account for all of the factors that are known to interact with
linguistic output; the reliance on mathematical assumptions that are
generally notmet by language data; and the epistemological limitations
of considering corpora language samples from a presumed superpopu-
lation versus the evolutionary and non-ergodic nature of language. It
then proposes graph metrics as a viable alternative to statistical meas-
ures. Rather than comparing groups of factors, graph metrics capture
relational aspects of the whole dataset, and unlike inferential statist-
ics, they do not project to a presumed external totality or population.
Neither do they rely on assumptions of randomness, independence,
stationarity, or ergodicity. They thus avoid many of the concessions
to the linguistic model that are inherent to probabilistic models of the
lexicon, which in turn may result in an epistemologically sounder op-
erationalization and quantification of corpus data. However, the high
level of abstraction inherent in graphs, and especially in applications of
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graph theory, comes with its own caveats. Drawing on the example of
Kobalt, a mid-sized corpus of texts written by learners of German, two
approaches to the application of graph metrics in corpus-linguistic re-
search are outlined anddemonstrated in this paper, including a detailed
discussion of the steps necessary for validation and linguistic embed-
ding.

1 Statistics in Quantitative Corpus Linguistics
Quantitative corpus linguistics has been a prolific field of research since the
early 1990s. A number of large, general-purpose corpora, such as the British
National Corpus (BNC World, 2007) and the German Reference Corpus
DeReKo (Leibniz-Institut für Deutsche Sprache, 2019), have been curated
and refined for decades, while many more specific corpora (focusing, for ex-
ample, on spoken, historical, task-based, and/or learner language), are con-
tinuously being compiled and developed.

While a wide-range of phenomena are analyzed in linguistics, a partic-
ularly prevalent strand of research in corpus linguistics addresses the co-
occurrence of words and the formation of meaningful larger units that do
not appear to followhigher-order syntactic rules, such as collocations (words
that habitually co-occur despite potentially available alternatives, like strong
coffee vs. powerful coffee), idioms (word bundles with elements of meaning
that cannot be derived from thewords themselves, like hit the road), and con-
structions (semi-syntactic elements that are partially lexically specified and
tend to be expandable by analogy, likeHe worked his way up, She studied her
way to the top, and They sang their way into our hearts).

Themajormethodological focus of this work has been on frequentist stat-
istics overwords, lexemes (baseword forms, such as to be for is, are, were, etc.)
and relatively coarse syntactic categories (part-of-speech tags, such as prepos-
ition, or dependency labels, such as accusative object) that rely on automatic
extraction. The term ‘frequentist’ here refers to the ‘traditional’ understand-
ing of statistics, whereby probability is defined as the convergence to the
limit of an expected relative frequency in an infinite series of experiments.1

1Bayesianmodels have not played a role in corpus-linguistic analysis so far. Bayesian stat-
istics defines probability in a different manner, namely as a range of reasonable belief based
on prior experience. This increases the suitability to the modeling of dynamic systems and
interacting factors. Whether or not this also allows for an improved quantification of cor-
pus data remains to be seen. Although highly relevant to the methodological development
of corpus linguistics, this question will be set aside for the remainder of this paper in or-
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For example, if I toss a fair coin an infinite number of times, the relative fre-
quency of it landing on either side will approximate 0.5, which is also the
probability value. Corpus linguistics operates within precisely such a frame-
work, relying on various types of quantitative analysis such as productivity
measures, which look at word distributions and quantify the openness of
slots to accept new members (Zeldes, 2013; Baayen, 2002), and lexical asso-
ciation measures, which investigate conditional probability and transforma-
tions thereof (Baayen, 2002; Gries and Stefanowitsch, 2004; Stefanowitsch
andGries, 2003, 2005; Gries, 2013; Evert, 2005; Evert et al., 2017). In recent
years, mixed effect modeling has also begun to attract attention as a more
sophisticated technique for controlling the many interacting factors in lan-
guage data (Linck and Cunnings, 2015; Speelman et al., 2018; Gries, 2019).
In the wake of these conceptualizations of corpora as plausibly represent-

ative samples of language, a dynamic interplay has developed between amass-
ing larger amounts of data to allow for statistical analysis and an increasing
reliance on automatic modes of data extraction and classification. There
are, however, a number of issues with viewing language through the lens
of stochastics, which can be broken down into three general categories: a)
practical – controlling for all interacting factors tends to greatly limit sample
size as well as linguistic depth; b) mathematical – the lexicon is likely not a
stochastic system; and c) epistemological – corpora frequently do not qual-
ify as samples that allow inferences to a population, especially those that have
been compiled in elicited or quasi-experimental settings.

1.1 Practical Problems

A major reason for the reliance of corpus linguistics on surface or surface-
near forms lies in the difficulty and high cost of in-depth annotation. Lin-
guistic categories are generally ambiguous, fuzzy-edged, and often only im-
plicitly represented in surface forms.

For example, while the grammatical roles of subject and direct object in the
sentence The boy broke the vase are easily extractable – especially in English,
where the position in left adjacency to the finite verb is reserved for the gram-
matical subject – the semantic, pragmatic, textual, and intertextual implica-
tions can be much harder to pinpoint. Consider, for example, the sentence
The vase broke, in which the former direct object to the verb break is now the
grammatical subject, while the process of breaking still belongs to the same
object semantically.2

der to allow for a more in-depth discussion of the pitfalls of frequentist approaches and the
potential of graph-based modeling as a structural alternative.

2This is an example of a so-called unaccusative verb. Features and problems of categor-
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Even aspects of limited ambiguity, such as themorphological features of a
word (for example grammatical gender or types of inflection) or the syntactic
structure of a sentence, cannot always be parsed with high accuracy in lan-
guages with flexible word order and a high degree of inflection (Seddah et al.,
2013). This is particularly true of non-canonical language, i.e. language that
does not follow the explicit and implicit rules of written formal language, for
example spoken or learner language (Krivanek and Meurers, 2011; Ott and
Ziai, 2010; Choi et al., 2015; Bechet et al., 2014).

In a research setting that works with rich morphology and/or syntactic
flexibility, untrained, and non-canonical data (as is the case in the analysis
of German learner language), automatic classification and parser perform-
ance generally do not suffice for research purposes. This is even more so
the case for analyses that go beyond surface-near forms, where the accuracy
of automatic parsing of semantic or pragmatic information is generally not
very high. For example,Morey et al. (2018) compare the performance of vari-
ous parsers for rhetorical structures, i.e. functional descriptions of discourse
blocks such as example, elaboration, or concession, and show that the most
effective parsers only reach accuracy levels of around 50%. This is due to the
fact that meaning is not simply encoded in the individual words themselves,
but emerges from their combination, composition, and contextual embed-
ding.

Annotation of deeper level information generally requires large amounts
of tedious manual or, at best, semi-automatic annotation. Rather than be-
ing a simple labeling task, most linguistically interesting annotation is a com-
plex categorization process. It requires the development of guidelines for
ambiguous cases, measurements of inter-annotator agreement, and the iter-
ative revision of previous annotations. With this amount of manual input,
deep linguistic annotation is generally not feasible for large corpora.

At the same time, a number of recent and ongoing studies (Hirschmann,
2015; Lüdeling et al., 2017; Shadrova, 2020; Lüdeling et al., 2021) have
shown that the simultaneous consideration of deeper levels of analysis and
several annotation layers in the same study can provide considerable insight
into deep linguistic aspects of corpus data. With analyses of this kind, it is
generally only possible to assure an adequate quality for small to mid-sized
corpora, i.e. several hundred to several thousand texts at most. This poten-
tial is further limited by the fact that many corpora require intensive pre-
processing in the form of multiple tokenization, alignment of token layers
and parallel text, etc. Particularly where spoken or signed data is involved,
transcription and normalization are very resource-intensive, and effectively

ization are discussed in depth in Kuno and Takami (2004).
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limit the data that is available for analysis to only a fewdozen texts. It appears
that for lexical analysis, this upper bound often lies below the lower bound
for the secure application of statistical measures: effect sizes are too small to
be convincing, andwith the highdegree of individual and stratified variation,
controlling for all factors splits the data into even smaller subsets, or creates
spurious significance (overfitting) through the inclusion of toomany factors
in the model.

There is thus an inevitable trade-off between the depth of linguistic ana-
lysis and corpus size. In other words, large corpora generally underexplore
the potentials of linguistic analysis. Statistical measures were introduced
into corpus linguistics in order to capture gradual effects and to distinguish
between true differences and random fluctuation – but in reality, a strong
focus on these metrics greatly limits the analytical capacity of linguistic re-
search. However, as I will argue in the following sections, the problems with
such an approach run deeper.

1.2 Mathematical Problems

There are a number of debates centered around statistics in linguistics which
deserve to bementioned here, but cannot be discussed in detail due to spatial
constraints:

• There appears to be a general lack of understanding of the underlying
distribution of words in corpora. It has been assumed that words are
Zipf-distributed, but recent research suggests that thismight not be the
case, and/or that theZipf distribution is itself an artifact (Williams et al.,
2015; Piantadosi, 2014; Aitchison et al., 2016);

• Treating text as randomly sampled, i.e. as the outcome of a series of
random experiments, is a simplification ad absurdum. Structured by
its very nature, “language is never, ever, ever random” (Kilgarriff, 2005);

• Significance testing is problematic for a number of reasons, but particu-
larly so in language, since essentially all assumptions about the relation
between population and sample are mathematically unmet (Schmid
and Küchenhoff, 2013; Koplenig, 2017).

Beyond these already grave concerns, there are two even deeper problems
concerning aspects that are intrinsic not only to corpus compilation, but to
the nature of language itself.

First, frequentist statistics is rooted in a concept of probability that de-
rives overall probabilities from previous observations – it predicts the future
from the past. The bridge between the two is provided by the central limit
theorem, which states that in sufficiently large samples, regardless of the un-
derlying distribution, relative frequencies will reach limits and those limits
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can be idealized to probabilities. This is expressed in the assumption that
the overall systemwill reach expected values if the experiment is repeated ad
infinitum: if a fair coin is tossed a sufficient number of times, its idealized
property of being 0.5 heads and 0.5 tails will become defined over time, even
if heads or tails cluster in parts of the series. However, for the central limit
theorem to hold true, the underlying system must be stochastic – it must
have probabilities – which means it must be stationary and ergodic, with sta-
tionarity referring to the property of a system to have stable and unchanging
probabilities. If, for example, the coin is damaged after a few tosses, the out-
come may be skewed and the system is no longer stationary. Language is
obviously not stationary, since it evolves significantly over time. If this was
the whole extent of the problem, then it would suffice to define stationary
subsets of language, e.g. corpora spanning only a decade or less – but in fact,
there are reasons to believe that stationarity is not reached in thematically di-
verse corpora even over short periods of time (Piantadosi, 2014). Moreover,
there are other language-intrinsic features that create discrepancies to the
model, including cognitive, discourse, and inter-speaker dynamics, and, per-
haps most problematically, productivity.

Since language is at least in part a cognitive function, it underlies percep-
tual biases and cognitive influences. One major factor in this is priming. It
is well-known that speakers are very easy to prime on all linguistic levels –
syntactically (Pickering and Branigan, 1998; Gries, 2005; Loebell and Bock,
2003), lexically (Hoey, 2012; Jones and Estes, 2012), semantically (Lucas,
2000;McNamara, 2005), pragmatically (Bott andChemla, 2013), phonetic-
ally, and/or phonologically (Luce et al., 2000; James and Burke, 2000). This
holds true for priming from any source: experimental or incidental cues; self-
priming from elements used by the speaker; and interlocutor priming. Since
primed activations do not fully persist, but subside over time, they facilitate
another feature of natural language that is called burstiness. It refers to the
frequent re-occurrence of elements in dialogue or small parts of a text within
a short period of time, duringwhich their probability to occur leaps tomuch
higher levels, only to swiftly collapse again to a rate that approximates zero.
Another contributing factor to burstiness is text structure – certain parts of
a story or report mention certain things, which are not picked up again.

Priming also contributes to inter-speaker convergence or alignment, a phe-
nomenon in which the participants in a dialogue adapt to one another in
their linguistic expression. Alignment has been shown to exist in contexts as
diverse as abstract frames of reference (e.g. up/down vs. north/south inmap
description tasks, as investigated by Steels and Loetzsch (2008)) and highly
specific and unconscious processes such as articulatory movement (Pardo,
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2006), underlining the fact that probabilities may increase or decrease in a
specific dialogue not by virtue of any features that are intrinsic to the lin-
guistic elements themselves, but rather through the intentional or uninten-
tional influence of the speaker.

Amore global factor influencing the frequency of occurrence of linguistic
elements is the ebb and flow of discourse interaction, by which debates gain
momentum and then die down. This can play out within days, hours, or in
the space of a single document, and is inextricably linked to the issue of inten-
tion: speakers do not utter certain words to fix imbalances in the probability
distribution, but rather consciously choose to speak in specific ways and/or
about a specific topic, which in turn increases or decreases the probability
for any given word to occur.

Lastly, perhaps the strangest effect is produced by productivity (the pro-
cess of coining new words incidentally), and creativity (the intentional cre-
ation of new words). Nouns, verbs, and adjectives are open classes, mean-
ing new lexemes can be introduced to the system at any time. However, in
stochastic terms, this is the equivalent of rolling dice that keep changing the
number of their sides – with every new word, the relative frequencies for
all words change. Far from being a marginal phenomenon, productivity
is highly prominent in all spoken and written language, and is intrinsically
problematic for the concept of stationarity in language.

The second major issue with respect to the mapping of the linguistic to
the statistical model is ergodicity or path-independence. It is also the second
necessary condition for the upholding of the central limit theorem. In an
ergodic system, nomatter which path I take through the system, relative fre-
quencies for all elements can approximate limits and the overall system will
reach expected values. For example, by rolling a fair die a sufficient number
of times, noting down the values, and then averaging over them, I will find
an approximation of the expected value 3.5. No matter which path I take,
whether I roll a 6 seven times in a row and then a 1 seven times in a row,
or any other combination – with sufficient repetitions, the system will con-
verge. In a non-ergodic system, this is not the case: if I roll the die once and
define the final result as “1” for 1, 2, or 3, and “6” for 4, 5, or 6, the expec-
ted value is still 3.5. But this value can never actually be reached, as the path
taken through the system determines the outcome. There is some research
on themathematics of non-ergodicity in cognitively oriented research fields,
including cognitive neuroscience (Medaglia et al., 2011; Franco et al., 2007;
Papo, 2013) and social and developmental theory (Molenaar, 2008; Lerner,
2012). For language, however, the problem is rarely discussed, although it
is now beginning to attract more scholarly attention (Lowie and Verspoor,
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2018; Dębowski, 2018).
Without ergodicity and/or stationarity, the central limit theorem fails.

This is not aminor inconvenience, but equivalent to the collapse of the single
bridge that spans the space between two tallmountains –without the central
limit theorem, mathematically, there is no connection between prior obser-
vations and a presumedpopulation. There is no reason to assume thatwords
counted in one corpus hold any precise, probabilistic information about
what will be found in another. In a changing system, the past has limited
capacity to predict the future. While one may still choose to trust corpus
data as empirical evidence, there is little justification to rely on concepts like
p-values or effect size to safeguard against chance results.

1.3 Epistemological Problems

The epistemology of statistics over words is unsatisfying for reasons that go
beyond mathematical concerns. Suggesting that the production of words
can bemodeled stochastically, i.e. as a distribution of probabilities, entails at
least two philosophical extensions:
1. There is a stochastic system, perhaps in a latent superpopulation3 (as

it is sometimes conceptualized in the social sciences), that produces un-
changing and stochastically deterministic output;

2. Linguistic data collection is capable of capturing samples of this out-
put.

Both of these extensions are, in fact, rather strange. The first suggests that
while we cannot know when certain things will be said, or which words will
co-occur; the conversations we have are effectively pre-determined in the
stochastic system. This implies that for all newword forms that are product-
ively generated, and for all new processes and items in the world that did
not exist until recently and are now named (such as to google or Tesla), the
stochastic systemhas always held a quantitatively predefined slot. This idea is
utterly alien to linguistics, and is unlikely to be entertained by anyone in the
field. On the contrary: usage-based linguistics metaphorically draws on sys-
tems theory by suggesting that language is a complex, adaptive (i.e. evolving)
system–one that is neither stationary, nor ergodic (Beckner et al., 2009; Ellis,
2016;Holland et al., 2005;Massip-Bonet, 2013; Steels, 2000, among others).
In complex adaptive systems, cross-system statistical modeling is pointless,

3The concept of superpopulation refers to a model in which a real population is seen as
a sample of a latent infinite population. For example, onemight think of the distribution of
career choices in the population of a country as a sample from a stochastic process. This is
used to allow for inferential statisticswhere data is effectively not reproducible (since there is
only one of each country at a given time), but carries the philosophical problem of implying
determinism in dynamic and possibly unique systems.
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since things keep changing. Parts of the system may of course be compared,
and compared quantitatively, but this requires an intelligent way to distin-
guish between random fluctuation and structural shift.

The second extension touches on the problemof the representativeness of
corpus data, and specifically of corpus data that is compiled in what is some-
times called a quasi-experimental design. For example, in studying learner
language, one may try to control for certain variables such as topic, task,
setting, degree of formality, etc., which typically results in small to mid-
sized corpora like the learner corporaKobalt (Zinsmeister et al., 2012), Falko
(Reznicek et al., 2010; Lüdeling et al., 2008), and the International Corpus
of Learner English (Granger et al., 2009), or task-based dialogue corpora
such as the BerlinMapTaskCorpus (BeMaTaC, Sauer andLüdeling (2013)).
Both offer an excellent way to collect data, which promises to yield crisp and
highly relevant results. However, by performing statistical analysis on this
data, or more precisely by borrowingmethods from inferential statistics, via
reliance on the central limit theorem, I do not simply measure what I find
in the data, but rather infer a presumed superpopulation that works as a
stochastic system.

This approach is epistemologically risky in two ways. First, unlike news-
paper archives or historical sources, it does not involve naturally occurring
data that has been collected from existing language – it works with language
that has been intentionally created and that may never have existed without
the researcher’s intervention. This means that the data collection created
the presumed superpopulation fromwhich certainty or effect size is then de-
rived, rendering the argument circular. Second, if the amount of data turns
out to be too small for certain types of analysis (as it typically does for colloc-
ations, see section 1.2), onemay be tempted to collect more data of the same
kind. Doing so is not the same as taking samples, however. Rather, it means
expanding language in a way in which it probably would not have developed
on its own. Continuing with this method until data sizes of two higher or-
ders of magnitude are reached – for example by collecting tens of thousands
of texts written by learners of German instead of a few hundred – would:
a) skew the proportions of all documented data of learner German signific-
antly; b) interfere in the writing development of hundreds of thousands of
learners of German; and c) create a population, rather than sampling from
one.

Consider for a moment the following analogy: if a naturalist went into
the woods to count black and blue birds belonging to a particular species,
the birds would have existed without their involvement. Provided that the
propermethodology is chosen and applied well, reliable insights into the fea-
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tures of this population are to be expected. However, if the naturalist began
breeding the birds in order to gain control over data collection, and accident-
ally bred green birds never before observed in the wild, no amount of new
data would allow them to infer from their laboratory population to the ori-
ginal population, as the existence of these birds has permanently changed
the entire species. In other words, in an attempt to create representative
amounts of data (birds), our naturalist will have created irresolvable path-
dependency in their research. The population that could have been inferred
to from the initial sample in the wild is now no longer representative of the
whole species, and thus of little to no use for comparison or significance test-
ing.

At first glance, thismay seem like a far-fetched andpurely theoretical prob-
lem, but the reality of learner language is that most of it is not spoken in the
context of the argumentative essays that are typically found in learner cor-
pora. Instead, it is found in: a) immigration offices and areas with high dens-
ity immigrant populations; b) middle schools; and c) tourist destinations –
none ofwhich are prone to eliciting essay-length argumentative texts on con-
troversial topics in a formalwritten setting. Thismeans that the compilation
of learner corpora as they exist today already interferes in learner language
and influences projections of a latent superpopulation.

This is not to say that there are no quantifiable patterns or measurable
differences between language cohorts. However, it is important to map the
demands of the mathematical model to the subject matter, and it appears
as though frequentist statistical interpretations of lexical distributions offer
a rather unlinguistic perspective. The same is not necessarily true of other
types of linguistic distributions. More abstract syntactic features like word
order, cases, part-of-speech distributions, determiner systems, and so on, are
much more stable historically, and converge quickly even in data of limited
size. They also exhibit lower variance thanword distributions and are greatly
influenced by changes in subcategories, as well as in any of the complement-
ary categories. For example, phonological changes may influence the oblig-
atoriness of articles, thereby also influencing the case system, as is the case in
diachronic language change. Using different words and inventing new ones,
on the other hand, does not have the same effect. It is therefore quite possible
that probabilistic analysis of syntactic aspects in corpora is mathematically
and conceptually valid. For largely lexically oriented analysis, this does not
appear to be the case.

It should be noted here that criticizing the application of statistical meth-
ods on lexical aspects of corpora is not merely a matter of methodological
taste or belief. If words do not have probabilities, probability-based meas-
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ures are meaningless in the same way that it is meaningless to measure the
temperature of a philosophical debate (even if it is heated) or the width of
the history of Europe (even if it is wide-ranged). Validity matters in schol-
arly research, and that includes both the internal validity of the mathemat-
ical model, and the mapping of mathematical to subject-specific concepts
and empirical observations.

2 Graph-Based Modeling in Linguistics
With an abundance of problems around statistical measures in corpus-based
lexical and lexicosyntactic analysis, and with the practical consideration that
reliable measures of smaller data are necessary, graph metrics would appear
to possess intrinsic appeal to corpus linguistics. Yet they are practically
unused. In fact, graph theory in general is underrepresented in linguist-
ics, despite some early work centered mainly around Markov chain mod-
eling (Goodman, 1961; Jelinek et al., 1975; Brainerd and Chang, 1982).
While computational linguistics does include graph-based models, they are
largely implemented in engineering ways (i.e. for underlying databases and
algorithms) rather than for the analysis of language itself. In core linguistic
research, graphs are mainly used for the visualization of complete analyses,
most notably in syntax trees, ontologies, and taxonomies. However, graphs
can also be measured in different ways.

2.1 Example 1: Modularity

Figure 1: Sample graph for lexical co-occurrence as filtered through syntax inKobalt

The first example shows the modeling of lexical information and its meas-
urement through the metric of Louvain modularity (Blondel et al., 2008).
The data used for this analysis is taken from the Kobalt corpus (Zinsmeister
et al., 2012), which consists of 151 topic-controlled argumentative essays
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written by learners of German fromChina and Belarus, and 20 control texts
written by German native speakers. From these texts, graphs based on cor-
rected syntactic dependency parses were extracted. Verb lexemes and noun,
adjective, and adverb lexemes that depend on those verbs as arguments (dif-
ferent kinds of objects, subjects, and predicates) weremodeled as nodes, and
edges were modeled from the existing dependence (co-occurrence in the re-
spective syntactic environment of the verb). The full analysis is discussed
in detail in Shadrova (2020) and includes other layers of linguistic analysis,
as well as an in-depth internal validation through a range of sampling tech-
niques and hyperparameter settings. Figure 1 provides an example of a small
subgraph. The full graph of the Kobalt native speaker subcorpus is visual-
ized in Figure 2.4

In conducting this analysis, the main research question was whether
graphs of this type show different degrees of structuredness for different
stages of foreign language acquisition in learners, as well as between learners
and native speakers. The underlying concept of coselectional constraint
or idiomaticity describes the tendency of native speakers to constrain their
choice in word combinations to a relatively small set out of a potentially
large combinatorial space. For example, the verb chosen for describing the
action of cleaning teeth in English is brush, whereas the German equivalent
is putzen (‘to clean’). While clean teethwould be understood and is semantic-
ally acceptable, the combination is highly unlikely to occur in a text written
by an English native speaker (unless it was describing the act of having one’s
teeth professionally cleaned by a dentist). This particular example would
typically be learned early in both unguided learning and in language classes.
However, there are vast amounts of subtle constraints of this kind, and they
are known to be very difficult to master even at an advanced stage of second
language acquisition (Howarth, 1998; Pawley and Syder, 1983; Paquot and
Granger, 2012, and many others).

The central hypotheses of the present study are as follows:
1. Graphs are more structured in more vs. less advanced learners;
2. Graphs are more structured in native speakers than learners;
3. Learners show a u-shaped learning development in their coselectional

structuredness.5

4Since these graphs are generally to large and detailed to be legible in print, further visu-
alizations, alongside the data and scripts for analysis, are available in a separate Zenodo re-
pository (doi: 10.5281/zenodo.3584091).

5The linguistic background of this is discussed in detail in Shadrova (2020). Very briefly
put, this hypothesis is rooted in the theoretical premise that learners typically undergo a
process of randomization of structures. First, they learn in chunks during early acquisition
(everyone learns more or less the same in early language classes), and then they acquire and
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Figure 2: Full graph of lexical co-occurrence (verb-argument structures) for native
speakers in Kobalt. Graph serves as conceptual demonstration only, scalable images
are available via Zenodo: 10.5281/zenodo.3584091).

Themeasure used to capture these effects is Louvainmodularity (Blondel
et al., 2008), one of a number of community detection algorithms6 deriving
a value in the range of [-1,1] for the modularity of a graph. Amore modular
graph contains strongly structured (i.e. interconnected) communities that
are less connected to the rest of the graph. A less modular graph contains

recombinemore vocabulary to succeed inmore complex communicative situations. At this
secondphase, their language cannot yet be fully restricted inways alignedwith the target lan-
guage for lack of experience and influence of the learners’ native language. This phase of ran-
domization is followed by semantic differentiation and lexical and semantic specialization
(people learn more specific language over time). This decrease in accuracy at intermediate
stages commonly described as a u-shaped learning trajectory, and can be found wherever a
learning process is guided by both rules and exemplar-based exceptions.

6It appears that Louvainmodularity prefers certain community sizes and constellations
over others, raising the question of whether other algorithms may be better suited for
corpus-linguistic analysis. This issue has not been considered in the analysis presented and
remains to be addressed in future research.
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many nodes that are more randomly connected to other parts of the graph.
A graph of negative modularity contains fewer edges between nodes than
would be expected by chance, which does not appear to be the case in lexical
graphs generally. Importantly, modularity is not an artifact of graph size. As
exemplified in Figure 3, graphs of the same size in terms of nodes and edges
can be more or less structured, and thus possess higher or lower modularity.

Figure 3: Louvain modularity in different graphs of the same size (10 nodes, 15
edges)

Figure 4: Louvain modularity for graphs of verbs and argument lexemes with
(vas_no_prep) andwithout (no_subj) subjects. Subcorporawere sampledfive times.
Samples partially overlap. The onDaF test is a standardized c-test for German lan-
guage assessment (Eckes, 2010).

An analysis of a range of Kobalt subcorpora, each represented by five
samples in Figure 4, shows that hypotheses 1 and 2 are met by the data, and
hypothesis 3 is met in the Belarusian, but not in the Chinese subcorpus. A
sliding window analysis of the same data is presented in Figure 5. Windows
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Figure 5: Sliding window analysis of Kobalt: Louvain modularity for graphs of
verbs and argument lexemes with (vas_no_prep) and without (no_subj) subjects,
computed for windows (subcorpora arranged by onDaF scores, neighboring win-
dows overlap in all but two texts). The onDaF test is a standardized c-test test for
German language assessment (Eckes, 2010).

of 15 texts were used for each data point. Window 1 is created from texts 1-
15 arranged by test scores, window2 from texts 2-16 and so on. This analysis
shows that, beyond the grouped samples, a clear trajectory emerges over test
scores, which suggests that test scores and graph structures indeed correlate
in meaningful ways. If they did not, the trajectory would be expected to be
much more erratic.

For comparison, a statistical analysis of the same data based on lexical
association measures was also performed. However, despite cohort homo-
geneity and the limitation to an identical task/topic, there are very few sim-
ilar or identical collocational pairs across subcorpora. Absolute occurrences
quickly dwindle into very low numbers (below 10), whichmeans that a high
and low rate of co-occurrence would falsely be identified from the same or-
der of magnitude. While 6 is of course three times as many as 2, the absolute
difference is not very telling in terms of the underlying difference in cose-
lectional association. In addition, the combinatorial power of lexical mater-
ial as it occurs even in small corpora is counter-intuitively large and poses
a hindrance to statistical interpretation. In fact, the number of verb and
accusative object lexemes as they are used in a small subcorpus of Kobalt
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(21 texts, 148 unique verbs, 304 unique nouns in accusative object posi-
tion) results in a potential of 44,992 combinations. Even if one were to as-
sume that only 10% of those are semantically possible, and that only 10% of
the total 726 realizations of verbs and adjective objects in the subcorpus are
freely combined in the first place, this results in 72 draws from 449 elements.
The combinatorial potential of this is higher by several orders of magnitude
than the estimated number of atoms in the universe (3.352 · 1089 vs. 1078
– 1082). Constructing a scalar measure of coselectional constraint statistic-
ally or stochastically would require a definition of thresholds for relative fre-
quencies at which the occurrence of word pairs would be considered within
or outside the range of expectation. However, drawing any specific com-
bination from this vast combinatorial space is extremely unlikely. Overall,
results from the statistical analysis remain inconclusive and difficult to inter-
pret. This is discussed in detail in Shadrova (2020, chapter 4).
In contrast, the graph-based analysis shows clear trajectories and effects in

linewith hypotheses 1 and 2, as well as a linguisticallymeaningful divergence
from hypothesis 3.

2.2 Example 2: Lexicosyntactic Graphs and Grammar as a Graph

The second example is not yet quantified and serves to demonstrate the un-
derlying modeling problem – a suggestion as to its quantification appears at
the end of this section.

In the previous analysis, syntax is involved as a hierarchical lexical filter:
only those words that occur in certain syntactic slots of the verb are con-
sidered in the structural analysis. Unlike positional models of collocation,
which consider words in a window of n tokens around the target word, a
syntacticmodel of this kind is able to effectively filter for the relevant colloca-
tions in languages with flexible word order such asGerman. However, in the
theoretical framework of usage-based linguistics that many corpus linguists
ascribe to, a strict division of lexicon and syntax is not usually presumed.
Instead, a number of models suggest the existence of a continuum, partial
overlap, and/or interdependence of lexical and syntactic elements. In fact,
some strands of grammar theory are largely focused on the very interface of
lexicon and syntax – these include construction grammar, which is entirely
based on the idea of the inseparability of lexicon and syntax (Goldberg, 2005,
2013; Sag et al., 2012; Croft, 2001; Boas, 2013), and modern approaches to
valency and dependency grammar, according towhich grammar is generated
fromspecified features of lexical items (Ágel andFischer, 2010;Herbst, 2014;
Faulhaber, 2011).7

7The latter is also partially true of some merging theories such as head-driven phrase
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While the idea of the syntax-lexicon continuum is appealing at first glance,
it quickly runs into conceptual problems and is difficult to operationalize.
For one thing, it requires clarity over whether the compared elements consti-
tute categories/variables or exemplars. Since many words are exemplars (like
on, after, if ), but many are also categories (like to be with its paradigm are,
were, is, etc.), this is not trivial. Second, syntax and higher-order functions
structure text in such a way that once a category is decided, many others fall
into place. At the same time, there is plenty of space for inter- and intra-
individual variation.
So far, corpus studies have tended to look at the coselectional patterns of

individual lexemes or types of lexemes, or individual verb-argument struc-
tures or classes thereof. For example, Dux (2016) inspects the argument
structure patterns of selected verbs from the semantic fields of changing and
stealing, whereas Faulhaber (2011) compares the argument structure pat-
terns of 88 different verbs. Both conclude that semantics alone cannot pre-
dict syntactic patterns with a high level of accuracy, and that lexical idiosyn-
crasies need to be taken into consideration. A similar observation is made by
Zeldes (2013) concerning the productivity of verbs in their argument selec-
tion. The unifying thread in these studies is that grammar is informed by the
preferences or selections of individual lexical items – something that is not
considered possible in more traditional approaches to syntax, where lexical
items are merged into syntactic patterns in a way in which syntax imposes
rules on the lexicon, but not vice versa.

Technically, the studiesmentioned donotmodel syntax and lexicon in the
same space – rather, they discuss the combinatorics of two sets of elements,
where the sets are selected by semantic or syntactic rules, similar to the filter-
ing function of syntax in the previous analysis.

The mapping of two sets of elements, however, can be summarized and
made explicit as one system in a graph. An example is provided in Figures
6 and 7. In these graphs, lexemes and syntactic functions such as grammat-
ical subject (SUBJ) and direct or accusative object (OBJA) are modeled as
nodes, and the syntactic dependency between all syntactic functions is en-
coded explicitly. At the same time, forces of association between lexemes
and syntactic functions are also represented in the graph. Thus, a connec-
tion betweenwhatwould be rows of a table of factor combinations aremade
explicit in the graph structure. The visualization is produced by a so-called
force algorithm, a physics simulation in which higher frequency of occur-

structure grammar (HPSG, Pollard and Sag (1994)). However, syntax still has major inde-
pendence in these schools of thought, and lexical items can only select, but not generate,
syntactic rules. For a critical discussion of the various approaches to this issue and an at-
tempt to unify them, see Müller (2013) andMüller andWechsler (2014).
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rence of a lexeme in a syntactic slot, or of one syntactic slot depending on
another, pull the two respective nodes into proximity.

Figure 6: Lexicosyntactic graph of the native speaker subcorpus in Kobalt. Accus-
ative and dative objects (OBJA and OBJD) are pulled into proximity by shared lex-
emes, subjects are more distant.
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Figure 7: Lexicosyntactic graph of the intermediate Belarusian subcorpus inKobalt.
Subjects (SUBJ) and accusative objects (OBJA) are pulled into proximity by shared
lexemes, other object types float further away.
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A closer look at the two figures reveals that the graph for intermediate
Belarusian learners of German in Figure 7 shows much more proximal posi-
tions (i.e. shared lexemes) for subjects and accusative objects compared to the
native speaker graph in Figure 6, while objects appear to cluster in amore co-
herent group in the native speaker graph. From a linguistic perspective, this
is interesting in two ways.

First, as has already been noted, syntactic category distributions tend to
converge quickly in corpus data, and in many cases do not differ much
between different cohorts. Despite some minor pattern deviations, when
the same data is analyzed for distributions of syntactic categories, it does not
yield any substantial differences according to native language group. How-
ever, through the combination of syntactic categories and lexical items, sub-
stantial differences in the graphs of the two cohorts do emerge. This suggests
that graph structure is capable of capturing linguistically meaningful effects
that are not encoded in the individual co-occurrences of lexemes in the syn-
tactic structures themselves, but only in their interrelation: it appears that
lexicosyntax lives in the cross-systemic structure, and not in the combina-
tions of words.

Second, the specific differences between the two graphs correspond to
higher-level linguistic concepts: a higher interchangeability of subject vs. ob-
ject lexemesmay indicate passivization, or it might point towards differences
in anaphoricity (i.e. the types and structure of referentiality to previously
introduced discourse referents). This is particularly interesting because Rus-
sian and Belarusian are partially pro-drop languages, meaning that subjects
can be left out or go unrealized in many contexts, which raises the plausib-
ility for different encodings of the relation between subjects and objects in
the minds of native speakers of those languages.

Figure 8, which shows the same type of graph for intermediate Chinese
learners ofGerman inKobalt, underscores this point. Here, subjects andpre-
dicates are more closely aligned, which may be rooted in typological aspects
of Mandarin Chinese; a theme-rheme language in which a sentence topic
is presented and then commented upon, and which can thus be plausibly
mapped to a subject-copula-predicate construction in German. However,
since these analyses are post-hoc, and the graphs involved are opportunistic-
ally derived from previously analyzed data, more research is needed to verify
their genuine usefulness in the study of lexicosyntax.

This includes the need for quantification. Even if the visualization sug-
gests certain effects, these can only be verified through a comparison with
other graphs from the same as well as other cohorts. Assessing differences of
this kind visually can be tedious and unreliable. Furthermore, a quantifica-
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tion would allow for an analysis of variance (i.e. more or less similar graphs
of the same cohort), while a visual assessment can only extract obviously di-
verging patterns.

Figure 8: Lexicosyntactic graph of the intermediate Chinese subcorpus in Kobalt.
Subjects (SUBJ) andpredicates (PRED) are locatedmore centrally in the graph. Ob-
ject types appear more separate than in the other graphs.

The visualization encodes structural information that is also present
quantitatively in the graph itself, andmaybe used for external quantification.
One possible way to approach this would be through non-negative matrix
factorization (NMF, Gillis (2014)), which is used in information extraction
techniques such as topicmodeling (de Paulo Faleiros and deAndrade Lopes,
2016; Chen et al., 2019; Kuang et al., 2015). NMF is a dimensionality reduc-
tion algorithm that takes amatrix anddeterministically reduces it to aunique
vector. Vectors can thenbe compared via cosine distance, as is done in certain
applications of computational linguistics such as word embeddings (Miko-
lov et al., 2013; Pennington et al., 2014; Ethayarajh, 2019, among others).

While conceptually and computationally well-implemented, the central
question arising here is what should be encoded in the matrix to ensure lin-
guistic validity. One approach would be to span a matrix for all nodes times
all nodes (i.e. both lexemes and syntactic functions). But since words can
only occur in syntactic slots, this would leavemost cells empty, perhaps over-
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estimating similarity. The other would be to abstract from the concrete lex-
emes and span thematrix for syntactic nodes only, entering only the number
of shared lexemes in each field. However, this implies a double dimension-
ality reduction and leaves out not only the exemplar information, but also
structural information that is relevant to the graph visualization and relates
to linguistically meaningful aspects of the graph structure, such as the issue
of how node clusters are distributed in relation to other node clusters with
which they do not share information.

This goes to show that computing just any graph metric will not suffice
for the development of a linguistically interpretable method of graph meas-
urement. As for all methodological development, in-depth validation, rep-
lication, and extension to new data are of crucial importance - but perhaps
more so is the embedding into the theoretical frameworks of linguistic study,
and the triangulation with results obtained through other methods.

3 Conceptual Validation and Future Research
Graph-based modeling could bring new perspectives into quantitative cor-
pus linguistics. Its major advantages over frequentist statistical modeling are
that it: (a) captures relational information directly, without the internal tri-
angulation of various measures; and b) does not infer to concepts such as
stationary and ergodic stochastic systems or a stable and existing superpop-
ulation. However, it is going to take extensive further research to fully as-
sess the potential of graph metrics. This is particularly true since unlike in
mathematical graph theory or network analysis, the words of a language are
both representative of linguistic categories and relevantly individual. That
is to say, each item differs in important aspects from all other items, which
means that, generally speaking, a full abstraction over all words will not be
well-aligned with the linguistic model. Detailed theoretical modeling and
empirical conceptual validation are therefore necessary to ensure that graph
metrics do indeed measure linguistic aspects and not spurious information
of a hyperstructure that is only marginally important in linguistic terms.

An example of such an effect is themeasurement of the in- and out-degree
of lexemes in corpora, a measurement that consistently detects so-called
small-world-effects. These are graph structures in which some nodes have
many in- or outgoing edges, while most others have only few, and have been
measured consistently through a range of published research across many
corpora (Choudhury andMukherjee, 2009; Ferrer i Cancho and Solé, 2001;
Wachs-Lopes and Rodrigues, 2016, among others). While one might be
tempted to view this as a graph-based discovery, the fact of the matter is
that quantitative linguistics has always known that lexemes follow a Zipf,
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long-tailed, or power-law distribution, also called a distribution with large
numbers of rare events (LNRE). In large corpora, a small number of words
are very frequent – mostly functional words like prepositions or pronouns
– and typically up to half of the lexemes are so-called hapax legomena or dis
legomena, words that occur only once or twice in the corpus. Arranged in a
graph, this would trivially imply degrees of one or two for most words, leav-
ing an impression of high centrality or connectivity of individual lexemes.
However, to corpus linguistics, this is merely a visualization of an already
well-established fact and not a structural discovery. In order to avoid the
dead-ends of epiphenomenal observations, a clear theoretical foundation as
well as a structured approach to the validation of graph-based research in lin-
guistics is crucial.

With the development of sufficient computing power, graph-based ana-
lysis has become more advanced and central not only in traditional STEM
subjects, but also in the humanities and social sciences. Accordingly, there is
an ongoing development of new metrics. Some of these metrics are derived
from graph theory directly, which means that they abstract more strongly
from individual nodes and focus on the more abstract properties of node
and edge classes. Isographs, i.e. structurally identical (sub-)graphs that may
differ significantly in their node contents, are a particularly relevant issue in
this context. Their existence may or may not have implications for the un-
derlying theoretical model, and should be considered in any application of
graph metrics to a subject-specific research question.

In order to make the most efficient use of graphmetrics in linguistics and
other fields of study, it is important to consider implications of this kind not
only mathematically, but also epistemologically by asking questions like the
following:
1. Is the theoretical model well-represented by the mathematical model?
2. Are there aspects to the mathematical model that may interfere with

subject-specific theoretical underpinnings and/or interpretations of
the data?

Muchmore validation and research is required to identify concerns in this re-
gard, including: the application of measures to more data; the detailed mod-
eling and mapping of theoretical to mathematical concepts; the calibration
and triangulation ofmetrics; and the development of evaluative frameworks
for all of the above.

4 Conclusion
Graph metrics are very new to the field of corpus linguistics, especially in
core-lingustic (rather thanpsycholinguistic or computational) research. The
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analyses discussed in this paper suggest that graph-basedmodeling and quan-
tificationmay provide an alternative to operationalizations in themore tradi-
tionally applied framework of frequentist statistics. They may even provide
solutions to some of the common practical problems of corpus linguistics,
since by encoding information at a higher density, graphs allow for the quan-
tification of small data. By abstracting from individual entities such as lex-
emes they also allow for structural assessment without the triangulation and
comparisonof a large number ofwords orwordpairs, which implies fewer ar-
tifacts from text length, a problem that is notorious with all corpus research.

With advances in computing power and the ease provided by graph in-
frastructures such as neo4j, the corpus search engine graphANNIS (Krause,
2019), the community API in Python, the GUI-based graph analysis pro-
gram Gephi (Bastian et al., 2009), and the igraph package in R (Csardi and
Nepusz, 2006), graph metrics are becoming more usable outside of tradi-
tional computationally oriented subjects. However, this should not tempt
linguists and other researchers to blindly compute graph metrics on data
without further consideration of the underlying model. Much more re-
search is required to reliably map the concepts of graph theory and network
analysis in a way that is fully compatible with linguistic concepts, and to en-
sure that the application of graph metrics does not produce undesirable ef-
fects like the ones associated with the use of frequentist statistics in corpus-
based studies of the lexicon and lexicosyntax. The most immediate desid-
eratum for future research into the graph-based analysis of corpus data thus
lies in the fields of theoretical and quantitativemodeling, validation, and rep-
lication.

5 A Note on Software
Kobalt was preprocessed with TreeTagger8 and Malt Parser (Nivre et al.,
2006) based on Foth et al. (2006)’s dependency grammar of German, which
was slightly adjusted for the purposes of this analysis. Further details can
be found in Shadrova (2020). For graph extraction, analysis, and visualiz-
ation, R (R Core Team, 2015) and RStudio (RStudio Team, 2015) with
packages reshape2 (Wickham, 2007), dplyr (Wickham et al., 2018), json-
lite (Ooms, 2014), and ggplot2 (Wickham, 2016) were employed. Graphs
have been visualized with D3.js (Bostock et al., 2011), Python matplotlib
(Hunter, 2007), and networkX (Hagberg et al., 2008). Modularity was
computed with Python’s community API developed by Thomas Aynaud
(https://python-louvain.readthedocs.io/en/latest/api.html). Figure 1 was created
with Gephi (Bastian et al., 2009).

8https://cis.uni-muenchen.de/~schmid/tools/TreeTagger/
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