
The Socinian Correspondence: A
Graph-Based Digital Scholarly Edition

Patrick Toschka1 Julian Jarosch1

Andreas Kuczera2

1 Academy of Sciences and Literature | Mainz
Mainz, Germany

2 University of Applied Sciences (THM), Gießen, Germany

Abstract

The Socinian Correspondence Project uses a graph database as a lead-
ing persistent data layer to create a digital scholarly edition (DSE) of
letters written by and to followers of Socinianism, a Unitarian belief
system founded by Lelio and Fausto Sozzini in the sixteenth century.
In addition to more conventional elements, such as transcribed texts
and an accompanying critical commentary, our DSE will allow schol-
ars to freely explore the collected data in any time-, place-, or content-
based context, without the impediment of preset categories. In order to
achieve this goal, we are in the process of developing two generic open
source web applications that follow the current software standards and
form the backbone of our innovative approach.

Creative Commons License Attribution 4.0 International (CC BY 4.0).
In: Tara Andrews, Franziska Diehr, Thomas Efer, Andreas Kuczera and Joris van Zun-
dert (eds.): Graph Technologies in the Humanities - Proceedings 2020, published at
http://ceur-ws.org.

279

https://orcid.org/0000-0003-2470-4590
https://orcid.org/0000-0001-8483-8123
https://orcid.org/0000-0003-1020-507X


1 Introduction
1.1 The Socinians and their Correspondence Network
The Socinians were a Unitarian religious community of protestant origin
that emerged in the sixteenth century and considered the subjective ration-
ality of the individual as the determining principle in matters of religious
faith. Socinians could be found all across Europe (Daugirdas, 2016, p. 11)
and were actively engaged in developing a close-knit correspondence net-
work with leading figures in theology (e.g. Remonstrants like Philipp van
Limborch and Johann JakobWettstein), astronomy (e.g. JohannesHevelius
and Johannes Kepler), and politics (e.g. Magnus Gabriel De la Gardie and
Carl Gustav Wrangel). Surviving letters of the adherents of Socinianism are
an important resource for anyone interested in the transconfessional struggle
that defined Europe in the Early Modern period, especially with regards to
the latter’s efforts to strike a balance between theology, science, and polit-
ics. Socinian theology introduced an air of radical tolerance into contem-
poraneous debates on such issues by affording its practitioners the freedom
to engage in evidence-based scientific discussions unhindered by traditional
metaphysical considerations.

Dedicated to the period between roughly 1580 and 1740, the DSE pre-
pared by the SocinianCorrespondence Project1 encompasses the time-frame
from the Age of Confessionalism to the Enlightenment. The 2047 let-
ters cataloged to date were addressed to other Socinians or to scholars and
politicians of other confessions, and reflect the complex interdependen-
cies between historicizing, rationalist approaches to religious subject matter,
early modern scientific research and its methodology, and political corres-
pondence. These letters alsoprovide valuable insight into thewider scholarly
networks that spanned across Europe during the period under investigation.

Currently, no comprehensive historical-critical edition of the Socinian
correspondence exists. Our project aims to rectify this situation by identify-
ing letters in which at least one correspondent is a Socinian and by gathering
the said letters into a DSE. Featuring textual-critical commentaries and de-
scriptions of the subject matter and content of the letters, our graph-based
edition (Kuczera, 2016) will also enable analysis of thematerial using criteria
such as geography, persons involved, and topics discussed by the correspond-
ents through a systematic indexing of the text. The DSE also incorporates
images of astronomical phenomena that were enclosed with the letters and
were often published in the formof copperplate engravings, as they help to il-

1“Die sozinianischen Briefwechsel,” URL: http://www.adwmainz.de/projekte/zwischen-theol
ogie-fruehmoderner-naturwissenschaft-und-politischer-korrespondenz-die-sozinianischen-briefwech
sel/informationen.html. (https://sozinianer.de)

280

http://www.adwmainz.de/projekte/zwischen-theologie-fruehmoderner-naturwissenschaft-und-politischer-korrespondenz-die-sozinianischen-briefwechsel/informationen.html
http://www.adwmainz.de/projekte/zwischen-theologie-fruehmoderner-naturwissenschaft-und-politischer-korrespondenz-die-sozinianischen-briefwechsel/informationen.html
http://www.adwmainz.de/projekte/zwischen-theologie-fruehmoderner-naturwissenschaft-und-politischer-korrespondenz-die-sozinianischen-briefwechsel/informationen.html
https://sozinianer.de


lustrate the subject matter discussed in the corresponding letters. Previously
unpublished political reports, which accompaniedmore than 250 letters, are
likewise included.

It is our hope that bymaking the primary sources and supplementary ma-
terials accessible in the manner described above, our edition will enable re-
searchers to gain new insights into interdisciplinary fields of research, such
as theological history, philosophical history, the history of science, and cul-
tural history. As the Socinian correspondence network is one that traverses
boundaries of religion, geography, subjectmatter, andmedia, we believe that
the DSE itself should reflect this pervasive interconnectivity (Figure 1).

Figure 1: Locations from where Socinian letters were sent and their corresponding
destinations. Dot size represents number of letters. Created using Palladio http:
//hdlab.stanford.edu/palladio/.

1.2 The Digital Scholarly Edition
The development of theDigital Scholarly Edition (DSE) follows the current
software standards (Schrade, 2018). So the text component uses a classical
XML-based format and draws on established technologies for editing and
publication.

The letters and their accompanying materials are encoded in a subset of
TEI P5 XML, the DTA-Basisformat (Haaf et al., 2014), which offers an un-
ambiguous schema for encoding. The editingwork is carried out in ediarum,
a framework for theOxygenXML editor (Dumont and Fechner, 2014), and

281

http://hdlab.stanford.edu/palladio/
http://hdlab.stanford.edu/palladio/


is stored in an eXist XML database.
Correspondencemetadata is captured in the TEI element <correspDesc>

(Stadler et al., 2016), while the text itself is annotated (e.g. with clarifications
concerningdates, abbreviations, etc.) and furnishedwith a critical comment-
ary. Furthermore, the letters are linked to indexes of persons, places, con-
cepts, things, and astronomical entities, which were first created as lists in
XML in order to begin the editing work as early as possible, while the graph
component of the DSE continues to be developed.

TheDSE’s publication frontend is realizedwith theTYPO3OpenSource
Content Management System2 and various extensions3 needed for the im-
plementation of Linked Open Data (LOD) standards4 and the creation of
the framework required for scientific publication. This includes tasks such
as versioning and the assignment of stable Uniform Resource Identifiers
(URIs) that enable the citation of scholarly work.

These components of the DSEmake use of current technologies and best
practices based on the treemodel of XML and the relational database under-
lying TYPO3. Neither of these technologies fully account for the distinctive
network character of this edition’s subject, however, which is why the DSE
will be augmented by a graph component.

1.3 The Graph Component

Our project aims to adequately model the closely interlinked Socinian cor-
respondence network, and to break newground in bringingXMLand graph
technologies together by using a graph database as the leading persistent sys-
tem for one component of the DSE, alongside and connected to the XML
text data.

In order to achieve this goal, it is necessary to complete two major tasks:
first, the data that currently resides in XMLmust be transferred into a neo4j
graph database; second, the graph database must be given a user-friendly in-
terface that can be edited by historians. As can be seen in Figure 2, both
tasks are to be completed using a generic, open source web application: eX-
Graphs for the extraction of XML data into a graph, and GRACE for the
subsequent editing of the graph.

2URL: https://typo3.org/.
3E.g. TYPO3 Extension Beaconizer, URL: https://extensions.typo3.org/extension/beaconi

zer/.
4As presented on the TYPO3 University Days 2019, Slides: https://github.com/digicadem

y/2019_typo3_goes_lod.

282

https://typo3.org/
https://extensions.typo3.org/extension/beaconizer/
https://extensions.typo3.org/extension/beaconizer/
https://github.com/digicademy/2019_typo3_goes_lod
https://github.com/digicademy/2019_typo3_goes_lod


Figure 2: Abstract workflow for an XML-based digital edition using our tools

2 The Tools
2.1 Step 1: Generating a Graph from XML Data

As noted above, we use eXGraphs5 to extract the existingXMLdata from its
XML representation and to generate a graph structure. One of the advant-
ages of assuming such an approach is that users can freely configure elements
and attributes from their own XML schema which they wish to generate as
nodes. The nodes can be then be connected by relations that are created in
the same way, such as the places that are mentioned in letters, or the persons
who send and receive them.

eXGraphs can be installed locally, or used via a public web server. Written
in PHP, the tool relies on a configuration file in XML format composed by
the user. Once the default template has been adjusted to the user’s own data
with the help of the supplied documentation, the configuration file can be
submitted to the application. The file consists of three parts: the data source,
the output format and target for the result, and the transformation rules.

The source of the data can be any local XML file or folder, RESTful API,
or eXist-db API URL. As a target, eXGraphs can either directly export the
data to a neo4j database, or can provide a text file with cypher queries for
privacy and debugging purposes. As far as the modeling step is concerned,
users can write a blueprint structure in which it is possible to freely create
nodes fromXMLelements referenced byXPath and to link themby creating
edges (Figure 3).

After submitting the necessary information, every XML file that is avail-
5eXGraphs (exportXML toGraphs), see also: https://lod.academy/site/tools/digicademy/e

xgraphs.

283

https://lod.academy/site/tools/digicademy/exgraphs
https://lod.academy/site/tools/digicademy/exgraphs


Figure 3: Simplified eXGraphs configuration instruction for extracting data from
XML

able through the selected API, database, or folder is processed, and the out-
put is either exported or written to a neo4j database. In the process, eX-
Graphs first collects all XML source files provided in the configuration file
and converts them into PHP objects. Afterwards, it applies the provided
transformation rules to each object and collects the resulting nodes and
edges. In the last step, all collected nodes and edges can be exported, either
as a download or into a neo4j database.

Whether or not this process is successful depends on the specifications
provided by the users in the configuration file. Since the input can be re-
duced to a single test file and the output can be a plain text file download,
users can experiment with different specifications without having towait for
their results. They can troubleshoot the resulting graph database structure
by iteratively adapting the blueprint datamodel in the configuration file and
downloading the cypher query text file. To facilitate abstraction, the whole
transformation process can also be divided into several configuration files, so
that users can, for example, first import all entities named in a text, followed
by the texts as nodes together with the edges to or from the entities.

2.1.1 Configuring Input and Output
The input XML may either be retrieved from an URL, or passed to the ap-
plication directly. The URL may either point to a single XML file, or to
a collection of files via REST API, in which case the collection will be (re-
cursively) crawled and all XML files ingested. Alternatively, the input XML
can be passed directly as the content of the <resource> element within the
configuration. Finally, if the application is installed locally, local data folders
can be used as input. After the extraction process, all provided sources are
collected prior to processing.

The application offers three ways of returning the graph data, one of

284



Figure 4: Sample dataset with a Person node and its context in the graph database

which must be specified in the REST API URL invoked by the user. If the
user chooses to transmit the credentials of a neo4j database to eXGraphs, the
application can write the results directly to the neo4j database. As a more
privacy-oriented alternative, the application can return the data in one of
two formats: either as cypher queries in a text file, which can then be manu-
ally executed in a neo4j database, or in a json format.

2.1.2 Configuring XML Extraction Rules

In the process of adjusting the transformation rules in an eXGraphs config-
uration, the nodes and edges of the graph are specified separately – nodes
are obligatory, while edges are optional. The XML data to be extracted
is specified using the XPath 1.0 syntax. For each node, one XPath expres-
sion serves as the basic iterator, while other values can be specified as relative
XPath expressions. For example, as shown in Figure 5, the node label can
be set using an XPath relative to the current node – the use of a constant
string is optional. In a similar vein, the attributes of the graph node can be
populated using (relative) XPath expressions.

285



Figure 5: Sample eXGraphs instruction to import XML entities as Document
nodes with the attribute title

Figure 6: Sample eXGraphs instruction to generate nodes labeled Brief (“letter”)
and Person, and to add relations between each letter and its sender

The node specification supports three methods provided by the cypher
query language: CREATE (always create a node), MERGE (create a node
only if no identical node exists yet), and MATCH (only select the node for
future reference), the latter being crucial for selecting the source and target
nodes of edges.

The node configurations can be nested recursively. To give just one ex-
ample of a likely usage scenario, for each instance of an XML element, its
children can be iterated and imported, or selected as edge targets.

As shown in Figure 6, the edges of the graph are specified first by con-

286



figuring nodes with identifiers. In this example, we want to generate nodes
for each letter occurring in the data source. Simultaneously, we create Per-
son nodes for each sender of a letter. In the last step, we reference the cre-
ated nodes as the source and target in an edge specification to create the edge
named WRITTEN_BY.

2.2 Step 2: GRACE –Making the Graph Editable after XML Extrac-
tion

The second generic web application used in our workflow, GRACE,6 makes
it possible to edit the persistence data layer represented by a neo4j graph data-
base. With GRACE, necessary corrections and future additions can be writ-
ten directly to the graph. The same holds true for relations that may con-
nect sub-graphs, and thereby yield additional context for certain data in the
future. Thanks to GRACE’s graphical user interface (GUI), working in the
graph database involves a comparatively gentle learning curve.

Figure 7: Graphical user interface of GRACE (proof of concept)

Our current proof of concept for GRACE is written in Vue.js and PHP.
Once a neo4j database with its credentials has been configured in the tool’s
settings, it sets up a connection to the neo4j database via the GraphAware
neo4j framework.7 The database can be explored in a web browser in amore
convenient and table-like view (Figure 7) than the one offered as a default

6GRACE (GraphContent Editor), URL: https://lod.academy/site/tools/digicademy/grace.
7See also https://github.com/graphaware/neo4j-framework.

287

https://lod.academy/site/tools/digicademy/grace
https://github.com/graphaware/neo4j-framework


by neo4j. Furthermore, nodes and relations – including properties – can be
edited or added.

All changes and additions are directly written to the provided neo4j data-
base. Our aim is to provide a software that is capable of editing a graph data-
base in the sameway as a software like theOxygenXMLeditor does forXML
databases.

Ultimately, we would like the application to support two basic user ac-
tions: searching the data, and modifying the data.

2.2.1 User Action: Searching the Data

A basic prerequisite for making GRACE a useful editing tool is to make the
data navigable and retrievable. To this end, we plan to implement a list view
of nodes that will include a faceted search and a text search.

Since nodes represent the most relevant entities in our model (and, pre-
sumably, also in many other models), this is what the list view focuses on,
with edges and related nodes appearing as subordinate information. The
nodes’ labels and properties are displayed by default. However, edge inform-
ation is also accessible from the list view by simply toggling it open.

Furthermore, the list view will include faceted filtering options based on
the graph database structure. Users may filter the nodes by their label, their
properties, and/or connected edges. The filtering options are generated and
updated from the graph database.

As a final instrument, the list view includes a search engine which mainly
operates on node attribute values.

With these tools, navigating the graph database is bound to result in a user
experience that is similar to that offered by current web technologies. The
list format, in particular, is intended to make the database easily accessible
to researchers from the humanities who are used to working with indexes,
bibliographies, and catalogues, while still realizing the full potential of the
graph model.

2.2.2 User Action: Modifying the Data

Besidesmaking data easily searchable, one of the primary goals of our project
is to provide an editing interface for graph data that can be readily applied
to digital humanities projects. The action of modifying or editing the data
is therefore implemented through a node single view, which encompasses
edges (and related nodes).

This single view displays existing nodes, but is also used for the creation of
new nodes. The interface is consistent with the list view in its layout of node
properties and edges, but also encompasses editing options. The options

288



that are available to date include adding/changing/deleting node properties
with autocomplete suggestions for the property names, and adding/deleting
edges (primarily by selecting existing nodes as targets). We hope to further
develop the latter function to recursively call a node creation dialogue.

In order to contextualize the node single view, a graph diagram panel is
also included, which shows the immediately surrounding subnetwork of the
selected node. This diagram can be updated to reflect edits to the edges, and
thereby helps to immediately visualize and support editorial work.

3 The Socinian Correspondence Network in the Graph
Database

In this section, we would like to demonstrate the tools that we have out-
lined above in action by taking a closer look at sample applications for the re-
search data collected in the Socinian Correspondence Digital Scholarly Edi-
tion. More specifically, we would like to show the steps involved in trans-
forming the basic correspondence metadata to a graph model and in con-
necting our research data to external data sources within the graph.

3.1 Graph Model

As the whole project revolves around the Socinian correspondence network,
our main focus lies on processes of communication: a person writes a letter
from a particular place at a particular moment in time, and then sends it to
a correspondent, who assumes the role of the recipient. Figure 8 illustrates
this process in graph form. The yellow nodes represent persons that fulfill
either the role of the sender or the recipient in this particular communication
context, even though in other contexts their roles might be different. This
strict distinction between an entity, like a person or a place, and its role in a
specific situation is what makes the graphmodel so flexible and powerful, as
can be seen in Figure 9.

3.2 First Examples in the Graph

Figure 9 shows Stanisław Lubieniecki’s correspondence.8 This sub-graph il-
lustrates that the individuals involved (represented by yellow nodes) could
either be the sender or the recipient of a letter, while the brown nodes rep-
resent index entries related to the subject of comets, which are discussed in
various contexts in the said letters.

One of the biggest advantages of graph technologies is that they greatly fa-
cilitate the linking of research data to other LinkedOpenData sources. The

8Cf. https://sozinianer.de/id/Lubieniecki_Stanislaw

289

https://sozinianer.de/id/Lubieniecki_Stanislaw


Figure 8: Data model of a letter

Figure 9: Letters sent by Lubieniecki (lower central yellow node) to his correspond-
ents (yellownodes in theupperpart of the graph)on topics related to comets (brown
nodes).

290



indexes of the Socinian Correspondence Project contain authority data for
the entities mentioned. Figure 10 shows three people (yellow nodes), all of
whom are mentioned in each of the three letters shown (green nodes). All
three have their Wikidata ID stored in the graph as properties, which makes
it easy to retrieve information on their kinship relations. It immediately be-
comes clear that they are closely related.

Figure 10: Persons (yellow nodes) mentioned in letters (green nodes) and their kin-
ship relations according to information retrieved fromWikidata (red)

While such an exercise helps to illustrate the power of connecting differ-
ent sources of research data, it is important to keep inmind that the primary
purpose of this type of information is to provide clues as to which sources
might prove useful for a given research question. It does not, however,
provide direct answers to that question. Figure 11 shows a visualization of
the Socinian letters fromcorrespSearchmetadata, whichwehopewill lead to
further insights in the future — for example when researchers can combine
the information from our project with additional data from other projects
on correspSearch.

3.3 correspSearch

Themetadata of the letters is also published at correspSearch,9 which allows
users to “...search within the metadata of diverse scholarly editions of letters.
One can search according to the letter’s sender, addressee, aswell as place and
date of the letter’s creation” (Dumont, 2016).

9Cf. https://correspsearch.net.

291

https://correspsearch.net


Figure 11: The Socinian letters in correspSearch

4 Remaining Work and Future Goals
The development of our tools and DSE is financed for six years by the
DFG.10 Our plan is to first publish eXGraphs in a beta version in order to
obtain feedback from the digital humanities community and then to further
test our proof of concept for GRACE.

Beside more conventional elements, such as the transcribed texts, facsim-
iles, and indexes, we plan to include graph visualizations in the context of
certain entities in the frontend of the DSE. These will initially address a re-
latively objective context, like other letters in the chain of correspondence
of the currently viewed letter. It is our hope that the resulting graph visual-
izations will then enable users to explore the data in a context of their own
choosing, with their own research questions in mind.

We also wish to use the tools that we have outlined in this essay to put the
graph as a persistent data layer for Digital Scholarly Editions to the test in a
production environment. After transferring our data from XML to neo4j
with the help of eXGraphs, our editors will be able to test GRACE when

10Deutsche Forschungsgemeinschaft https://www.dfg.de/.

292

https://www.dfg.de/


editing or adding entries to our indexes. Furthermore, we seek to explore
other workflows related to the integration of neo4j in the scholarly editing
process by, for example, developing an extension for theOxygenXMLeditor
that makes it possible to retrieve and send data to a neo4j database.

Other questions that remain to be answered include how data in a neo4j
database can be versioned and appropriately cited, and how the API for ac-
cessing the graph data created in the Socinian Correspondence Project can
be implemented.

References
Daugirdas, K. (2016). DieAnfänge des Sozinianismus: Genese und Eindrin-

gen des historisch-ethischen Religionsmodells in den universitären
Diskurs der Evangelischen in Europa. Number 240 in Veröffentlichun-
gen des Instituts für Europäische Geschichte Mainz. Vandenhoeck &
Ruprecht, Göttingen, DOI: 10.13109/9783666101427.

Dumont, S. (2016). correspSearch – Connecting Scholarly Editions of Let-
ters. Journal of the Text Encoding Initiative, 10, DOI: 10.4000/jtei.1742.

Dumont, S. and Fechner, M. (2014). Bridging the Gap: Greater Usabil-
ity for TEI Encoding. Journal of the Text Encoding Initiative, 8, DOI:
10.4000/jtei.1242.

Haaf, S., Geyken, A., andWiegand, F. (2014). The DTA “Base Format”: A
TEI Subset for the Compilation of a Large Reference Corpus of Printed
Text from Multiple Sources. Journal of the Text Encoding Initiative, 8,
DOI: 10.4000/jtei.1114.

Kuczera, A. (2016). Digital Editions Beyond XML – Graph-Based Di-
gital Editions. In Düring, M., Jatowt, A., Preiser-Kappeller, J., and van
Den Bosch, A., editors, Proceedings of the 3rdHistoInformaticsWorkshop
onComputationalHistory (HistoInformatics 2016) co-locatedwithDigital
Humanities 2016 conference (DH 2016), volume 1632 of CEUR Work-
shop Proceedings. http://ceur-ws.org/Vol-1632/paper_5.pdf.

Schrade, T. (2018). Annotate, Generate, Test, Deploy. Aktuelle Software-
Engineering Methoden zur Steigerung der Nachhaltigkeit Digitaler Edi-
tionen. https://digicademy.github.io/2018-sustainable-editions/#/step-1.

Stadler, P., Illetschko,M., and Seifert, S. (2016). Towards aModel for Encod-
ing Correspondence in the TEI: Developing and Implementing <corres-
pDesc>. Journal of the Text Encoding Initiative, 9, DOI: 10.4000/jtei.1433.

293

https://dx.doi.org/10.13109/9783666101427
https://dx.doi.org/10.4000/jtei.1742
https://dx.doi.org/10.4000/jtei.1242
https://dx.doi.org/10.4000/jtei.1114
http://ceur-ws.org/Vol-1632/paper_5.pdf
https://digicademy.github.io/2018-sustainable-editions/#/step-1
https://dx.doi.org/10.4000/jtei.1433

	Introduction
	The Socinians and their Correspondence Network
	The Digital Scholarly Edition
	The Graph Component

	The Tools
	Step 1: Generating a Graph from XML Data
	Configuring Input and Output
	Configuring XML Extraction Rules

	Step 2: GRACE – Making the Graph Editable after XML Extraction
	User Action: Searching the Data
	User Action: Modifying the Data


	The Socinian Correspondence Network in the Graph Database
	Graph Model
	First Examples in the Graph
	correspSearch

	Remaining Work and Future Goals

