CEUR-WS.org/Vol-3110/paperd.pdf

Comparison of Graph- and
Collection-Based Representations of
Early Modern Biographical Archives

Meadhbh Healy Thomas O’Connor
John Keating

Maynooth University
Maynooth, Ireland

Abstract

The ingestion and digital storage of historical records has had a pro-
found impact on scholarly practices. Yet in order for digitized archives
to be used to full advantage, itis imperative that they are searchable and
organized in a coherent and consistent way. These requirements are
particularly evident in the case of historical records pertaining to real-
world individuals: personal data is likely to be intricate and may ori-
ginate from disparate sources, whose rules of data collection and data
storage vary greatly. While this makes graph-oriented databases a very
attractive option for storing historical records due to their emphasis on
attributes and relationships, document-oriented databases may offer
similar advantages in terms of flexibility and precision of record stor-
age. In the present paper, both kinds of database are analyzed and com-
pared in terms of the ease of ingestion and accuracy of record presenta-
tion within the database. The historical data used was gathered from a
number of diverse collections of historical records referring to persons
of Irish descent who served in European armies or studied at European
universities between the sixteenth and the nineteenth century.

Creative Commons License Attribution 4.0 International (CC BY 4.0).

In: Tara Andrews, Franziska Diehr, Thomas Efer, Andreas Kuczera and Joris van Zun-
dert (eds.): Graph Technologies in the Humanities - Proceedings 2020, published at
http://ceur-ws.org.

60

https://orcid.org/0000-0002-8523-7212
https://orcid.org/0000-0002-3136-5067
https://orcid.org/0000-0002-5063-2773

1 Introduction
1.1 Overview

The data hosted on the Virtual Research Environment (VRE) of the Irish in
Europe Project was collected between 2001 and 2008 by researchers at the
Universities of Leuven, Oxford, Toulouse, Dublin (Trinity College), Mad-
rid (Complutense), and Maynooth. Their work was part of a coordinated
effort to capture and host biographical material, held mainly in European
archival repositories, on Irish soldiers, merchants, and clerics in Europe and
the European empires in the early modern period (1550-1800). In total,
basic biographical records on about 15,000 individuals were identified and
harvested for hosting in a virtual research environment that would facilitate
advanced querying, graphical representation, and mapping. The assembled
material provides us with access to information about a specific migrant pop-
ulation and its evolution over a significant time scale. More importantly,
within their digital environment, these sources help to deepen our under-
standing of early modern migrant populations in general, while serving as a
template for the reconstitution of parallel migrant populations. They also
open up, for the first time, the possibility of quantitative, as well as qualitat-
ive, comparative studies.

One of the most crucial issues facing the digital humanities, and the Irish
in Europe Project VRE specifically, is the ingestion of ‘unstructured” data
into a digital database and the manipulation thereof. By its very nature, his-
torical data can consist of uncertain and/or divergent primary source ma-
terial, which is why systems centered on modeling and representing per-
sonal historical data are often extensive, complex, and heterogeneous (Mos-
quera and Piedra, 2017). We have found that while these complications can
be resolved to a certain extent by using NoSQL collection-based systems,
such as MongoDB, a great deal of redundancy remains. Similarly, inges-
tion and search involve complex and time-consuming algorithms. We believe
that graph databases provide a more elegant solution to these problems, as
they enable efficient storage of data with intricate relationships and dynamic
schema. As graph databases are not rigid in their structure and organization,
it is important to consider integrity constraint (IC) support to ensure that
data insertion and other processes are performed in such a manner as to en-
sure that data integrity is not affected. For the purposes of this study, we
will focus on providing a preliminary overview of the graph-oriented data-
base Neo4j and a comparison with the most prolific NoSQL database, Mon-
goDB, using the prosopographical data described above. We will compare
ingestion and search performances for the collection and graph systems to-
gether with an evaluation of schema and IC creation approaches for both

61

Sys tems.

1.2 Topics to Be Addressed

NoSQL - commonly referred to as ‘Not Only SQL’ (with SQL standing
for Structured Query Language) — databases have been developed as a re-
sponse to the limitations of existing relational database management sys-
tems (RDBMS). While traditional RDBMS are capable of large-scale data
management for structured data, NoSQL databases adeptly manage large
amounts of structured, unstructured, semi-structured, and hybrid data at
reduced complexity and cost (Mohmmed and Osman|, 2017). Yet graph data-
bases, a particular form of NoSQL databases, are becoming increasingly sig-
nificant in real-world applications: they provide an adequate framework for
representing complex relationships in diverse datasets, which can lead to the
discovery of causal relationships by combining disparate sources of inform-
ation (Le May et al;, 2020). With the development of graph databases it has
become possible to combine the performance of NoSQL databases and the
representativity of graphs (Castelltort and Martin, 2018).

NoSQL databases vary greatly in how they store and manage data. One of
the primary distinctions is that in relational models the schema is extremely
rigid and possible relationships are fixed in advance. In graph databases,
the information is stored in a schemaless format, (key-value pairs), which
allows several related values to be stored at the same node (Cerestidk and
Kvet, 2019). When it comes to archiving historical data in particular, many
NoSQL databases provide a distinct advantage over SQL databases. This
is again due to the rigidity of the SQL schema, which is inferior where the
modeling and absorbing of unstructured historical data is concerned. Both
types of database compared in this paper are NoSQL; MongoDB is the most
prominent collection-based database available at present, and Neo4j is a top

performing graph database.

1.3 Motivation

One of the immediate incentives for historians and digital archivists who
wish to digitize historical data is that the archives become more accessible in-
stead of remaining in storage with no public access. The immense changes
taking place in the past number of years have begun to reshape digital cura-
tion and digital historiography, as detailed extensively by Sabharwal (Sabhar-
wal, 2015). Itis imperative for history scholars and academics, however, that
certain precautions be taken when reproducing a historical collection of mis-
cellaneous nature in a digitized format, in order to precisely replicate the ori-
ginal (Borissova, 2018).

62

In particular, this means detailing relationships between the information
chunks of a record, as well as delineating common relationships between re-
cords in a precise manner. This is a significant challenge when compiling a
database of historical data, as it is easy to convolute multiple records from
differing datasets if they are not correctly represented. What results is an
interpolation problem, as it must be determined how best to reproduce in-
tricate, heterogeneous data without loss of complexity, making an analysis
of integrity constraint support vital for digital archivists.

The data being examined in this study originally formed part of a now ob-
solete and no longer publicly accessible VRE website where each dataset was
modeled, and each record stored, as an intricate XML file. XML databases
could not be considered due to the volume of data, as the syntactical redund-
ancy of XML would have resulted in a prohibitively large transport and stor-
age effort. Moreover, the records collected have been archived in multiple
different languages, which means that it is entirely possible for a military re-
cord in the French collection, for example, to have details listed in English,
Irish (Gaelic), Latin, and French. Given that any or all of the names Sean De
Paor, John Power, or Jean LePoer could be cataloged in a record for the same
individual, querying a database for precisely one of the above would not re-
turn results for the others. This is why a database that permits regex (short
for regular expression) queries, which allow the fields being searched to be
matched to a query pattern, is an essential requirement. XML databases are
limited in this regard, as nested tags are very difficult to manage with regu-
lar expressions ([Taktek and Thakker, 2020). Due to the way information is
stored in MongoDB and Neo4j, the two platforms are much better suited to
the use of regular expressions.

1.4 Problem Statement

Integrity constraints are rules that restrict the information that may be
present in the database. They play a major role in maintaining the precise
structure of a record or set of records. The constraints in SQL databases can
be divided into two main components: entity integrity, which tests the valid-
ity of the data by providing primary keys; and referential integrity, which
adds meaningful structure to the data by using foreign keys to tie relations to-
gether (Bono, 2007). As referenced previously, many NoSQL databases suf-
fer from a lack of strictly designed schema structure, which can impede any
prospect of securely defining and confirming the rules of referential integ-
rity, and can result in a lower degree of control over data values (Bjeladinovig
et al., 2020). However, this is not the case in graph-oriented databases such
as Neo4j, where referential integrity is maintained by establishing a relation-

63

ship between two nodes. Much of the support for data integrity is solely
available in SQL databases as it is implemented in the SQL language, and this
can leave non-relational databases at a severe disadvantage when attempting
to maintain data integrity. The justification for this is easy to fathom: by de-
liberately maintaining low-level systems in a NoSQL environment, it is pos-
sible to create, store, and analyze vast quantities of data at high speeds. In or-
der to obtain higher data consistency and an increase in reliability of NoSQL
applications, transactional services, which vary according to the NoSQL sys-
tem, have been developed (Gonzélez-Aparicio et al;, 2018). Various meas-
ures can be implemented on the user application side, including designing
test cases which check various possibilities during the execution of a transac-
tion in order to detect potential faults or inconsistencies in the data (Agnelo
et all, 2020).

1.5 Approach

When processing large amounts of real-world data, entities may be represen-
ted in a variety of formats, such as JSON (JavaScript Object Notation) or
relational records, and representations may contain redundant or inconsist-
ent information (Simonini et al}, 2019). Data entity types are another im-
portant issue, as they prevent certain schematic anomalies — for example, it
should not be possible to enter a string into an integer-specific column and
vice versa (Sestak et al), 2016). Several distinct factors can be identified when
discussing data integrity in graph database models (Angles, 2012):

* schema-instance consistency, which prevents incomplete or inconsist-
ent data from being inserted into the database and ensures that each
entity can only have the attributes and relations previously established
in the desired schema
node or edge identity, which demands that each value in the database
can be identified by a value, such as name or id, or the values of its at-
tributes
cardinality integrity, which stipulates that each node in the database has
a unique identifier which is the equivalent of a primary key constraint
in relational databases
referential integrity, which requires that only existing nodes in the data-
base can be referenced, similar to foreign key constraint
functional dependencies, which tests if an entity determines the value

of another database entity
graph pattern constraints, which identify structural restrictions such as
path constraints in the data

The elimination or control of data redundancy, which would decrease the

64

volume of superfluous information stored in the database, is another im-
portant consideration. For the purpose of archiving historical data, func-
tional dependencies are largely not a priority — as the data is static, the en-
tities do not depend on each other and the values do not change. However,
as will become clear over the course of this paper, the other factors listed
above are all crucial when it comes to ensuring adequate referential integrity
constraint support. In order to determine the optimal method of archiv-
ing historical data-sets, a comparison test was conducted between two types
of NoSQL databases, Neo4j and MongoDB. In MongoDB, a document-
oriented database which processes semi-structured data, each record and its
associated attributes are considered a document. MongoDB stores data as
a hierarchy of key-value pairs and provides a rich query language allowing
for easier transition from relational databases. Neo4;j is a native graph data-
base which is geared towards the storage and processing of graphs, and al-
lows the management of interconnected data. Graph databases help find
relationships between data, and have index-free adjacency. This means that
while relational or other non-native graph databases have central indexes and
processing overheads with every index lookup, graph databases load every
relationship associated with an entity when a node is accessed (Henderson),

2020).

1.6 Metrics

In order to accurately compare the performance of MongoDB against
Neo4], the research has been divided into three distinct categories:

* to observe and determine the difficulty, or lack thereof, of ingesting a
record into both types of database, for an individual record and a set of
records

* to examine the structure of the data in both sets of software, placing
particular emphasis on the precision of conversion from the XML re-
cord to its reproduction within the database and the lack of difficulty
of merging records between datasets

* to analyze the complexity at which an individual record can be extrac-
ted from both types of database

The databases were evaluated according to both shared and unique features.

1.7 Data

The data being examined and archived comes from a variety of sources. Itis
diverse, real world data that is both complex and heterogeneous. The library
containing the data consists of five primary components:

65

* Brockliss & Ferté; this data was gathered by historians Laurence Brock-
liss and Patrick Ferté in collaboration with institutions in Oxford and
Toulouse, and details Irish students that studied in Irish colleges in
Europe in the 1700s and 1800s

* Spain; records of Irish soldiers serving in Spain during the seventeenth
and eighteenth century, collected by Oscar Recio Morales of the Com-
plutense Institute for International Studies.

* France; records of Irish regiments in France in the 1700s and 1800s,
collected by Colm O Conaill of Trinity College Dublin

* King’s Inns; records of Irish students who attended King’s Inns in
the pre-Cromwellian era, archived by Brid McGrath of Trinity College
Dublin

Each dataset contains intricate and varied records, which can make it diffi-
cult to establish a comprehensive pattern. On the other hand, as mentioned
above, the records are currently stored in XML files, and the fact that each
class of data has already been resolved into elements and attributes is of great
help when it comes to examining the structure of an individual record.

2 Technical Background
2.1 Topic Material

Neo4jand MongoDB are compared in terms of both speed of processing and
the formation of the syntax necessary to create a query. As stated above, the
records that are being processed are complex and involve nested data, which
makes it advisable to create an encoding of each data library before they are
absorbed by the software. The model is based on the structure of the XML
file of each collection, and therefore no assumptions were made in transform-
ing the records to the model produced. A parent-child model of the Brockliss
& Ferte dataset is shown in Figure [1|.

2.2 Technical Material

MongoDB (as well as Neo4j) does not use Structured Query Language
(SQL) to interact with the database, but it is compatible with a number of
languages, including Go, C++, and Python. MongoDB’s primary querying
language is]avaScript.ﬁ] The documents are hierarchical tree data structures
which can consist of maps, collections, and primitive values. MongoDB uses
the following hierarchy: database, collection, and document (Mahajan et al,

When commands are composed in this language, it creates a JSON document, BSON
(Binary JSON) object, or sub-documents, which are the primary components of collections
in the database (Jose and Abraham|, 2020).

66

PERSON

PERSONAL EDUCATION NOTES
DETAILS

NAME GENDER ORIGIN QUALIFICATION INSTITUTION
FORENAME SURNAME RESIDENCE
COURSE ACHIEVED DATE (END)
DIOCESE PROVINCE COUNTRY NAME ADDRESS

Figure 1: Parent-child model of Brockliss & Ferte military records

2019). There are a number of bespoke querying languages that can be used
in conjunction with Neo4j, the most popular of these being Cypher. The
syntax of Cypher is similar to SQL and uses an ASCII-Art syntax to denom-
inate patterns. Ideally, Cypher queries are constant strings, so they can be
cached by the database as compiled queries. The returned entities can be
nodes with all attributes, selected attributes, or aggregated data, depending
on the query (Holzschuher and Peinl, 2016). Both types of database are fully
ACID compliant.B ACID properties guarantee that data integrity is main-
tained for every transaction in the database. This ensures strict consistency
in the sense that all read operations must return the precisely same entities
as the latest completed write operation (Lotfy et al}, 2016).

3 Software and Syntax Analysis

In MongoDB, records are stored in collections. These are analogous to
tables in relational databases, although the implementation and operational
concept of MongoDB and RDBMS is different. Unlike in SQL databases,
the schema of a table does not have to be determined before inserting data.
For MongoDB, it is not imperative for all records within a collection to
have the same schema, which makes it possible to change the framework

2 ACID stands for atomicity, which means that a database transaction must be entirely
finished, or it will not commit; consistency, which means that a database must remain con-
sistent before, during, and after the transaction occurs; isolation, which means that when
multiple transactions are executed simultaneously, transactions are processed exclusively
and consecutively — data from one transaction cannot be transferred to another when the
transaction has not been completed; and durability, which indicates that once database
transactions are registered, events are recorded to a permanent medium which will not be
modified outside a transaction.

67

of a schema within a collection by adding, removing, or updating fields
(Cerestidk and Kvet, 2019). Creating an entity-relationship model is vi-
tal in order to display the record or object nesting correctly (Edward and
Sabharwal, 2014). It can assist in illustrating the embedding and denormal-
ization necessary for scaling the data in MongoDB. Denormalization may be
thought of as tables being refined and transformed into secondary simplified
data structures, where redundancy is regulated in order to optimize perform-
ance. Denormalization allows the data to be wholly retrieved without using
ajoin (Kingdon etal}, 2016). To insert a record, the following syntax is used:

db.Brocklissferte.insert({ id : "1",
personalDetails : {"name" :
{"forename" : "Dionysius", "surname" : "0'Beirne"}
gender : "male",
origin : {"residence" : {"address" :
"diocese" : "Ardagh",
"province" : "Armagh",
"country" : "Ireland"}}}},
education : {"qualification" : {"course" :
"received the four minor orders",
"achieved" : "yes",
"date" : {"end" : "1771-05"},
"institution" : {"name" : "University of Paris",
"address" :
{"town" : "Paris",
"country" : "France"}}}},
notes : {"note" : "Boyle, 'St. Nic.', p. 490;
Boyle, I.C.P., p. 200."}})

The fields of the schema can be then adjusted for different records within a
collection (Figure @)

Graph databases, such as Neo4j, provide the most sophisticated and
evolved method of data modeling, making it easy to update the schema ac-
cording to the user’s needs (Per¢uku et al}, 2017). Normalization and denor-
malization are largely redundant here, as graph databases provide as much
or as little structure as the data requires. Traditional SQL databases have ri-
gid schema and a convoluted schema migration process, making the creation
and continuous ingestion of records a challenging exercise, particularly for
highly relational data (Schulz et al., 2016). Alternatively, graph databases
can be employed as an ideal method of managing highly connected data, as
they prioritize the modeling and retrieval of relationship-rich data (Pokorny

68

Qualification @

Figure 2: E-R One-to-many diagram

et al}, 2017). In fact, once a comprehensive graph data model which incor-
porates the complex nested fields present in each particular record has been
composed, it can be absorbed directly into the database given that the struc-
ture of the graph model corresponds exactly to the structure of the schema
within Neo4j (Vigner, 2018). This then automatically generates a Cypher
command (the domain language of Neo4j), which can be run in the database
to create the schema. The following Cypher command was used to create the
schema in the Brocklissferte database:

CREATE('0" :Person),
('1':personalDetails),
('2":Name {forename:'$forename,",
surname: '$surname'}) ,
('3" :gender {gender:'$male'}) ,
('4' :origin),
('5':residence {diocese:'$county,",province:
'$province, ', country: '$country'}) ,
('6":Education),
("7':Qualification
{course: '$course, ' ,achieved: '$achieved,',
date: '$date'}),
('8":Institution
{institutionName:'$institutionName,",
address: '$address'}),
'9":Notes {notes:'$notes'}) ,
(: 'INDIVIDUAL' 1->('2'),
(: 'DESCRIPTION']->('1'),
["RELATED\ T0']->('3'),
['HOMEPLACE']->('4"),
[:
[:

(
("
("0
("1
(1
("4
("0

'ADDRESS' 1>('5'),

)_
)_
)_
)_
)_
)-[:'STUDIES']->('6"),

69

('6')-[: 'QUALIFIED']->('7"),
('6')-[:"ATTENDED']->('8"),
('0')-[: "EXTRAINFO']->("9")

Although graph databases are constantly under development in order to
increase their stability and expand their range of features, they have not yet
reached the maturity level of other data management solutions, such as re-
lational databases. Nonetheless, a number of mechanisms exist which can
help to increase the applicability of graph database technology in a real-world
context. In some instances, traditional solutions developed for relational
databases can be reworked and adapted to the context of graphs, integrity
constraints being a case in point: (Sestak et al}, 2021) for example, much of
the integrity constraint support available for Neo4j has been written into the
Cypher query language in a similar style to SQL (e.g. UNIQUE or NOT NULL) (Ma
et all, 2020).

In order to directly ingest documents into the MongoDB database, the
mongoimport command can be used. This utility allows data to be imported
from JSON, CSV, or TSV files. It is not necessary to specify a collection
when importing data into the database; however, a collection will be created
upon the addition of the records. Like other NoSQL databases, MongoDB
has a dynamic schema design, allowing the documents in a collection to have
varied fields and structures.

While Neo4j offers an option to effectively import large datasets in sev-
eral different formats, it recommends the LOADCSV command as the optimal
method. This facilitates the conversion from relational or other type data-
bases to a graph database format (Karan, 2016). This command will dir-
ectly map input data into a complex graph/domain structure. When per-
forming the operation on a significant amount of data, the command can be
appended with the fragment USING PERIODIC COMMIT, which reduces memory
overhead when the transaction is being conducted B

Within the MongoDB database, each document is stored in the JSON
format. As JSON documents support embedded fields and nested data, re-
lated data can be included within the document instead of having to be
stored externally within the collection. Embedded fields act as placeholders
that can be added to text fields to dynamically display entity-specific content.
Each JSON field consists of unordered key-value pairs, a form of NoSQL
database that has become increasingly prevalent in recent years, with each
pair stored in a key-based lookup structure (Agnelo et al., 2020). The value

3However, other file types such as JSON and XML are also supported and can be pro-
cessed using APOC, an add-on library in Neo4j that is accessible with a very simple com-
mand.

70

is represented as a document encoded in standard semi-structured format.

As mentioned previously, Neo4j has native graph storage, which means
thateach part of the graph data model is stored separately. There are different
notions as to what makes up the key components of a graph database, one
of them being the property graph model, which is schemaless and allows
the user to represent the data close to a real-world conception. The records
in a Neo4j graph database are structured with each entity as a node, which
are linked through directed connections named relationships. Nodes and
relationships refer to their attributes as properties (Giabelli et al;, 2021)).

A fundamental challenge in Neo4j data modeling is classifying a categor-
ical variable as a property, label, or node. A categorical variable may be de-
scribed as having two or more distinct categories with no intrinsic order-
ing (Baak et al}, 2020). The records being ingested here are rich in categor-
ical variables; for example, in the Brocklissferte architecture, residence, dio-
cese, province, and country all have a finite, discrete set of values. In graph
data modeling, categorical variables can often result in more irregularity,
due to the options there are for representing them. By way of example, let
us consider the category of gender, which is characterized as a label as fol-
lows: (:Person:male). As a property value, it can be represented as (:Person
{gender: 'male'}), and as a distinct node as (:Person)-[:GENDER]->(:Gender {name:
'male'}). These selections become even more complex when considering the
cardinality for each categorical variable — for example, almost fifty dioceses
are represented in the Brocklissferte dataset, along with five provinces. While
by the standards of Big Data neither of these attributes can be described as
having high cardinality, consistency must nonetheless be maintained in the
approach to modeling them (Moeyersoms and Martens, 2015). The mer-
its of each property type become apparent when endeavoring to retrieve
variables using regular queries. A regular query may be described as a non-
recursive query that traverses the graph and returns pairs of nodes connected
by a common expression (Bagan et al}, 2020). Labels attach simple types to
nodes and relationships. They provide fast look-ups for Neo4j and are used
to describe the nodes’ role in a graph as well as for grouping nodes in fixed
sets. However, they are a poor quality option for medium or high cardin-
ality values, as a variable with a large amount of categories can make a data
model extremely unwieldy. In addition, while relationships between connec-
ted data can be referenced directly by Neo4j, relationships between corres-
ponding labels are hidden inside nodes and are not expressed explicitly (Zhu
et all, 2019). Properties are expressed as name-value pairs and can store any
data type. Thus, they can accommodate high cardinality data with ease, and
can be subjected to database constraints which preserve integrity (Jiménez

71

et al}, 2016). (They cannot be set to NULL, as this is equivalent to delet-
ing the property). A small-scale property lookup is quicker that traversing a
node. The disadvantage of properties is that when multiple small categoric
variables are applied to a node, performance can be adversely affected. The
same can be said for parsing multiple properties to a large string or large array.
When searching for all nodes that share a specific property as part of a regu-
lar query pattern, properties are not the optimal choice (Ruetter et al}, 2015).
The command below illustrates the syntax that was used in an attempt to re-
turn all common dioceses of a particular record (under the assumption that
all fields had been modeled as properties of the ‘person’ node):

MATCH (b:Person \{ surname: 'Moore' \})

WITH b

MATCH (allCommonDiocese:Person \{ diocese: b.diocese \})
RETURN allCommonDiocese;

When searching for nodes that share a common property, or if the cardin-
ality of the categorical variables is inordinately high, modeling each variable
as a separate node can be the most efficient choice. Retrievability of nodes
has been the subject of extensive research for a number of decades (Gacem
et al), 2020). In this instance, if each record were to be filtered by shared
diocese, the following query might be used:

MATCH (b:Person \{ surname: 'Moore' \})

WITH b

MATCH (b)-[:HAS]->(j:PersonalDetails)-

[:HAS]->(0:0rigin)-

[:HAS]->(z:Residence)-

[:HAS]->(d:diocese)<-[:HAS]-(r:Residence)
<-[:HAS]-(0:0rigin)<-[:HAS]<-(j:PersonalDetails)
<-[:HAS]-(other:Person)

RETURN count (other);

We can see how cumbersome this syntax can be, as the levels of the graph
descend from the root. Moreover, if data is too densely connected, it can res-
ult in the creation of supernodes, i.e. vertices with a disproportionately high
number of relationships, which will have a negative impact on any queries
that attempt to access them.

Therefore, our approach to modeling the data in Neo4j had to be tailored
to the questions the user will need to ask of the database, and an adaptable
attitude is required. Unlike traditional RDBMS, there is no significant de-
crease in performance for highly connected data ingested, stored, and nav-

72

Address LengthOfTime Place

womepe

County
Father: SFather
Prot: §Prot

o
“n Cath: §Cath

Student Date

X2

&
Notes "ﬂc%/7 S Honorary

Admitted
Admission: $Admission

Fine: $Fine
Chancery: $Chancery

Confederacy: $Confederacy
Kingsinns: $Kingsinns
FirstSignalory: $FirstSignatory
SecondSignatory: $SecondSignatory

Figure 3: Property graph model of King’s Inns data

igated in Neo4j — as can be noted from Figure @, it has no difficulty in rep-
resenting structured, semi-structured, or unstructured data (Per¢uku et al,
2017).

4 The Solution
4.1 Analytical Work
Both types of database support a Python driver Although both types of

database support several different methods of bulk import, some of which
have been outlined in the previous chapter, this approach was deemed the
fastest and most objective way of conducting a fair comparison test for mul-
tiple data ingestion and retrieval.

4.2 High Level

Retrieving data from the database in MongoDB is also done via JavaScript
queries, using a simple command.

This can then be appended depending on the specificity of the results that
need to be recovered. Each record in a collection will have a unique ID, which
can also be accessed when the ‘find’ command is used with a single criterion.

The node always has its own variable name, an alias that is assigned by the
user the first time the node is referenced within a query. This makes the re-
trieval of individual nodes a less complex process. However, returning an en-
tire record is a more formidable task in Neo4j. Graph databases, on the other

4PyMongo is the recommended method of interacting with MongoDB from Python,
while the official Python driver for Neo4;j is ‘neo4j-python-driver.”

73

hand, are well suited for ontology-oriented data, representing a record as a
set of concepts and relationships. These entities are all dispersed and stored
separately, meaning that their retrieval requires a more explicit approach.

4.3 Schema and Data Migration

Due to the static nature of the data, updating the records would be an infre-
quent operation, but it is still prudent to examine the intricacy of such an
undertaking. In MongoDB, the command is straightforward:

db.brocklissferte.update_one(
{'id" : origin.get('id") },
{"$set': {"occupationalHistory":
({"occupation": "Cleric", "role": "Priest"})}})

Indexing is paramount in MongoDB, and the ID is required in order to
retrieve and update the record. Updating an individual record in Neo4j is a
similarly easy task:

MATCH (n)
WHERE n.surname = "Clarke"
SET n.address = "Meath"

The situation becomes more complicated when making changes to the
structure of an individual record. Although MongoDB is commonly re-
ferred to as ‘schemaless’ data, it is important to contemplate how data is
stored in order to optimize database performance. If we consider the Span-
ish Military parent-child model, it can be observed that the framework of the
record is as follows:

<employment>
<employer>
<address>
<country>"Spain"</country>
</address>
</employer>
</employment>

In some of the records, an extra set of parameters is present, recording the
details of military inspection:

<employment>

<employer>
<address>

74

<country>"Spain"</country>
</address>
<date>1748</date>
<record field="age">21</record>
<record field="height">5.2</record>
<record field="eyes">Black</record>
<record field="hair">Black</record>

</employer>
</employment>

In order to accurately represent this structure across multiple records in
MongoDB, it is necessary to invoke the $addFields(aggregation) function,
which appends extra fields into each document.

The format of a Neo4j update query is quite different. A node can be
created and then accessed and added to directly using the SET clause.

This is an important issue when attempting to accurately represent this
data in the database: the complexity of the data is such that it is necessary to
append and update the data encoding habitually in order to ensure accurate
reproduction. All told, both of the command syntaxes in question provide
a distinct advantage over schema migration in SQL databases, as they are less
complex and more intuitive.

When considering multiple collections, as is being done in this instance,
one feature that needs to be discussed is merging multiple records on a par-
ticular field or attribute. In database technology, these are known as aggreg-
ate functions. The dominant aggregation framework of MongoDB uses a
pipeline concept, as it provides efficient data aggregation using native opera-
tions. A pipeline is an array consisting of distinct operators which modifies
a collection (or sub-collection) in stages. As the collection passes through
each stage, certain operators modify the collection documents according to
various techniques (Mahajan et al}, 2019). A less efficient alternative is the
MapReduce framework, a data processing technique that uses two stages or
tasks, namely Map and Reduce. The map function takes a MongoDB doc-
ument and maps each individual element to a key-value tuple. During the
subsequent reduce stage, the elements are condensed and aggregated data is
collected. An aggregation framework is generally faster than MapReduce,
but MapReduce is useful for aggregating extremely large collections. If an
archivist wishes to merge records from two of the previously described col-
lections on a particular value - for example, the Brockliss & Ferte and King’s
Inns collections, both of which include a sponsor or employer address field
and contain records from a similar time period - the following syntax could

be used:

75

db.collection.aggregate([
{ "$lookup": {
"from": Brocklissferte,
"et": { "address": "$address" },
"pipeline": [
{ "$match": { "$expr": { "$in":
["$employer", "$$address"] } } },
{ "$lookup": {
"from": Innstudents,
"let": { "address": "$address" },
"pipeline": [
{ "$match": { "$expr": { "$in":
["$place", "$$address"] } }} 1,
"as": "address" }} 1,
"as": "address"}}])

An updated parent-child model of the Brockliss & Ferte records may be
observed in Figure @ This syntax, while looking quite intricate upon initial
observation, is of great help in the consolidation of nested data, as it covers
the range of each record to find and merge the relevant field. In this instance,
it provides an assortment of records to the user, giving access to informa-
tion regarding relevant benefactors and their level of influence in a particu-
lar area. Meanwhile, $lookup is a pipeline operator that allows the user to
perform a left join to combine two collections in the same database. A left
join will contain all documents from the collection referenced first, as well
as the matching documents from the second collection. All unmatched doc-
uments from the second collection will be omitted. The aggregation func-
tions in Neo4j are comparable to those in relational databases with a syn-
tax similar to SQL. The amount of matching rows can be queried using the
count (*). The collect() command returns a list of heterogeneous elements in
a single list.

One major advantage NoSQL databases have over relational databases is
the increase in scalability. A highly scalable database is one which can in-
crease its workload and throughput when additional resources are added to
it. Scalability may be supported by the following approaches: horizontal
scaling, the process of adding more hardware to the system; and vertical scal-
ing, which increases the memory of the existing server. Although our data
is static, and is infrequently increased or altered, it is worth considering this
aspect to fully understand the capabilities of our database. MongoDB sup-
ports horizontal scaling through sharding; a method for distributing data
across several servers (Ravat et al), 2020). Neo4j is both vertically and hori-

76

PERSON

OCCUPATIONAL

EDUCATION

INSTITUTION OCCUPATION EMPLOYMENT

‘ NAME ‘ ‘ GENDER ‘ ‘ ORIGIN

ROLE
FORENAME ‘ SURNAME ‘ RESIDENCE ‘ COURSE ‘ ACHIEVED ‘ DATE (END)

‘ COUNTRY ‘ ‘ NAME ‘ ‘ ADDRESS ‘

‘ DIOCESE ‘ PROVINCE

Figure 4: Modified Parent Child model of Brockliss & Ferté records

zontally scalable. The graph database platform provides high quality scaling,
and Neo4j uses cypher query language, an external Domain Specific Lan-
guage (DSL), which is tailored to a specific application domain. DSLs are
expressive and concise and therefore aid scalability by reducing complexity
(Yoon and Lee, 2018).

S Evaluation
5.1 Solution Verification

The comparison between both types of non-relational database yielded a
number of illuminating observations and results. The primary objective was
to ingest the data with as little loss of data integrity as possible. As the com-
plexity of the data was illustrated using a parent-child relationship model, it
made the composing of queries and interactions with both types of database
a less arduous task. The syntax of creating this structure with both Mon-
goDB and Neo4j was exacting. However, the fact that a Cypher command
could be automatically generated in Neo4j upon the creation of a graph data
model, as opposed to being painstakingly produced for each individual data-
set by the user, gives graph databases a distinct advantage.

5.2 Examination of Schema Traversal

Itis worth noting the contrast between the syntax of retrieving a nested data
object from both types of database, especially with regards to the complexity
of each query. From traversing the parent-child model in Figure m, it can be
observed that the entity ‘country’ is a child of the entity ‘residence,” which is
a child of the entity ‘origin,” which is a child of the entity ‘personal details.’
The parent entity is described as ‘person.” To correctly traverse the data in
order to retrieve this entity in MongoDB, each property has to be labeled in
the command.

77

This results in the following record being retrieved:

{'name': {'forename': 'Thomas', 'surname': 'Williams'},
' id': ObjectId('5e6396629578d4b117eab5fa '),

‘origin': {'residence': 'province': 'Connaught',
'country': 'Ireland',

'diocese': 'Wexford'l}},

'id': 128016,

'gender': 'male’',

'education': {'qualification': {'achieved': 'yes',
'date': 1747-10-22 08:47:32',

'course': 'Law'},

'address': {'town': 'Brussels', 'country': 'Belgium'},
'institution': 'University Of Brussels'}}

This is a more complex syntax than the Neo4;j variant. As can be observed
in Figure H, a graph data model which is representative of the structure of
the record within the database, the entity ‘country’ is stored as a property
of the node address. This node can be directly queried by the user with the
following cipher query:

MATCH (n:address) RETURN address.country

The contrast in complexity between both commands emphasizes that
graph-based data models provide a much more effective and adept method
of data traversal when interacting with the database.

As stated earlier, Neo4j provides a graphical environment which allows
the user to observe and examine patterns in the data. This can aid historians
in gathering knowledge or forming an impression of a particular aspect of the
dataset. To give an example: one of the smaller datasets being ingested in this
study is the King’s Inns dataset, which provides information regarding Irish
students who attended the Inns of Courtin London in the pre-Cromwellian
era, 1603-1633. The records are divided into four datasets, one for each of
the four preliminary colleges that students could attend to gain admittance
to King’s Inns in Dublin, namely Gray’s Inn, Lincoln’s Inn, Inner Temple,
and Middle Temple. Each dataset has approximately 250 records. While the
datasets may have slightly different relationships, they all possess the struc-
ture of the property graph model shown in Figure j.

AllIrish students that attended the institution during this period were ob-
liged to be sponsored either by their family or by an affluent member of their
community. Therefore, by analyzing each dataset by area as it is absorbed
into Neo4j, a pattern emerges of the most wealthy areas during this time

78

period. The Lincoln’s Inn dataset linked students to 25 different counties
represented by the blue nodes, with the more prominent areas having more
student nodes linked to them. This can be observed in Figure H When the
fourth dataset was added to the database a different visualization can be seen
in Figure E

After absorbing all four datasets, 399 nodes and 359 relationships are
present in the database. Clear areas of prominence have emerged, allowing
the user to gain insight into areas of influence during this period:

Figure S: Visualization of Lincoln’s Inn dataset by county

6 Conclusion

NoSQL databases have grown in popularity over the last decade, with Mon-
goDB emerging as the forerunner for large-scale data management and pro-
cessing. The advantage of adopting a collection-based approach to data ad-
ministration is that each set of key-value pairs can be accessed in a flexible
manner. This allows a collection to be composed of similar but diversified
documents, and makes the storage and retrieval of semi-structured records
more convenient for the user. Another benefit is that it is possible to inter-
act with the MongoDB engine using the JavaScript programming language,
rather than having to learn and master SQL. However, this can be regarded
as a mixed blessing: SQL is a standardized programming language, designed
for processing data stored in relational database management systems. Tech-

79

Figure 6: Visualization of four King’s Inns datasets by county

nically, it is less complicated to connect different relational DBMS than it is
to connect relational systems with NoSQL databases (Vathy-Fogarassy and
Hugyik, 2017). In MongoDB, merge join queries and hash join queries, typ-
ically a more efficient algorithm than a nested loop join, are not possible,
rendering the commands for data retrieval rather convoluted.

Throughout this paper, it can be observed that the graph database Neo4;
provides an elegant alternative to other NoSQL databases for users confron-
ted with highly complex relationships and entities. As well as providing a
platform which makes the absorption of records into the database signific-
antly easier, it also maintains uniformity between the structure of an indi-
vidual record and the architecture of the data within the database. With a
graph database schema, schema-instance consistency is required (Pokorny
etal;, 2017). This consistency makes graph databases an ideal tool for digital
archivists and historians who wish to observe patterns in semi-structured
and hybrid data. The Cypher querying language allows the user to easily es-
tablish links and extract linked records for observation. Although there are
limitations to using a graphical database to store complex nested data, these
obstacles can be surmounted by monitoring and applying the rules of data
modeling to ensure the data is reproduced accurately within the database.
As we have demonstrated, MongoDB outperformed Neo4j slightly in terms
of speed of ingestion. However, for historians and those who work in the

80

digital humanities, the priority will most likely be the accuracy of data tran-
scription rather than speed, which makes Neo4j the more suitable method
of data processing and management.

It cannot be concluded from this that traditional relational database man-
agement systems are ideal for the digitization of all types of historical source
material. When confronted with complex and diverse real-world data, rela-
tional systems suffer from the fact that they cannot capture their inherent
graph structure (De Virgilio et al), 2014)). It is vital to prevent a loss of data
integrity when digitally archiving records, so that each record is precisely pre-
served for those who wish to access it at a future point in time. It is therefore
necessary to maintain an accurate representation of the data throughout the
entire process of digital archiving, from modeling the structure of the data,
to inserting the data into the database, to observing the structure within the
database, to retrieving the data. All this makes the analysis of integrity con-
straints in NoSQL databases a crucial desideratum. While we hope that this
paper will prove useful as a preliminary appraisal of the usefulness of non-
relational database technology for the processing of unstructured data, there
is still ample potential for further research, be it in the form of a more com-
prehensive evaluation of NoSQL databases, a more detailed breakdown of
domain and query languages used to construct integrity constraints, or ex-
tensive testing on other machines to affirm the validity of our tentative find-
ings.

References

Agnelo, J., Laranjeiro, N., and Bernardino, J. (2020). Using Orthogonal
Defect Classification to Characterize NoSQL Database Defects. Journal
of Systems and Software, 159:110451, DOI: 10.1016/j. jss.2019.110451.

Angles, R. (2012). A Comparison of Current Graph Database Models. In
2012 IEEE 28th International Conference on Data Engineering Work-
shops, pages 171-177. DOI: 10.1109/ICDEW.2012.31.

Baak, M., Koopman, R., Snoek, H., and Klous, S. (2020). A New Cor-
relation Coefhicient Between Categorical, Ordinal and Interval Variables

With Pearson Characteristics. Computational Statistics € Data Analysis,
152:107043, DOI: 10.1016/j . csda. 2020. 107043.

Bagan, G., Bonifati, A., and Groz, B. (2020). A Trichotomy for Regular

Simple Path Queries on Graphs. Journal of Computer and System Sciences,
108:29-48, DOI: 10.1016/3. jcss.2019.08. 00€.

81

https://dx.doi.org/10.1016/j.jss.2019.110451
https://dx.doi.org/10.1109/ICDEW.2012.31
https://dx.doi.org/10.1016/j.csda.2020.107043
https://dx.doi.org/10.1016/j.jcss.2019.08.006

Bjeladinovic, S., Marjanovic, Z., and Babarogic, S. (2020). A Proposal of
Architecture for Integration and Uniform Use of Hybrid SQL/NoSQL
Database Components. Journal of Systems and Software, 168:110633,
DOI: 10.1016/. jss.2020.1106323.

Bono, A. (2007). Historical Seismometry Database Project: A Compre-
hensive Relational Database for Historical Seismic Records. Computers
€9 Geosciences, 33(1):94-103, DOLI: 10.1016/3. cageo.2006.05.007.

Borissova, V. (2018). Cultural Heritage Digitization and Related Intellec-
tual Property Issues. Journal of Cultural Heritage, 34:145-150, DOI:
10.1016/7. culher.2018.04.023.

Castelltort, A. and Martin, T. (2018). Handling scalable approximate quer-
ies over NoSQL graph databases: Cypherf and the Fuzzy4S framework.
DOI: 10.1016/4.£ss.2017.08.002.

De Virgilio, R., Maccioni, A., and Torlone, R. (2014). Model-Driven Design
of Graph Databases. In Yu, E., Dobbie, G., Jarke, M., and Purao, S., ed-
itors, Conceptual Modeling. ER 2014, volume 8824 of Lecture Notes in
Computer Science, pages 172-185. DOI: 10.1007/978-3-319-12206-9, 4.

Edward, S. G. and Sabharwal, N. (2014). Practical MongoDB: Architecting,
Developing, and Administering MongoDB. Apress.

Gacem, A., Papadopoulos, A. N., and Boukhalfa, K. (2020). Scal-
able Distributed Reachability Query Processing in Multi-Labeled
Networks. Data & Knowledge Engineering, 130:101854, DOI:
10.1016/7.datak.2020. 101854.

Giabelli, A., Malandri, L., Mercorio, F., Mezzanzanica, M., et al. (2021).
Skills2Job: A Recommender System That Encodes Job Offer Embed-
dings on Graph Databases. Applied Soft Computing, 101:107049, DOI:
10.1016/7.asoc.2020. 107048,

Gonzélez-Aparicio, M. T., Younas, M., Tuya, J., and Casado, R.
(2018). Testing of Transactional Services in NoSQL Key-Value
Databases. Future Generation Computer Systems, 80:384-399, DOI:
10.1016/5. future.2017.07.004.

Henderson, R. (2020). Using Graph Databases to Detect Finan-
cial Fraud. Computer Fraud & Security, 2020(7):6-10, DOI:
10.1016/51361-3723(20)30073-7.

82

https://dx.doi.org/10.1016/j.jss.2020.110633
https://dx.doi.org/10.1016/j.cageo.2006.05.007
https://dx.doi.org/10.1016/j.culher.2018.04.023
https://dx.doi.org/10.1016/j.fss.2017.08.002
https://dx.doi.org/10.1007/978-3-319-12206-9_14
https://dx.doi.org/10.1016/j.datak.2020.101854
https://dx.doi.org/10.1016/j.asoc.2020.107049
https://dx.doi.org/10.1016/j.future.2017.07.004
https://dx.doi.org/10.1016/S1361-3723(20)30073-7

Holzschuher, F. and Peinl, R. (2016). Querying a Graph Database — Lan-
guage Selection and Performance Considerations. Journal of Computer
and System Sciences, 82(1):45-68, DOI: 10.1016/] . jcss.2015.06.006.

Jiménez, P., Diez,]J. V., and Ordieres-Mere, J. (2016). HOSHIN
KANRI Visualization with Neo4j. Empowering Leaders to Operation-
alize Lean Structural Networks. Procedia CIRP, 55:284-289, DOI:
10.1016/7.procir.2016.08.022.

Jose, B. and Abraham, S. (2020). Performance Analysis of NoSQL and Re-
lational Databases With MongoDB and MySQL. Materials Today: Pro-
ceedings, 24, Part 3:2036-2043, DOI: 10.1016/].matpr.2020.03.634.

Karan, K. K. (2016). Visualizing and Searching Relationships Between Aca-
demic Papers Using Neo4j Graph Database. PhD thesis, Thapar Institute.

Kingdon, A., Nayembil, M. L., Richardson, A. E., and Smith, A.
(2016). A Geodata Warehouse: Using Denormalisation Techniques
as a Tool Fordelivering Spatially Enabled Integrated Geological In-
formation Togeologists. Computers € Geosciences, 96:87-97, DOI:
10.1016/7. cageo.2016.07.01€.

Le May, S., Carter, B., Gehly, S., Flegel, S., et al. (2020). Representing and
Querying Space Object Registration Data Using Graph Databases. Acta
Astronautica, 173:392-403, DOI: 10.1016/7.actaastro. 2020.04. 056.

Lotfy, A. E., Saleh, A. I., El-Ghareeb, H. A., et al. (2016). A Middle Layer
Solution to Support Acid Properties for NoSQL Databases. Journal of
King Saud University - Computer and Information Sciences, 28(1):133-
145, DOI: 10.1016/. jksuci.2015.05.003.

Ma, T., Pan, Q., Wang, H., Shao, W,, et al. (2020). Graph Classification
Algorithm Based on Graph Structure Embedding. Expert Systems with
Applications, 161:113715, DOI: 10.1016/j. eswa.2020. 113715,

Mahajan, D., Blakeney, C., and Zong, Z. (2019). Improving the En-
ergy Efficiency of Relational and NoSQL Databases via Query Optim-
izations. Sustainable Computing: Informatics and Systems, 22:120-133,
DOI: 10.1016/7. suscom.2019.01.017.

Moeyersoms, J. and Martens, D. (2015). Including High-Cardinality
Attributes in Predictive Models: A Case Study in Churn Prediction
in the Energy Sector. Decision Support Systems, 72:72-81, DOI:
10.1016/7.dss.2015.02.007.

83

https://dx.doi.org/10.1016/j.jcss.2015.06.006
https://dx.doi.org/10.1016/j.procir.2016.08.023
https://dx.doi.org/10.1016/j.matpr.2020.03.634
https://dx.doi.org/10.1016/j.cageo.2016.07.016
https://dx.doi.org/10.1016/j.actaastro.2020.04.056
https://dx.doi.org/10.1016/j.jksuci.2015.05.003
https://dx.doi.org/10.1016/j.eswa.2020.113715
https://dx.doi.org/10.1016/j.suscom.2019.01.017
https://dx.doi.org/10.1016/j.dss.2015.02.007

Mohmmed, A. G. M. and Osman, S. E. F. (2017). Study on SQL vs. NoSQL
vs. NewSQL. Journal of Multidisciplinary Engineering Science Studies,
3(6):1821-1823.

Mosquera, N. and Piedra, J. (2017). Use of Graph Database for the Integ-
ration of Heterogeneous Data About Ecuadorian Historical Personages.
In 2018 7th International Conference On Software Process Improvement
(CIMPS), pages 95-100. DOI: 10.1109/CIMPS.2018.8625618.

Perguku, A., Minkovska, D., and Stoyanova, L. (2017). Modeling and Pro-
cessing Big Data of Power Transmission Grid Substation Using Neo4;j.
Procedia Computer Science, 113:9-16, DOI: 10.1016/j . procs. 2017.08. 276.

Pokorny, J., Valenta, M., and Kovaci¢, J. (2017). Integrity Constraints
in Graph Databases. Procedia Computer Science, 109:975-981, DOI:
10.1016/5.procs.2017.05.45€.

Ravat, F., Song, J., Teste, O., and Trojahn, C. (2020). Efficient Querying of
Multidimensional Rdf Data With Aggregates: Comparing NoSQL, RDF
and Relational Data Stores. International Journal of Information Man-
agement, 54:102089, DOI: 10.1016/.1jinfongt . 2020. 102089.

Ruetter, J., Romero, M., and Vardi, M. Y. (2015). Regular Queries on
Graph Databases. In Arenas, M. and Ugarte, M., editors, 18th Interna-
tional Conference on Database Theory (ICDT’15), number 31 in Leibniz
International Proceedings in Informatics (LIPIcs), pages 177-194. DOI:
10.4230/LIPIcs.ICDT.2015.177.

Sabharwal, A. (2015). Digital Curation in the Digital Humanities : Pre-
serving and Promoting Archival and Special Collections. Chandos Pub-
lishing, Oxford.

Schulz, W. L., Nelson, B. G., Felker, D. K., Durant M.D., T.], et al. (2016).
Evaluation of Relational and NoSQL Database Architectures to Manage
Genomic Annotations. Journal of Biomedical Informatics, 64:288-295,
DOL 10.1016/7. jbi. 2016.10. 015,

Simonini, G., Gagliardelli, L., Bergamaschi, S., and Jagadish, H. (2019). Scal-
ing Entity Resolution: A Loosely Schema-Aware Approach. Information
Systems, 83:145-165, DOI: 10.1016/5.1s.2019.03. 006.

Taktek, E. and Thakker, D. (2020). Pentagonal Scheme for Dynamic
XML Prefix Labelling. Knowledge-Based Systems, 209:106446, DOI:
10.1016/3.knosys. 2020. 106446.

84

https://dx.doi.org/10.1109/CIMPS.2018.8625618
https://dx.doi.org/10.1016/j.procs.2017.08.276
https://dx.doi.org/10.1016/j.procs.2017.05.456
https://dx.doi.org/10.1016/j.ijinfomgt.2020.102089
https://dx.doi.org/10.4230/LIPIcs.ICDT.2015.177
https://dx.doi.org/10.1016/j.jbi.2016.10.015
https://dx.doi.org/10.1016/j.is.2019.03.006
https://dx.doi.org/10.1016/j.knosys.2020.106446

Vigner, A. (2018). Store and Visualize EER in Neo4j. In Proceedings of the
2nd International Symposium on Computer Science and Intelligent Con-
trol, ISCSIC °18, pages 1-6, New York, NY. Association for Computing
Machinery, DOI: 10.1145/3284557.3284694.

Vathy-Fogarassy, A. and Hugyék, T. (2017). Uniform Data Access Platform
for SQL and NoSQL Database Systems. Information Systems, 69:93-105,
DOI: 10.1016/7.1s.2017.04.002.

Cerestidk, R. and Kvet, M. (2019). Comparison of Query Performance in
Relational a Non-relation Databases. Transportation Research Procedia,
40:170-177, DOI: 10.1016/j. trpro.2019.07.027.

Sestak, M., Heri¢ko, M., Druzovec, T. W., and Turkanovi¢, M. (2021).
Applying K-Vertex Cardinality Constraints on a Neo4j Graph Data-
base. Future Generation Computer Systems, 115:459-474, DOI:
10.1016/7. future.2020.09.036.

Sestak, M., Rabuzin, K., and Novak, M. (2016). Integrity Con-
straints in Graph Databases — Implementation Challenges. In Hunjak,
Tihomir; Kirinié, V. K. M., editor, Proceedings of Central European Con-
ference on Information and Intelligent Systems, pages 23-30. https://urn.
nsk.hr/urn:nbn:hr:211:102684.

Yoon, J. and Lee, S. (2018). A Method and Tool to Recover Data De-
leted From a MongoDB. Digital Investigation, 24:106-120, DOI:
10.1016/5.diin.2017.11.001.

Zhu,Z.,Zhou, X., and Shao, K. (2019). A Novel Approach Based on Neo4j
for Multi-Constrained Flexible Job Shop Scheduling Problem. Computers
& Industrial Engineering, 130:671-686, DOI: 10.1016/j.cie.2019.03.027.

85

https://dx.doi.org/10.1145/3284557.3284694
https://dx.doi.org/10.1016/j.is.2017.04.002
https://dx.doi.org/10.1016/j.trpro.2019.07.027
https://dx.doi.org/10.1016/j.future.2020.09.036
https://urn.nsk.hr/urn:nbn:hr:211:102684
https://urn.nsk.hr/urn:nbn:hr:211:102684
https://dx.doi.org/10.1016/j.diin.2017.11.001
https://dx.doi.org/10.1016/j.cie.2019.03.022

	Introduction
	Overview
	Topics to Be Addressed
	Motivation
	Problem Statement
	Approach
	Metrics
	Data

	Technical Background
	Topic Material
	Technical Material

	Software and Syntax Analysis
	The Solution
	Analytical Work
	High Level
	Schema and Data Migration

	Evaluation
	Solution Verification
	Examination of Schema Traversal

	Conclusion

