CEUR-WS.org/Vol-3111/short3.pdf

Crawl into the Dungeon with hypermedia agents

Noé Saffaf’, Victor Charpenay’

"Mines Saint-Etienne, Laboratoire d’informatique, de modélisation et d’optimisation des systémes (LIMOS)

Abstract

The emergence of Semantic Web technologies makes for a good opportunity for developing agent-based
systems capable of interacting with our world through hypermedia. The growing number of Knowledge
Graphs has been associated with the development of utilities to perform efficient Linked Data navigation.
There is, however, certain gaps to fill for extending Linked Data navigation to the frontier of MAS
systems, namely, by providing Linked Data affordance support suitable for agents while preserving their
autonomous and supervisory aspect for taking decisions. Our project demonstrates a use case of an agent
using our hypermedia artifact to connect the agent to Web environments. The presented application case
is called “Crawl into the Dungeon”; a maze-like simulated environment, represented by a RDF graph, and
we introduce an “adventurer” agent which implements hypermedia-driven behaviors from our artifact to
perform self-decided graph navigation which translates into interactive actions with the dungeon in order
to reach a defined goal.

Video: https://youtu.be/DrHf5P203Ts

Source Code: https://gitlab.emse.fr/noe.saffaf/atac_project

Keywords
Knowledge Graph, Multi-agent Systems, Linked Data navigation

1. Introduction

A motivation to bring autonomous agents and Linked Data applications together can be empha-
sized by the quote of Wooldridge, “Objects do it for free; agents do it because they want to” [1],
underlining the autonomous aspect of the ideal agent that performs purposeful actions for satis-
fying a goal. Our focus on this project is to illustrate how agents can use a hypermedia extension
tool to navigate through Linked Data, collect the data as part of the “state of mind” of the agent,
and decide on actions, which in our case, are actions to interact with the dungeon. By using the
Linked Data-Fu Spider extension, an intermediary software environment providing an interface
for requesting triples through atomic requests and generate legible information for our agent; we
administrate the navigation phase at the agent layer, and by that, attributing control directly to
the agent itself. This entrenches the principle of decision-making authority of the agent, making
them as we desire it; more autonomous. Furthermore, it also leverages the expressiveness of the
used MAS framework language as we directly implement If-This-Then-That behaviors within the
MAS framework and using its syntax rather than an external tool that would, by design, provide
a more limited control delegated to the agent. In our case, we use the Jason language, component
part of the JaCaMo framework, for which we enact sets of conditions and actions making use of
the simplicity and the versatility of that language. This set of condition/action uses perceived
knowledge of the agent (e.g. the existence of an item in the agent’s inventory found previously
in the dungeon) to interact with our simulated dungeon hosted through a custom Knowledge
Graph.

All the Agents Challenge (ATAC 2021)

& victor.charpenay@emse.fr (V. Charpenay)

® 0000-0002-9210-1583 (V. Charpenay)

© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
C: =1 CEUR Workshop Proceedings (CEUR-WS.org)

https://youtu.be/DrHf5P2o3Ts
https://gitlab.emse.fr/noe.saffaf/atac_project
mailto:victor.charpenay@emse.fr
https://orcid.org/0000-0002-9210-1583
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

2. Linked Data-Fu Spider : An artifact for agent navigation

Hypermedea is a platform designed for programming hypermedia agents with a cross-platform
design for multi-agent systems. It includes the Linked Data-Fu Spider extension, an CArtAgO
[2] artifact providing operations for agents to perform HTTP requests and generates observable
properties —states— perceivable for agents. Linked Data-Fu Spider implements Linked Data-Fu’s
components [3] for performing unitary HT TP requests, and providing a usage interface agents
can operate with. Additionally, the extension includes reasoning with OWL ontologies which
generates more observable states obtained by inference from registered terminology axioms and
collected data through navigation.

The JaCaMo [4] platform allows to build agents operating with the Belief-Desire-Intention
model and capable of using our hypermedia extension to invoke operations and perceive generated
observable properties, mapping them as beliefs from an external source. Through logical rules
denoted as navigation rules, internal and external beliefs generate new sets of actions to be
performed and triggers invokable operations in the usage interface of Linked Data-Fu Spider
artifact. This cyclic process allows agent to iteratively perform HTTP requests and collecting
data to decide on new actions to perform. Such implementation based after the Agent & Artifact
meta-model, provides the benefit of segmenting the decision phase, performed solely by the
agent in the agent layer; from the heavy computational data-processing proposed as a service
from the artifact that includes —among others— reasoning over ontologies. This allows to the
developer to implement navigation rules using directly the syntax of the used MAS platform
rather than relying on a external tool. We represent the described architecture model as below

(1):

reasons

ves observabl /_ ¢ OWL{ABoR) \ .
observed P knowledge Observable Axioms zungﬁog s
Agent state states N nowledge
ABox Axioms i Graph :
generates returns| Inferred ABox H
total Axioms / ﬂ
Internal o \\ Artifact 10MS | g emantic reasoner D H _,_,_J:)
state { Internalize controller el / ungeon C\-—’ -
~_ s - environment 7 ’\ B
internal af; ome returns RDF ['
operation lized triples T [=
T invokes artifact . -
Act hY operation _Usage ‘ Web service
- - » interface -
— 1 Mid-Layer executes HTTP
Artifact request (external \
Web operation)
:) Web Service
Agent Laver . Artifact Laver : Laver : Web Data Laver

Figure 1: Agent & Artifact Model

At the initiation phase, an agent should indicate the vocabulary used by the environment he
desires to interact with. In the case of our dungeon, we provide a custom OWL ontology for the
agent to register through the artifact. This includes definition of concepts from our dungeon
such as the Room class or the hasItem property. Registering an ontology assigns the TBox axioms
in the OWL reasoner within the artifact and are conserved for inference processing. Below
illustrates a couple of examples on how the artifact converts RDF triples obtained from HTTP
responses into structurally valid and reusable observable properties, mapped as beliefs in our
JaCaMo framework.

RDF Triple Belief in JaCaMo

:roomT a dg:Room room(roomT1)
:silverKey a dg:Key key(silverKey)
:silverKey a dg:Key item(silverKey)

:room1 dg:hasltem :silverKey hasltem(room1,silverKey)

A triple representing a class assertion of a room will, as an example, generate a unary observ-
able property. A property will generate a binary observable property (e.g. hasItem). Note that,
in our ontology of the Dungeon, we define the class Key as a subclass of Item, therefore, if a
reasoner is applied to our LDFU-Spider artifact, the produced set of observable properties also
includes inferred properties such as an instance of Key also being an instance of Item. We use in
our scenario the HermiT OWL reasoner [5].

Currently, the main functionalities supported by our artifact can be enumerated as follow:

« Register/Unregister operations to add and modify ontologies for our semantic reasoner

« HTTP operations (GET, POST, PUT, DELETE) for triple acquisition/manipulation from
Linked Data platforms, and add new beliefs to the data base RDF triples and unary/binary
predicates if the vocabulary has been previously registered

+ Operations to insert/remove custom triples

+ Reasoning

3. The dungeon environment

To put our software extension for navigating agents into application, and to demonstrate a
simple and practical for Linked Data navigation by agent. We introduce the following model
: An “adventurer” agent can interact with an external and custom environment; the Dungeon,
represented by entities such as rooms, doors and items. Initially, the adventurer starts in a
specific room (room1) and has to reach a goal room (room4). We consider three main entities
for our simplified dungeon, which are rooms, doors and keys. We also associate every entity
to a URI node providing a unique RDF document describing properties of that entity. A room
can contain properties such as hasltem, linking to other items of the dungeon, or a key can own
hasInteractible properties referring to doors that can be opened with that key. We propose a
schematic representation of our dungeon and its Knowledge Graph implementation (2).

To generate this Knowledge Graph on a local server accessible by our agent through the
intermediary of the artifact, we use the Linked Data platform Apache Jena Fuseki as an embedded
server for our Java project. The root URI of our dungeon is “http://localhost:3030/atacDungeon/”.
The objective of the agent is to reach a certain goal in the dungeon (a particular room in this
implementation). To do so, he is capable of multiple actions, each interacting with its environment.
The basic actions implemented as plans in JaCaMo are listed below:

« investigate : The agent searches for ITEMs in the room, and will form an HTTP get
request to fetch all triples concerning every item present in the room.

+ take(ITEM) : The agent takes the ITEM passed as parameter from the current room. It
will add the item to its own inventory by creating a myInventory(ITEM) belief.

+ look_doors : The agent looks for doors inside the room, and similarly to investigate, will
form a get request to retrieve the according triples.

O Node (unique
URI)

‘hasinteractibleR ooma F Triple Data

‘hasinteractibleKey | associated (0 a
node)

Room 4
GoldenKey Door3_4

“hasitem

o_lT Door3_4

Room 2 Room 3

Rogm2 Room3
: Doorl_3 a dg:Door
i ... dg:hasConnectedRoom :Room1

:hasConnection
:hasConnectedRoon
... dgzhasConnectedRoom :Room3

Doorl_2 Doorl 3. dghasinteractibleKey :Silverkey

Door1 2 Doorl_3

o

Silverkey a dg:Key
... dg:hasinteractible :Doorl_2
.. dg:hasinteractible :Doorl_3

Silverkay

| Room1 a dg:Room
... dg-hasConnection :Doorl_2
i ... dg:hasConnection :Doorl_3 quml
: ... dgzhasitem :Silverkey

Dungeon Representation Knowledge Graph

Figure 2: Dungeon representation

« move(DOOR): The agent looks at the restriction of the DOOR in parameter (e.g. a specific
key) and check if it has in its inventory the requested item. If so, the agent “moves” by
changing in its belief base his current room, and request all triples for the new room.

To understand how such actions are implemented, let us assume our agent is currently in a
specific room that we represent as a belief current Room(C_ROOM), and a GET request associated
to the URI of that room has already been performed, generating observable properties about that
room. To investigate the room would be for our agent to perform a GET request to any item
found in that room using the hasItem(ROOM, ITEM) belief. A simple implementation in JaCaMo
can be done as follow (3) :

+!investigate : currentRoom{C ROOM) <-
for (hasItem(C_ ROOM, ITEM)){
get (ITEM);
.

Figure 3: Simple Investigate plan

The adventurer agent is autonomous, on a model-based and with a cyclic implementation.
The agent’s lifecycle includes an observation phase with a goal verification step to check at each
round if the new agent’s state meets the goal conditions, and an action phase where different
conditions are checked in a listed and preferential order. Only one action is triggered per cycle
and other actions are skipped whenever one above on the list is executed (4).

Through the simple and reusable structure of the generated observable properties, it gives
flexibility to the user to define their own rules based on the MAS framework they use, which in
our case, is JaCaMo. The JaCaMo syntax offers possibilities to defines conditions with negation,
logical or even relational operators with simplicity. Additionally, conditions can be generic by
considering more high-level abstraction beliefs such as item(K EY') rather than low-level beliefs
like key(K EY) as an incidence of the artifact’s reasoning functionality. Combined, these elements
allow to write versatile rules close to the developer’s intention, and that our adventurer agent

i Event i O Checks if an event has been triggered, executes the
Observation 1 v ; associated plan
phase " | Goal Verification | | O Checks if the goal condition has been satisfied, if then,
| Phase ! ends the cycle
| i) i O Checks if the current room has not been investigated yet,
1| T_Investigate . executes the investigate plan in such case
| L 4 I
| k i (e} Checks if the current room has not been observed for finding
Action 3 T_LOO'DOOFS i doors yet, executes the investigate plan in such case
phase | T T K i Checks if an item is present in the room and not been taken,
3 _lake ! O and executes the take plan in that case (randomly chosen if
! A4 ! multiple options available)
i T_Move ' @ Movetoan adjacent room (randomly chosen if multiple options
! 1 availahle), Default action
v

Figure 4: Adventurer agent’s life-cycle

implementation may take more advantage of. For instance, extended scenarios may consider
elements such as quantifiable or boolean attributes to develop more sophisticated conditions
such as :

if (isPoisoned(BOOL) & BOOL & character HP(HP) & roomH PRestriction(ROOM, HP_MIN)
& HP > HP_MIN) do { get(ROOM) }

The above condition stipulates some condition which infers internal information such as the
navigating agent’s HP to collected information such as HP restrictions about a specific room.

4. To expand the project

As we have proved through our scenario a simple example on how agents may access to Linked
Data and adapting its behavior based on the received information by implementing simple and
intuitive rules for navigation, our project aims to encourage future MAS developers to consider
agents for tasks on Open Linked Data through the usage of a hypermedia service. Here, we
presented an overture on how agents can accomplish bounded navigation, efficiently restricting
the number of requests to external Web resources through the decision of a unique action, this, by
implementing accessible, intuitive and succinct conditions with possible reusability over multiple
MAS frameworks.

5. Acknowledgments

This work was partially funded by the ANR/SNF project HyperAgents (grant no. ANR-19-CE23-
0030).

References

[1] M. Wooldridge, An introduction to multiagent systems, John wiley & sons, 2009.

[2] A. Ricci, M. Viroli, A. Omicini, CArtAgO: A framework for prototyping artifact-based
environments in mas, in: International Workshop on Environments for Multi-Agent Systems,
Springer, 2006, pp. 67-86.

[3] S. Stadtmiiller, S. Speiser, A. Harth, R. Studer, Data-fu: A language and an interpreter for
interaction with read/write linked data, in: Proceedings of the 22nd International Conference
on World Wide Web, Association for Computing Machinery, New York, NY, USA, 2013, p.
1225-1236.

[4] O.Boissier, R. H. Bordini, J. F. Hiibner, A. Ricci, A. Santi, Multi-agent oriented programming
with JaCaMo, Science of Computer Programming 78 (2013) 747-761. doi:https://doi.org/
10.1016/j.scic0.2011.10.004.

(5] B. Glimm, I. Horrocks, B. Motik, G. Stoilos, Z. Wang, HermiT: an owl 2 reasoner, Journal of
Automated Reasoning 53 (2014) 245-269.

http://dx.doi.org/https://doi.org/10.1016/j.scico.2011.10.004
http://dx.doi.org/https://doi.org/10.1016/j.scico.2011.10.004

	1 Introduction
	2 Linked Data-Fu Spider : An artifact for agent navigation
	3 The dungeon environment
	4 To expand the project
	5 Acknowledgments

