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Abstract
We present (1) a virtual flamethrower factory as an abstraction of a real-world industrial setting that
provides Read-Write Linked Data interfaces to devices, and (2) an agent that operates in this environment
with the aim to produce flamethrowers. The interfaces allow for (1) obtaining information about state
and capabilities of the devices, and (2) controlling the devices. The agent can (1) plan and (2) execute
workflows. The agent is written in the Notation 3 language with ASM4LD semantics, can perform
Hierarchical Task Network planning, and can execute workflows described in the WiLD ontology.

Video: https://nico-assfalg.de/semantic-web/HTN-WiLD_Demo.mp4
Code: https://github.com/nico1509/htn-wild

Introduction

Under the impression of the recently standardised Web of Things descriptions1, which are a step
towards read access to descriptions of (Internet of Things) device capabilities and read-write
access to such devices’ state and functionality using Linked Data and other web technologies,
we want to provide a showcase on the “demand” side for such possibilities for access to devices.
Also outside of the Internet of Things, read-write capabilities to state maintained in Linked Data
is on the rise around the SoLiD project2. Our showcase is therefore based on Read-Write Linked
Data access to devices. As the stack of Linked Data is all about interoperability, facilitated in
part using reasoning, e. g. to flexibly swap components that speak different vocabularies, we
want rule-based reasoning as part of our showcase. To make use of the functional descriptions
and write access, we want in our showcase to add to this traditional setting (Linked Data and
rule-based reasoning) an agent that plans a workflow (from the functional descriptions and a
goal) and executes this workflow.

Technologically, we therefore built an agent that uses HTTP for communicating with devices,
where messages are described in RDF. We use rules to express reasoning. To describe the agent’s
behaviour, we employ a workflow language that can be executed on Linked Data, specifically
the WiLD ontology [1], whose operational semantics can also get expressed in a rule language,
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ASM4LD [2]. Lastly, our agent makes use of an ontology to express planning problems according
to the Hierarchical Task Network (HTN) method [3], for which we formulated operational
semantics in ASM4LD. Conveniently, all different rule aspects of this agent can be expressed in
the same syntax, Notation3, and executed on the same interpreter, Linked Data-Fu [4].

As a setting, we chose manufacturing, where interoperability is a challenge and the increasing
requirement for small lot sizes requires flexibility. To simplify the prototype development, we
work in a virtual setting based on Factorio, a video game. Factorio3 is all about automation and
the efficient and flexible production of various goods. Tech-trees and resource distribution in
the virtual environments require you to repeatedly adapt your strategy. One of the less complex
products in the game is a flamethrower, using which (1) enemies can be fought who want to
destroy the manufacturing line or (2) trees can get burned down to make room for extensions of
the manufacturing line. To build a flamethrower in Factorio, you need a set of iron gearwheels
and steel plates which themselves are made using raw iron ore. In the game, you could go and
do all the crafting by hand but it is cumbersome and not time-efficient. Therefore, you build
a factory with ovens and other assembly machines, connected by robotic arms and transport
belts. We want to make use of this game scenario, have re-built parts in Virtual Reality with
Linked Data interfaces, and for our showcase, control it using an agent that builds and executes
a workflow that produces a flamethrower. We have a virtual flamethrower manufacturing line
which we know to work, which allows us to validate if the planned workflow works by checking
if after execution a flamethrower is produced.

Related Work

Planning with semantic technologies has been investigated in different technology settings:
SHOP2 [5] is an implementation of HTN, which has been used in [6] to compose Semantic Web
Services (SWS). In SWS, function calls via POST requests are in the focus, whereas we build on
state information provided via REST [7]. Similarly, [8] do planning on the semantic web, using
proofs, and consider function calls, but as they never retract knowledge, they cannot work with
scenarios in which function calls may contradict each other over time, whereas we determine
the state afresh in each ASM step. [9] use an off-the-shelf AgentSpeak(L)-based [10] planner in
a semantic manufacturing environment. Our approach however is an integrated planning and
execution approach implemented on the web architecture.
ROSPlan [11] is also an integrated planning/execution approach, but made for the pub-

sub ROS architecture, which is fundamentally different from REST [7]. ROSplan uses an
ontology for the world state, which they update using ROS messages, whereas we assume
semantic information provided by the environment itself. The integrated CX [12] is also built
on a rule engine, but for a different environment. CX uses PDDL planning instead and has
separate modules for world, planner, execution, and domain, whereas we combine all into one.
Approaches based on Golog [13] such as [14] are also for a different assumption set: They are
based on the history-based situation calculus, which is different from working with states [15].

3https://www.factorio.com/
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Figure 1: Our demo setup with the stateless interpreter (left) and components with Linked Data
interface (right).

Virtual Manufacturing Environment

Our virtual factory shown in Figure 1 includes a set of robotic arms, transport belts andmachines.
All of them provide RESTful Linked Data interfaces and allow user agents to control them using
unsafe HTTP requests. Moreover, we have descriptions of the device capabilities. The factory
is built using the Java-based jMonkeyEngine4 along with 3D models built and animated using
Blender5. In the next section we will explain the details of our prototype.

HTN Planning for Linked Data

The theoretical foundation of our planner lies in Hierarchical Task Networks (HTN), first
designed by Sacerdoti [3] and later formalized as UMCP by Erol et al. [16]. The key idea of
HTN planning lies in the problem structure, where a goal is defined along with a set of methods
that contain task networks, describing more specifically what needs to be done and which
constraints apply. The tasks of the task networks may also need to be further decomposed
using other methods until you have a set of primitive tasks in an order that can be executed.

However, our main goal was not to implement a full-blown HTN planner, but rather provide a
set of rules that fulfil the core HTN decomposition principle, but with less technical complexity.
There is no algorithm besides a processing engine that applies rules to a set of data, leading to
easier implementation and acceptance through explainability.

We built an HTN vocabulary along with an operational semantics in the Notation3 language
with ASM4LD semantics [17]. Using this approach, we can plan workflows in the WiLD [18]
ontology for specifying workflows that can be executed on Linked Data. The operational
semantics for WiLD can also be given in Notation3/ASM4LD. In our setup, see Fig. 1, an agent
orchestrates the virtual devices along with a Linked Data Platform Container [19] that stores the
vocabularies along with workflow models and instances. The agent runs the operational seman-
tics for HTN planning and WiLD workflow execution using the Linked Data-Fu6 interpreter.
The code, including an HTN problem description, along with setup instructions is available

4https://jmonkeyengine.org/
5https://www.blender.org/
6https://linked-data-fu.github.io/
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online, see the links on Page 1. In the following we want to give you an overview of how HTN
works along with WiLD [18] and where it provides flexibility.

Notation

First, we need to introduce basic technologies from our environment Read-Write Linked Data.
We assume the data transferred in the message body of HTTP requests to be given using the

Resource Description Framework (RDF) [20]. RDF is a graph-based data model, where the data
is encoded in (subject , predicate, object) triples. With 𝒰 as the set of all URIs, ℬ the set of all
blank nodes, and ℒ the set of all literals (e. g. strings, numerical values), triples are restricted as
follows: (subject , predicate, object) ∈ 𝒰 ∪ ℬ × 𝒰 × 𝒰 ∪ℬ ∪ ℒ. In this paper, we use a logical
notation for RDF. As a triple encodes a binary predicate, we use predicate(subject , object) to talk
about a triple. As triples in RDF are valid conjunctively, we use the logical and (∧) to connect
triples to a graph. We use Uniform Resource Identifiers (URIs) [21] to denote things, abbreviated
as CURIEs7 and follow the abbreviations from prefix.cc8. We thus write a triple as follows:

rdf:type(ex:produce-flamethrower-method , :Method)

As rdf:type assigns things to a class, we use the unary predicate for a class assignment:

:Method(ex:produce-flamethrower-method)

HTN Planning of our Manufacturing Workflow

Before we add modifications, we need to (simplifying) present how the planning works for our
manufacturing workflow.

We can manufacture a flamethrower by executing tasks, which we identify using URIs. The
tasks need to be in a specific order (workflow). The tasks can be executed as HTTP requests to
a manufacturing device, which we can describe in RDF. We thus need to embed the requests in
a structure that tells us to execute the requests (we call it primitive task).

:PrimitiveTask(ex:assemble-plate)
∧ :hasHttpRequest(ex:assemble-plate, ex:assemble-plate-request)

∧ :PrimitiveTask(ex:assemble-gearwheel)
∧ :hasHttpRequest(ex:assemble-gearwheel, ex:assemble-gearwheel-request)

∧ :PrimitiveTask(ex:produce-flamethrower)
∧ :hasHttpRequest(ex:produce-flamethrower , ex:produce-flamethrower-request) ∧ …

Next, we need a another structure to determine the tasks’ order. We use a network of tasks
based on the (linked) RDF list and some enclosing RDF for that purpose:

:TaskNetwork(ex:task-network)

7https://www.w3.org/TR/curie/
8http://prefix.cc/. We use the empty prefix to denote https://purl.org/uberq/htn/vocab# and the prefix ex: to

denote http://example.org/#. An underscore in prefix position indicates a blank node.
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rdf:type
ex:produce-flamethrower-method
:Method
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∧ :hasTaskList(ex:task-network, _:li1)
∧ rdf:first(_:li1, ex:assemble-plate) ∧ rdf:rest(_:li1, _:li2)

∧ rdf:first(_:li2, ex:assemble-gearwheel) ∧ rdf:rest(_:li2, _:li3)
∧ rdf:first(_:li3, ex:produce-flamethrower) ∧ rdf:rest(_:li3, rdf:nil)

The question a planner has to answer is to come up with such an order, i. e. workflow.
To determine such an order, a planner needs descriptions of the outcome of each task. We

model the outcome as a postcondition (in HTN, this is called Literal) in the form of a SPARQL
ASK query [22] in SPIN notation9. Such literals can be regarded as the goals the tasks fulfil.

sp:Ask(ex:literal-flamethrower) ∧ sp:where(ex:literal-flamethrower , … ) ∧ …

The task network can now be regarded as fulfilling the goal of manufacturing the flamethrower.

:Goal(ex:goal-flamethrower) ∧ :hasLiteral(ex:goal-flamethrower , ex:literal-flamethrower)

The method to achieve the goal now holds the task network, to be decomposed by the planner:

:Method(ex:flamethrower-method)
∧ :forGoalTask(ex:flamethrower-method , ex:goal-flamethrower)
∧ :hasTaskNetwork(ex:flamethrower-method , ex:task-network)

Modification

Now imagine we also want to manufacture a more precise flamethrower, by attaching mid-
range optics to it. We could define a completely new task network. Instead, we leverage the
hierarchy of HTN and reuse our goal along with the method. We define additional goal tasks
and primitive tasks, e. g. for a precise flamethrower. Now we can define a method to create the
precise flamethrower, which re-uses ex:goal-flamethrower from earlier.

:Method(ex:precise-flamethrower-method)
∧ :forGoalTask(ex:precise-flamethrower-method , ex:goal-precise-flamethrower)

∧ :hasTaskNetwork(ex:precise-flamethrower-method , _:tn)
∧ :hasTaskList(_:tn, _:tl1)

∧ rdf:first(_:tl1, ex:goal-flamethrower) ∧ rdf:rest(_:tl1, _:tl2)
∧ rdf:first(_:tl2, ex:attach-optics) ∧ rdf:rest(_:tl2, rdf:nil)

Goal ex:precise-flamethrower-goal can then get decomposed into ex:goal-flamethrower and the
primitive task ex:attach-optics. Further decomposition gives us the new workflow.

Conclusion

We presented an agent that does integrated planning and execution of workflows in Linked
Data. We showcased the agent in a virtual manufacturing setting and outlined how the set of
technologies can facilitate flexibility, next to the flexibility gained by using semantic reasoning.

9http://spinrdf.org/
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