
Building Management using the Semantic Web and
Hypermedia Agents
Eoin O’Neill1, Katharine Beaumont1, Nestor Velasco Bermeo1 and Rem Collier1

1UCD School of Computer Science, University College Dublin, Belfield, Dublin 4, Ireland

Abstract
The following document describes the submission to the All The Agents Challenge of a system that
interacts with the Built on Linked Data Server (BOLD) 1. Our solution provides a Building Management
Agent Oriented Micro Service (AOMS) built using Multi-Agent MicroServices (MAMS) technology in
order to manage luminance levels on a per room basis based on the occupancy levels of each room. This
solution provides showcases a collaboration between a multitude of different agents that work together
in order to continuously monitor and interact with the server using REST, in accordance with updates
applied to the system with each time tick.

Video: https://youtu.be/uriJT-kAVMg
Source Code: https://gitlab.com/mams-ucd/atac-bold

Keywords
Semantic Web, Semantic Agents, Intelligent Agents, Multi-Agent Microservices

1. Introduction

When Ciortea et. al [1] discussed the cross over between autonomous agents and the semantic
web, they described agents being deployed in a semantically defined web environment that
could be interacted with and reasoned about. This submission is a step towards achieving the
link between autonomous agents and the web: a step towards hMAS[2]. It is concerned with the
design of agents that are able to interact with the Building on Linked Data (BOLD) environment,
store semantic information from this environment within Knowledge Stores that are particular
to each agent, and reason about this data in order to enact changes on the system. Our solution
is implemented as a Multi-Agent MicroServices (MAMS)[3] system that routinely polls the
BOLD Server in order to check the status of each room.

Through the use of ontologies, agents have the ability to create an internal model of the
building. By defining multiple ontologies we allowed the agents to adopt beliefs about different
entities within the room, both static and dynamic values that change with each iteration of the
simulation.

1https://all-agents-challenge.github.io/atac2021
All the Agents Challenge (ATAC 2021)
" eoin.o-neill.3@ucdconnect.ie (E. O’Neill); katharine.beaumont@ucdconnect.ie (K. Beaumont);
nestorvb@ucd.ie (N. V. Bermeo); rem.collier@ucd.ie (R. Collier)

© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR Workshop Proceedings (CEUR-WS.org)

1

https://all-agents-challenge.github.io/atac2021/
mailto:eoin.o-neill.3@ucdconnect.ie
mailto:katharine.beaumont@ucdconnect.ie
mailto:nestorvb@ucd.ie
mailto:rem.collier@ucd.ie
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


Eoin O’Neill et al. CEUR Workshop Proceedings 1–6

1.1. Technologies

This system combines semantic web, multi-agent systems and web technologies. The overall
system is build using the Multi-Agent MicroServices (MAMS) [3, 4, 5] architectural style.
MAMS promotes the creation of systems that are comprised of Agent-Oriented MicroServices
(AOMS) and Plain-Old MicroServices (POMS). In this approach, AOMS are comprised of one or
more agents whose state is partially exposed through a REpresentational StateTransfer (REST)
interface. In our system, the AOMS is the Building Management Service presented in Figure
1. This service interacts with the Built on Linked Data (BOLD) Server, a semantically defined
building environment which models the IBM building in Dublin, Ireland. The agents in this
system interact with the environment using REST to retrieve updates about the current state of
the environment. This information is then incorporated into their logical reasoning apparatus.

The ASTRA programming language is used because BDI agents are both reactive and respon-
sive to their environment. They continually receive events from the environment and update
their beliefs, which are incorporated into flexible plans [6]. They offer significant advantages in
developing autonomous systems and support the incorporation of a range of AI techniques [7].

Using ASTRA allows agents to take advantage of ASTRA’s modularity [8]. ASTRA modules
represent internal libraries, which allow for five kinds of annotation: terms, formulae, sensors,
actions and events [8]. A single agent can create several copies of the same module, with different
names and states [8]. The key module in the current system is the Jena Module, which acts both
as a Knowledge Store for the agents and as an interface that connects agents to semantic web
technology. The RDF Schema module allows the agent to identify the relationships between
the different entities within the system in order to classify different parts of the building. This
allows the agent to adopt beliefs about the environment which leads to action based on these
entities. This is further discussed in 2.2.

2. System architecture

Figure 1: System Diagram

2



Eoin O’Neill et al. CEUR Workshop Proceedings 1–6

2.1. Building Management Service

The Building Management Service comprises of a number of BDI agents. A Main agent has
initial beliefs concerning the sim url of the building and the building url: these are the BOLD
Server endpoints. The Main agent starts the Sim agent and injects it with the sim url. The Sim
agent iteratively queries the url, replacing the contents of the Knowledge Store with the results
of each request.

During the first iteration, the Sim agent sends a message to the Main agent to inform it that
the BOLD Server is running. The Main agent then creates the Building Manager which has the
dual responsibility of mapping the building and creating Room agents for each room it finds.
The building to be explored is passed by the Main agent.

To map the building, the Building Manager recursively iterates through the building using
the brickf:hasPart predicate. The Building Manager uses it’s Knowledge Store, referencing
schema and maintaining a set of internal beliefs about the places that have been explored. Once
complete, it queries the Knowledge Store returning the urls of all the rooms identified by the
rdf:type predicate, where the object is the brick:Room concept. Once complete, the Building
Manager creates a Room agent for each room, and initialises them with their individual room
url.

Each Room agent then queries all of the resources that exist within it’s room, searching for
things using the brickf:isLocatedIn predicate. It maintains a set of beliefs about the properties
associated with various things that it finds.

On successive iterations, the Room agents use these beliefs to capture the updated state of
the building after each iteration. The Room agent is interesting because it maintains two RDF
triple stores: a static one for triples that do not change; and a dynamic one for triples that do
change (i.e. the properties of the things in the room). This allows us to minimise the number of
GET requests required on each iteration.

The overall behaviour of the system is driven by the Sim agent which is responsible for
detecting the start of each iteration of the simulator. Upon detection, the Sim agent informs
all the Room agents via internal message passing which is routed via the Main agent and the
Building agent. Upon receipt of this message, each Room agent updates their dynamic belief
store by querying all the things that it knows of in the room. If the room is unoccupied but the
lights are left on, the agent turns the light off by issuing a PUT request to the resource with the
appropriate TURTLE content.

2.2. Jena Module (RDF Knowledge Store) and RDF Schema Module

A core component of the agents is the use of Apache Jena and modules. Apache Jena is an
open source framework that provides tools to interact with the Semantic Web and Linked Data
applications. ASTRA uses modules to represent internal libraries and agents access the library
via the module API [9, 8].

The Knowledge Store is the module used by the Building Manager, Room and Sim to interact
with the building via REST and add the information returned (in the form of turtle) to the Jena
model contained within it. Each agent has an individual Knowledge Store. See Figure 2. In
addition, an RDF Schema module allows agents to interact with RDF Schema. Given Room

3



Eoin O’Neill et al. CEUR Workshop Proceedings 1–6

agents must cater for both static and dynamic knowledge, they are given two Knowledge Stores:
one for the static knowledge and one for the dynamic knowledge. In this way, the Room agents
only need to update the dynamic knowledge on each iteration.

The Jena integration itself takes advantage of two ASTRA features: custom events and custom
formulae. The custom event model allows agents to be notified when a url has successfully been
read. The TripleFormula class is created to provide an internal representation of Triples.
ASTRA includes a mechanism for expressing custom formulae in the agent code which is
implemented using the RDFSchema module. For example, in ASTRA, to query room triples, we
use rdf.type(string url, brick.qualifiedName("Room")). A NodeFactory class
is then created to extend the basic reasoner to support the new triple formulae. The actual
support is implemented in a TripleNode class. Finally, the Knowledge Store modules are
registered with the agent using the Queryable interface. Implementors of this interface are
sources of potential formulae to be matched against a query during the reasoning process. These
potential formulae are then processed in the TripleNode1.

Figure 2: Agent-BOLD Server Interaction

3. Dynamicity and Coordination

The Building Management system supports dynamicity and coordination. The agents in this
system are dynamic in the sense that they react to changes in the environment. Based on their
updated set of beliefs, the Room agents enact changes on the environment individually by
making RESTful calls to the BOLD server in order to turn light switches on and off based on
the values of both luminance and occupancy levels.

The Room agents also update their state each time there is a time tick in the environment.
Using the dynamic Knowledge Store, each Room agent maintains an up to date description of

1Implementations of all these classes can be found in https://gitlab.com/mams-ucd/mams-cartago/-
/tree/master/mams-astra-jena and are now part of the MAMS codebase.

4

https://gitlab.com/mams-ucd/mams-cartago/-/tree/master/mams-astra-jena
https://gitlab.com/mams-ucd/mams-cartago/-/tree/master/mams-astra-jena


Eoin O’Neill et al. CEUR Workshop Proceedings 1–6

its room in accordance with the information provided by the server. To do this, Room agents
clear their dynamic Knowledge Store and update their beliefs. This effects the actions they
perform on the environment.

This is a fully coordinated system with multiple agents communicating using FIPA-ACL.
When created, the Sim agent issues a message to the Main agent. On receipt of this first message,
the Main agent creates the Building Agent.

For every subsequent time tick, the Main agent forwards the message to the Building Manager
agent, who in turn forwards the message to each Room agent, prompting them to act.

4. Existing work and challenges

The combination of BDI agents with semantic web technology has been broached with JASDL
[10]. This uses an annotation system in a way that is similar to the way our approach uses
ASTRA modules. However this can be seen as a tighter integration, with a strong coupling with
an agent’s beliefs. In the system presented in this paper, the use of modules is more akin to
adding a skill to the agent, that informs but does not integrate with, nor enforce the consistency
of beliefs. It is a more loosely coupled integration.

By allowing this, this system can integrate with multiple ontologies simultaneously. A
disadvantage is that there is no enforced consistency, but an advantage is that it paves the
way for future work involving the dynamic insertion of modules. This would allow agents to
discover which ontologies are required at runtime, making them more flexible, and facilitating
reuse across different environments.

In [11], the vision for the coming web is described in it’s entirety. It describes how the
semantic web will lend a hand in creating a web of resources, each of which could be it’s own
network in turn, such as an encapsulated neural network. This allows for resources such as
computational entities to exist within the network, and for those resources to also make use
of other resources within the network. This was one of the core tenets of the MAMS vision,
with agents themselves exposing different aspects of themselves as virtual resources on the
web, while also utilising the web in order to achieve system and individual agent goals.

It is the hope of the authors that future work will build on ideas in this submission, moving
towards agent systems that are situated in a web environment, with a modular use of ontologies,
in order to learn relationships that exist across the network. By observation and reasoning
about the network, agents can start to autonomously, at runtime utilise semantically defined,
previously unknown resources on the network.

Acknowledgments

This research is funded under the SFI Strategic Partnership Programme (16/SPP/3296) and is
co-funded by Origin Enterprises plc.

5



Eoin O’Neill et al. CEUR Workshop Proceedings 1–6

References

[1] A. Ciortea, S. Mayer, F. Gandon, O. Boissier, A. Ricci, A. Zimmermann, A decade in
hindsight: the missing bridge between multi-agent systems and the world wide web,
in: Proceedings of the International Conference on Autonomous Agents and Multiagent
Systems, 2019.

[2] F. Gandon, 4.4 merry hmas and happy new web: A wish for standardizing an ai-friendly
web architecture for hypermedia multi-agent systems, Autonomous Agents on the Web
11 (2021) 42.

[3] R. Collier, E. O’Neill, D. Lillis, G. O’Hare, Mams: Multi-agent microservices, in: Companion
Proceedings of The 2019 World Wide Web Conference, 2019, pp. 655–662.

[4] E. O’Neill, D. Lillis, G. M. O’Hare, R. W. Collier, Delivering multi-agent microservices
using cartago, in: International Workshop on Engineering Multi-Agent Systems, Springer,
2020, pp. 1–20.

[5] E. O’Neill, D. Lillis, G. M. O’Hare, R. W. Collier, Explicit modelling of resources for multi-
agent microservices using the cartago framework, in: Proceedings of the 19th International
Conference on Autonomous Agents and MultiAgent Systems, 2020, pp. 1957–1959.

[6] S. Airiau, L. Padgham, S. Sardina, S. Sen, Incorporating learning in bdi agents, in: Workshop
AAMAS: adaptive and learning agents and MAS (ALAMAS+ ALAg), ACM Estoril, 2008,
pp. 49–56.

[7] R. H. Bordini, A. El Fallah Seghrouchni, K. Hindriks, B. Logan, A. Ricci, Agent programming
in the cognitive era, Autonomous Agents and Multi-Agent Systems 34 (2020) 1–31.

[8] R. W. Collier, S. Russell, D. Lillis, Reflecting on agent programming with agentspeak (l),
in: International Conference on Principles and Practice of Multi-Agent Systems, Springer,
2015, pp. 351–366.

[9] T. A. S. Foundation, Apache jena, 2021. URL: https://jena.apache.org/.
[10] T. Klapiscak, R. H. Bordini, Jasdl: A practical programming approach combining agent and

semantic web technologies, in: International Workshop on Declarative Agent Languages
and Technologies, Springer, 2008, pp. 91–110.

[11] F. Gandon, From linked data knowledge graphs to linked intelligence intelligence graphs
or the potential of the semantic web to break the walls between semantic networks and
computational networks, 2020. URL: https://www.youtube.com/watch?v=b9GPOOu2PTM,
iSWC Vision Track.

6

https://jena.apache.org/
https://www.youtube.com/watch?v=b9GPOOu2PTM

	1 Introduction
	1.1 Technologies

	2 System architecture
	2.1 Building Management Service
	2.2 Jena Module (RDF Knowledge Store) and RDF Schema Module

	3 Dynamicity and Coordination
	4 Existing work and challenges

