

Copyright © 2021 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0)
This work is supported by National High Technology Research and Development Program of China(2018YFB1403400) and the Hebei Provincial Key

Research and Development Program (Grant No. 21312102D).

Research on Quality Model and Measurement for

Microservices

Jinchuan Yu

Software Engineering Institute

Shanghai Key Laboratory of Computer

Software Testing & Evaluation

 Shanghai Development Center of

Computer Software Technology

Shanghai, China

yjc_sirius@126.com

Jianxin Ge

Software Engineering Institute

Shanghai Key Laboratory of Computer

Software Testing & Evaluation

 Shanghai Development Center of

Computer Software Technology

Shanghai, China

gjx@sscenter.sh.cn

Jixin Sun

Software Engineering Institute

Shanghai Key Laboratory of Computer

Software Testing & Evaluation

 Shanghai Development Center of

Computer Software Technology

Shanghai, China

29577661@qq.com

Abstract—In recent years, microservice architecture (MSA)

has become popular. Emerging from the agile community, MSA

implies a number of small, independently deployable

microservices. They are characterized by low coupling, high

cohesion, low complexity, and are more flexible and convenient

in application, saving resource efficiency.However, there is

limited research on quality models for MSA. Although MSA is

a special form of service-oriented architecture, there are still

some differences between the two that are hard to ignore, such

as decentralization, smaller service size and encouraging

technical heterogeneity. Therefore, it is difficult to directly

apply the traditional quality model research of service-oriented

architecture to MSA. Based on the above considerations, this

paper proposes a quality model for MSA, which reflects the

quality characteristics of microservices through 16 measures for

each of the Functional Suitability, Flexibility, Interactivity,

Performance Efficiency, Reliability and Security. At the same

time, to address the shortage of theoretical validation of current

research, this paper uses static analysis and dynamic analysis to

validate the proposed measures and prove the rationality of its

theory.

Keywords—microservice architecture, software attribute,

quality model

I. INTRODUCTION

A microservice architecture (MSA) is a variant of the
Service- Oriented Architecture (SOA) structural style. As to
Martin Fowler, it is to build an application as a group of
services each designed for a specifific business capability, and
intercommunicate via lightweight mechanisms while being
independently deployable [13]. In a microservices
architecture, services are fine-grained and the protocols are
lightweight. MSA is currently the most popular architecture
for companies creating new applications, due to its advantages,
such as agility or scalability [5]. The architecture has a crucial
role in the software life-cycle, for example to ensure quality
and critical attributes of the software [14]. To take advantage
of the microservice-style architecture, much effort has been
invested into porting legacy, monolithic applications[11], [6].
Microservices is a young research area and there is very little
work on comprehensive and systematic evaluation of
microservice architectures(MSA). In this paper, we propose a
quality model to evaluate MSA more comprehensively by
mapping measures to multiple aspects of software properties.

Most of the software quality measures used in the early
process-oriented paradigm of software systems were oriented

towards underlying software measures, such as the number of
codes, the complexity of functions or control flows, etc.After
object-oriented programming became the dominant
programming paradigm, existing measures and standards may
not be fully applicable to object-oriented software systems,
which has led researchers to reevaluate existing measures and
propose new ones at the same time. Among them, the most
influential ones are the C&K measure set proposed by
Chidamber and Kemerer [15, 16] and the L&H measure set
proposed by Li and Henry [17]. They introduce CBO
(Coupling Between Object Classes), which have received a
great deal of attention. With the further expansion of the
system size, SOA (Service-Oriented Architecture) became
more and more popular, the level of abstraction of software
measure objects has been raised again. Perepletchikov et al
[18] proposed two sets of measures to measure service-
oriented software systems by two software properties:
coupling [19] and cohesion [20]. Mario et al [4] argue that the
measure values of software attributes can reflect software
quality and evaluate microservice architectures in terms of
cohesion, coupling, and complexity through a data-driven
approach, using maintainability as an example. Yang et al [1]
measured the maintainability of microservice systems by four
software attributes: scale, coupling, cohesion and complexity,
and established a maintainability quality model for
microservice architectures. However, according to ISO/IEC
25010:2011, maintainability is only a part of the MSA quality
model and no comprehensive and holistic MSA quality model
has been proposed.[1] Integrating Yang et al.'s research on the
quality model of MSA maintainability, Tong et al.'s research
on MSA functional efficiency and others' research results, and
the ISO/IEC 25010:2011 standard, this paper proposes a
quality model of MSA to reflect the quality of micro The
quality characteristics of microservices are reflected by 16
measures in functional suitability, flexibility, interaction,
performance efficiency, reliability and security. Flexibility is
a measure of the ease of secondary development, expansion
and maintenance of microservice architecture, including four
measures of cohesion, coupling, complexity and reusability;
interactivity is a measure of the association and influence
between microservice architecture and other microservices
and external systems, including two measures of
interoperability and coexistence. The core characteristics of
microservice architecture are characterized.

The remainder of this paper is organized as follows.
Section Ⅱ analyzes and quantitatively expresses the MSA,

Section Ⅲ proposes an MSA-oriented quality model, Section
Ⅳ validates the quality model results, and the summary and
future work are in Section Ⅴ.

II. MSA MODEL ANALYSIS

A. Formal representaton of MSA

In order to clearly and accurately describe the MSA and
define the measures proposed subsequently, this subsection
abstracts the microservice architecture of interest by applying
the approach of Yang et al. [1] to this paper and formalizes it
accordingly. The conceptual software architecture of the
entire microservice system can be represented in the form of
Figure 2.1. Based on Yang et al.'s study, we added the
relationship between the microservice system and external
programs as an attribute .

Figure 2.1: Conceptualizing software architecture for
microservice systems

For a single microservice in a microservice system,
formalize each microservice 𝑆𝑖 in the following representation.

𝑆𝑖 = (𝑀𝑆𝑖
, 𝐼𝑇𝐹𝑆𝑖

, 𝑀𝑅𝑆𝑖
)

𝑀𝑆𝑖
 denotes a collection of modules in a microservice 𝑆𝑖.

 𝑀𝑆𝑖
= {𝑚𝑗|𝑗 ∈ 𝑁0}

𝑁0 means natural number.

𝐼𝑇𝐹𝑆𝑖
 denotes the set of interfaces in a microservice 𝑆𝑖.

𝐼𝑇𝐹𝑆𝑖
= {𝑖𝑡𝑓𝑖|𝑗 ∈ 𝑁0}

𝑖𝑡𝑓𝑖 = (𝑛𝑎𝑚𝑒𝑗 , 𝑃𝑗)

𝑀𝑅𝑆𝑖
 represents the dependency relationship between

modules in Microservices 𝑆𝑖.

𝑀𝑅𝑆𝑖
= {𝑚𝑟𝑗|𝑗 ∈ 𝑁0}

𝑚𝑟 = (𝑠𝑚𝑟, 𝑑𝑚𝑟), 𝑤ℎ𝑒𝑟𝑒 𝑚𝑟. 𝑠𝑚𝑟, 𝑚𝑟. 𝑑𝑚𝑟 ∈ 𝑀𝑆𝑖

𝑠𝑚𝑟 is the module that depends on other modules in the
corresponding dependency, and 𝑑𝑚𝑟 is the module on which
other modules depend in the corresponding dependency. The
whole microservice system can be formalized as a collection
of microservices, and dependencies between microservices.
Integrated system(IS) refers to the sum of microservice
system and external programs

𝐼𝑆 = (𝑆, 𝐼𝑅, 𝐸𝑃𝑅)

𝐼𝑅 represents dependencies between microservices and
other microservices.

𝐼𝑅 = {𝑖𝑟𝑖|𝑖 ∈ 𝑁0}

𝑖𝑟 = (𝑠𝑖𝑟, 𝑑𝑖𝑟, 𝑖𝑡𝑓), 𝑤ℎ𝑒𝑟𝑒 𝑖𝑟. 𝑠𝑖𝑟, 𝑖𝑟. 𝑑𝑖𝑟 ∈ 𝑆; 𝑖𝑟. 𝑖𝑡𝑓 ∈ 𝐼𝑇𝐹

𝑠𝑖𝑟is the microservice that depends on other microservices
in the corresponding dependency, 𝑑𝑖𝑟is the microservice on
which other microservices depend in the corresponding
dependency, and 𝑖𝑡𝑓 is the interface involved in the
corresponding dependency.

EPR represents the relationship between the microservice
system and external programs.

B. MSA Attributes Analysis

MSA consists of one microservice unit, each of which has
the ability to perform functions independently; at the same
time, microservices show the characteristics of low coupling
and high cohesion, making the whole MSA more flexible, and
each module and each microservice unit has the ability to be
reused; in addition, due to the low complexity and small scale
of microservice system, the resources required for execution
are lower and more efficient. To address the advantages and
characteristics of MSA, we developed a quality model of
MSA by combining the research of Michel-Daniel et al.[1]

III. QUALITY MODEL FOR MSA

A. Software Quality Model Study

Software quality models can help us to better propose and
apply measures, and usually measure models describe the
entities, attributes, and relationships of measures, and
currently common measure models in the field of software
engineering include the GQM (Goal Question Measure)
model [21] and the QMOOD (Quality Model for Object-
Oriented Design) model.

1) GQM model:

The GQM model is the "Goal-Problem-Measure" model,

which is one of the common measures models in software

engineering practice, and is based on the idea that measures

are measured by answering specific questions about the goal

of the measure. The GQM model consists of three main layers:

the conceptual layer, the operational layer, and the data layer.

The conceptual layer is the goal to be measured, and the

operational layer decomposes the abstracted goal into

concrete questions. The data layer will give specific measures

for these questions. By deriving the measure values of the

measures and thus answering the questions, the specific

measure of the target is finally obtained. The framework of

the approach is shown in Figure 3.1.

Figure 3.1: GQM Model Framework

2) QMOOD model:
The QMOOD model is a four-level hierarchical quality

model proposed by Bansiya and Davis [22]. Originally
applied to the quality assessment of object-oriented software
systems, it has been migrated to other types of software
systems [23]. The QMOOD model is a hierarchical model
consisting of quality attributes and software features that
reflect the quality attributes.The model consists of four
layers.The first layer is the quality attributes that are the goals
of the assessment; the second layer is more specific software
attributes such as cohesion, coupling, comprehensibility etc.;
the third layer is the specific measures that can be used to
evaluate the second layer of software attributes; and the last
layer is the software components that these measures focus on,
such as classes, components, interfaces, etc. Figure 3.2
illustrates the four-layer quality model framework of
QMOOD.

Figure 3.2: QMOOD Model Framework

B. MSA Quality Model

The final quality model for the microservice-oriented
architecture is shown in Figure 3.3. The first layer is the sum
of the quality attributes to be evaluated in this paper. The
second layer is the software attributes that can reflect the
characteristics of the microservice architecture, which are
Functional Suitability, Flexibility, Interactivity, Performance
Efficiency, Reliability and Security. The third layer is the
specific measures, which are 16 in total. These 16 measures
each of the six software attributes in different aspects. The
fourth layer is the object to be measured by the proposed
measures. Considering that the microservice architecture
advocates technical heterogeneity, the selected measures are
to a certain extent independent of the programming language
and technical implementation, this paper selects modules,
interfaces, microservices and their related relationships as the
measures of microservices themselves based on the
characteristics of microservices. At the same time, we add the
external system as the measure object because we have to
consider the interaction between microservice system and
other systems.

Figure 3.3: Quality model for MSA

C. Study On measures Of MSA Quality Model

This section measures MSA by Functional Suitability,
Flexibility, Interactivity, Performance Efficiency, Reliability
and Security. Each of the six software attributes and their
measures will be described below.

1) Functional Suitability:
This attribute measures degree to which MSA provides

functions that meet stated and implied needs when used under
specified conditions.

a) FAM(Functional appropriateness measures): This

measure measures degree to which the functions facilitate the

accomplishment of specified tasks and objectives. The user is

counted to demonstrate the steps necessary to complete a task

as well as any unnecessary steps. The ratio of the former to the

latter is the measure for this section.

b) FCM(Functional correctness measures): This

measure measures degree to which MSA provides the correct

results with the needed degree of precision.

2) Flexibility:
This attribute is an upgraded version of maintainability,

which reflects the concept of high maintainability of
microservice systems ---- coupling, cohesion and complexity,
and also reflects the ability of microservice systems to be
developed twice, which is the concept of reusability we
proposed.

a) CPM(Coupling measures): The coupling measure

measures the degree of dependency between elements within

a microservice and between a microservice and other

microservices. Loose coupling has a positive impact on

flexibility.The measures proposed in this paper quantify the

coupling at two main levels, the microservice implementation

element level and the microservice level, respectively. The

main concerns include the dependency relationships between

modules belonging to the same microservice and the

invocation relationships between microservices generated

through interfaces.

• Internal Microservices Coupling of Model，IMSCM.

The IMSCM calculates the sum of the dependencies
between the modules inside the microservice, i.e., the
connections between modules [24]. In fact, this type of
coupling measure has been validated in studies of
service-oriented architectures [12] and is considered to
be directly related to coupling.

𝐼𝑀𝑆𝐶𝑀 = |𝑀𝑅𝑆𝑖
|

• Weighted Microservices Coupling of Interface ，
WMSCI. WMSCI measures the degree of dependency
between microservices and microservices in a system,
and in this measure, this paper abstracts the coupling
to the microservice level, and the specific measures
include the invoking and invoked relationships. In this
paper, we refer to the study of Kulesza et al [25], which
argues that both incoming and outgoing coupling are
very important and that these couplings contribute to
the decision of whether to refactor or not.The WMSCI
measure is equal to the sum of the weighted coupling
value of the microservice's dependency on other
microservices and the weighted coupling value of the
microservice's dependency on other microservices,
which is calculated as follows.

𝑊𝑀𝑆𝐶𝐼 = |{𝑖𝑟 ∈ 𝐼𝑅|𝑖𝑟. 𝑠𝑖𝑟 = 𝑆𝑖 ∪ 𝑖𝑟. 𝑑𝑖𝑟 = 𝑆𝑖}|

b) COHM(Cohesion measures): A design with high

cohesion significantly enhances the understandability and

testability of a software system, while improving its stability

and modifiability, which in turn affects the flexibility of the

software system. However, compared to coupling, cohesion

is difficult to analyze quantitatively and measure

automatically, and more often than not cohesion relies on

semantic or subjective evaluation.

• Microservices Cohesion of Interface Data，MSCID.

MSCID quantifies the cohesiveness of a given
microservice by measuring the degree of similarity of
the parameters passed in the interfaces exposed by its
microservices; a microservice is highly cohesive if all
interfaces work on the same type of input parameters.

𝑀𝑆𝐶𝐼𝐷 =
2 ∗ ∑ ∑ |𝑃𝑎∩𝑃𝑏

𝑃𝑎∪𝑃𝑏
|𝑛

𝑏=𝑎+1
𝑛
𝑎=1

𝑛(𝑛 − 1)

• Microservices Cohesion of Interface Usage，MSCIU.

MSCIU quantifies the cohesiveness of a given
microservice by measuring the invocations of that
interface by other microservices. A microservice is
considered highly cohesive when each user of the
microservice (microservice consumer) invokes all the
public interfaces of the microservice, which can be
considered highly relevant for implementing a certain
functionality.

𝑀𝑆𝐶𝐼𝑈 =
|{𝑖𝑟 ∈ 𝐼𝑅|𝑖𝑟. 𝑑𝑖𝑟 = 𝑆𝑖}|

|𝐼𝑇𝐹𝑆𝑖
| ∗ |𝐶𝑆𝑆𝑖

|

• Microservices Cohesion of Model ， MSCM. This

measure abstracts the methods and properties in a class
to the module level in a microservice. If the number of
connectivity graphs formed by all modules and
dependencies of a microservice is 1, then the
microservice is cohesive to a certain extent. However,
considering that many microservice architectures
manage the operations related to interfaces through a
unified module, which often leads to the module
becoming the hub of an otherwise unconnected graph,
the module and its dependencies are removed from the
connected graph when using this measure for cohesion
measurement.

𝑀𝑆𝐶𝑀 =
2 ∗ ∑ ∑ 𝐼𝑠𝐵𝑔(𝑀𝑎 , 𝑀𝑏)𝑛

𝑏=𝑎+1
𝑛
𝑎=1

𝑛(𝑛 − 1)

 𝑀𝑎 and 𝑀𝑏 are modules in the microservice,
𝐼𝑠𝐵𝑔(𝑀𝑎, 𝑀𝑏) is to calculate whether𝑀𝑎 and 𝑀𝑏 belong to
the same connectivity graph, and its return value is 1 or 0.

c) CPLM(Complexity measures): Complexity

primarily measures the complexity of the microservice

implementation and execution functions, and more broadly

includes the ease with which developers can perceive,

understand, and modify them. High complexity can have a

negative impact on flexibility.In this paper, complexity is

measured by the following two measures, taking into account

the complexity of the microservice implementation itself and

the complexity of developer awareness and understanding.

• Microservices Model Propagation Cost，MSMPC.

MSMPC refers to the visibility theory from the study

[26], which measures the extent to which changes in a
single module lead to potential changes in other
modules within the microservice. This is expressed as
the possible information flow and dependencies
between modules, which can be obtained through the
passing of dependencies. If a module is directly or
indirectly dependent on a large number of other
modules, the more likely it is that changes to this
module will affect other modules. MSMPC is
calculated as follows.

𝑀𝑆𝑀𝑃𝐶 = ∑ ∑ 𝐼𝑠𝐶𝑡(

𝑛

𝑏=1

𝑛

𝑎=1

𝑀𝑎, 𝑀𝑏 , 𝑇𝑐)

where Ma and Mb are modules in the microservice, and Is
Ct(Ma, Mb, TC) is the calculation of whether Ma and Mb can
be connected by the passing of dependencies, i.e., whether the
value of the passing closure matrix at their locations is not zero.

• Microservices Parameter Count ， MSPC. MSPC

mainly measures the number of data structures
appearing in the microservice, and in this paper we
mainly consider the number of parameters of the
interface, which includes its own interface and the
interface of invoking other microservices. MSPC is
calculated as follows.

𝑀𝑆𝑃𝐶 = ⋃ 𝑃𝑗

|𝐼𝑇𝐹𝐶|

𝑗=1
, 𝑖𝑡𝑓𝑗 ∈ 𝐼𝑇𝐹𝐶

d) RM (Reusability measures): Reusability is a very

desirable quality measure for industry [27], due to its major

cost reduction prospects. Moreover, the microservice can be

repurposed so that with little changes can be used outside of

its design time domain.

• The degree of reuse of microservices in secondary
development. Counts the number of times a
microservice module is reused in the execution of
different services to characterize its degree of reuse.

• Time efficiency of reuse of microservices in secondary
development. Characterize the reuse time efficiency of
a microservice module by counting the time it
consumes to reuse it during the execution of different
services.

3) Interactivity:
This section examines the interaction between the

microservice system and the external programs. The
microservices system has to cooperate with the external
programs to achieve the function, but not to affect the normal
operation of the external programs.

a) IOM (Interoperability measures): The extent to

which microservices systems exchange information with

external programs.

b) CEM (Co-existence measures): The microservice

system does not affect the execution of its own functions

when interacting with external programs, i.e., no exceptions

occur in either program during the execution of the test.

4) Performance Efficiency: performance relative to the

amount of resources used under stated conditions. Resources

include monetary resources and time resources.

a) EC (Execution cost): this measure is computed as

the monetary cost of the resources used for running the

microservice. The cost can be estimated at design time and

corrected after the implementation is evaluated at execution

time.[2]

b) RT (Response time): the anticipated delay between

the time when a request to a microservice is issued and the

time when the result is delivered.The average response time

of all requests over a period of time is measured, and the

smaller the average response time, the faster the processing

speed and the more efficient the service.[3]

𝑋 = ∑(𝐴𝑖)/𝑛

𝑛

𝑖=1

𝐴𝑖=Time taken by the system to response to a specific user

task or system task at i-th measurement.

n=Number of responsed measures

5) Reliability: degree to which a system, product or

component performs specified functions under specified

conditions for a specified period of time.

a) SER (Successful execution rate): the ability of a

service provider to successfully fulfil the requests within a

given period of time. It is measured as a number between 0

and 1 or a percentage calculated as the ratio between

successful requests and the total number of requests.

b) Sca (Scalability): the ability of a microservice to

function correctly (as designed) irrespective of the changes in

size (amount of resources) without inquiring performance

penalties. the degree of scalability can be calculated by

analyzing the distribution of synchronous requests provided

by the exposed interfaces, a high diversity of requests

indicating poor scalability.

c) HM (Health management): a quality attribute

describing the ability of a microservice to cope with failures.

A microservice complies to this property by saving the

internal state, and restarting automatically while loading the

most up-to-date state prior to the failure. It is a binary

attribute with ”yes” or ”no” values and it is verified via

instance graphs or type graphs [8].

6) Security: degree to which a product or system protects

information and data so that persons or other products or

systems have the degree of data access appropriate to their

types and levels of authorization.

a) CM (Cofidentiality measures): degree to which a

product or system ensures that data are accessible only to

those authorized to have access.

𝐶𝑀 = 1 − 𝐴/𝐵

A=Numbers of cofidentiality data items that can be

accessed without authorization

B=Number of data items that require access control

b) IM (Integrity measures): degree to which a system,

product or component prevents unauthorized access to, or

modification of, computer programs or data.

𝐼𝑀 = 𝐴/𝐵

A=Number of data corruption prevention methods actually

implemented

B=Number of data corruption prevention methods available

and recommended

IV. VALIDATION OF QUALITY MODELS

measure-based evaluation is compulsory for assessing the
quality attributes of microservices. A vast number of quality

criteria measuring a variety of aspects concerning
microservices exist [9]. However, evaluation approaches are
scarce [7], while assessment methods for semi -automatic
decompositions are entirely missing [10]. Therefore, we have
designed a combination of static and dynamic analysis. In the
following, we introduce the static and dynamic analysis, and
then specific attributes will be selected for analysis.

A. Static Analysis:

It is a technique that does not require execution of the
analyzed software. Scanning the code of a microservice before
being linked to other microservices can aid the identification
and correction of vulnerabilities without incurring the costs of
running the code.

B. Dynamic Analysis:

It is a technique that requires the execution of the analyzed
software, usually employed when the application code is not
available. The most common type of dynamic analysis
consists of Unit Tests and it has the benefit of validating static
analysis findings or identify new flaws.

C. Validation test result Analysis:

a) Functional Suitability Validation Analysis: The

analysis of Functionality Suitability is a dynamic analysis. To

verify the functionality of the microservice, the program of

the microservice unit is executed and then compared with the

expected result, if the result meets the expectation, it means

the Functionality Suitability is good.

b) Flexibility Validation Analysis: The analysis of

Flexibility belongs to a combination of static and dynamic

analysis. By studying the modules and interfaces of

microservices and their relationships, we can determine the

coupling, cohesion, and complexity of microservices. These

belong to static analysis; however, when studying the reuse

of microservices in secondary development, we need to run

microservices in different development environments, which

belongs to dynamic analysis.

c) Co-existence measures Validation Analysis: Co-

existence measures means that the interaction between the

microservice architecture and the external program does not

affect the execution of their respective functions, and that no

exceptions occur in either program during the execution of

the test. Obviously, we need to make the microservices

system and the external program run simultaneously, which

is a dynamic analysis .

d) Confidientially measures Validation Analysis: The

extent to which the microservices system ensures that only

authorized people have access to the data. The detection of

such measures is a dynamic analysis and requires verification

that unauthorized users have access to the data.

V. SUMMARY AND FUTURE WORK

A. Summary

Microservices is a young research area, and there is still
relatively little work on quality models for microservices
architectures. Although microservice architectures, as a
special form of service-oriented architectures, can to some
extent draw on quality modeling work on service-oriented
architectures, there are still some differences between the two
that cannot be ignored, such as decentralization, more
promotion of technical heterogeneity, and smaller service size.
At the same time, the current research on quality models for

services often lacks theoretical validation, which may be more
important than quantitative analysis. Based on this, this paper
conducts quality modeling research for microservice
architectures, and its main work and contributions include.

1) A quality model is proposed:
A quality model is proposed for the microservice

architecture, which reflects the quality characteristics of
microservices by measuring the six software attributes of
microservices Functional Suitability, Flexibility, Interactivity,
Performance Efficiency, Reliability and Security through 16
measures. The former considers the compatibility between the
microservice architecture and external programs, and the latter
adds the examination of the reusability of the microservice
architecture on the basis of maintainability.

2) Validation of the quality model
We designed a combination of dynamic and static analysis

to validate and analyze the MSA quality model with key
indicators to increase the reliability of the results.

B. Future work

Although this paper establishes a quality model under
microservice architecture and conducts theoretical validation
to prove its effectiveness, there are still some shortcomings
and areas that need further research. For example, other
quality model measures will be added, such as cohesion
attributes that are relatively incomplete, and subsequent
research can measure cohesion through semantic analysis to
achieve a more accurate assessment of flexibility. Moreover,
a more comprehensive quantitative study will be conducted
subsequently after more industrial data are collected to further
prove the validity of the model.

REFERENCES

[1] Deyu Yang, Research on Software Maintainability Quality Model for
Microservices Architecture, 2020

[2] Michel-Daniel Cojocaru, Alexandru Uta, Ana-Maria Oprescu,
Attributes Assessing the Quality of Microservices Automatically
Decomposed from Monolithic Applications, 2019 18th International
Symposium on Parallel and Distributed Computing (ISPDC).

[3] Yexin Tong, Xinkui Qu, Research on Quality of Service Assurance in
Microservice Architecture, 2019

[4] M. Cardarelli, L. Iovino, P. D. Francesco, A. D. Salle, I. Malavolta, P.
Lago, An extensible data-driven approach for evaluating the quality of
microservice architectures, in: C. Hung, G. A. Papadopoulos (Eds.),
Proceedings of the 34th ACM/SIGAPP Symposium on Applied
Computing, SAC 2019, Limassol, Cyprus, April 8-12, 2019, ACM,
2019, pp. 1225–1234.

[5] P. Di Francesco, P. Lago and I. Malavolta, ”Migrating Towards
Microservice Architectures: An Industrial Survey”, in International
Conference on Software Architecture (ICSA), Seattle, WA, 2018, pp.
29-2909.

[6] L. Baresi, M. Garriga, A. De Renzis, ”Microservices Identification
Through Interface Analysis, in ” Service-Oriented and Cloud
Computing”, ESOCC, 2017. Lecture Notes in Computer Science, vol
10465. Springer

[7] Engel, Thomas, Melanie Langermeier, Bernhard Bauer and Alexander
Hofmann. Evaluation of Microservice Architectures: A measure and
ToolBased Approach, CAiSE Forum, 2018.

[8] N. Alshuqayran, N. Ali and R. Evans, ”A Systematic Mapping Study
in Microservice Architecture” , 9th International Conference on
ServiceOriented Computing and Applications (SOCA), Macau, 2016,
pp. 44-51.

[9] J. Bogner, S. Wagner, A. Zimmermann, ”Automatically measuring
the maintainability of service and microservice-based systems - a
literature review” . in 27th International Workshop on Software
Measurement, Gothenburg, Sweden, 2017, pp. 107-115.

[10] J. Bogner, S. Wagner, A. Zimmermann, ” Towards a practical
maintainability quality model for service and microservice-based
systems” , in Proceedings of the 11th European Conference on
Software Architecture: Companion Proceedings, ECSA, 2017, pp.
195198.

[11] M. Gysel, L. Kolbener, W. Giersche and O. Zimmermann, ”Service
Cutter: A Systematic Approach to Service Decomposition” , in
ESOCC, Vienna, 2016, pp. 185-200.

[12] M. Perepletchikov, C. Ryan, A controlled experiment for evaluating
the impact of coupling on the maintainability of service-oriented
software, IEEE Transactions on Software Engineering 37 (4) (2011)
449–465.

[13] M. Fowler and J. Lewis, Microservices, 2014. [Online]. Available:
https://martinfowler.com/articles/microservices.html

[14] R. Kazman, S. G. Woods, and S. J. Carriere. ”Requirements for
integrating software architecture and reengineering models” , in
Proceedings of the Working Conference on Reverse Engineering
(WCRE), Washington DC, 1998, pp. 154163.

[15] S. R. Chidamber, C. F. Kemerer, Towards a metrics suite for object
oriented design, SIGPLAN Not. 26 (11) (1991) 197–211.

[16] S. R. Chidamber, C. F. Kemerer, A metrics suite for object oriented
design, IEEE Transactions on Software Engineering 20 (6) (1994) 476–
493.

[17] W. Li, S. Henry, Object-oriented metrics that predict maintainability,
Journal of Systems and Software 23 (2) (1993) 111 –122, object-
Oriented Software.

[18] M. Perepletchikov, C. Ryan, K. Frampton, Comparing the impact of
service-oriented and object-oriented paradigms on the structural
properties of software, in: R. Meersman, Z. Tari, P. Herrero (Eds.), On
the Move to Meaningful Internet Systems 2005: OTM 2005 Workshops,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2005, pp. 431–441.

[19] M. Perepletchikov, C. Ryan, K. Frampton, Z. Tari, Coupling metrics
for predicting maintainability in service-oriented designs, in: 2007
Australian Software Engineering Conference (ASWEC’07), 2007, pp.
329–340.

[20] M. Perepletchikov, C. Ryan, K. Frampton, Cohesion metrics for
predicting maintainability of service-oriented software, in: Seventh
International Conference on Quality Software (QSIC 2007), 2007, pp.
328–335.

[21] V. Basili, F. Shull, F. Lanubile, Building knowledge through families
of experiments, Software Engineering, IEEE Transactions on 25 (1999)
456–473.

[22] J. Bansiya, C. Davis, A hierarchical model for object-oriented design
quality assessment, IEEE Transactions on Software Engineering 28 (1)
(2002) 4–17.

[23] B. Shim, S. Choue, S. Kim, S. Park, A design quality model for
service-oriented architecture, in: Proceedings of the 2008 15th Asia-
Pacific Software Engineering Conference, APSEC ’ 08, IEEE
Computer Society, USA, 2008, pp. 403–410.

[24] E. Yourdon, L. Constantine, Structured design: fundamentals of a
discipline of computer program and systems design, Englewood Cliffs:
Yourdon Press, 1979.

[25] U. Kulesza, C. Sant’Anna, A. Garcia, R. Coelho, A. von Staa, C. J. P.
de Lucena, Quantifying the effects of aspect-oriented programming: a
maintenance study, in: 22nd IEEE International Conference on
Software Maintenance (ICSM 2006), 24-27 September 2006,
Philadelphia, Pennsylvania, USA, IEEE Computer Society, 2006, pp.
223–233.

[26] D. Sharman, A. Yassine, Characterizing complex product architectures,
Systems Engineering 7 (2004) 35–60.

[27] M. Gysel, L. Kolbener, W. Giersche and O. Zimmermann, ”Service
Cutter: A Systematic Approach to Service Decomposition” , in
ESOCC, Vienna, 2016, pp. 185-200.

