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Abstract— In previous papers [8], [9] we discussed 

ISO/IEC 25000 application when new quality measures are 
defined. In continuity with papers above we show, through the 

definition of new data quality measures for bias, how to 
handle additional and new measures in a SQuaRE 

perspective. The method proposed is intended applicable in 
general. 

In the present paper: 

- data bias is identified as a quality issue  

- some notions about frames theory are recalled and  

- two quality measures for data bias are proposed and 

- one of them is proposed as ISO/IEC 25024 conforming 
measure 
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I. INTRODUCTION   

A well-known problem in ML is the bias-variance 
dilemma:  to find the optimal complexity of the model that 
minimize output errors while giving independency from 
changes of training dataset (i.e. balancing underfitting and 
overfitting) [19]: 

𝐸𝐷 =  𝐵2  +  𝑉 =  

= 𝐸𝐷
2[𝑦(𝑥; 𝐷) − ℎ(𝑥)]+ 𝐸𝐷[{𝑦(𝑥; 𝐷) − 𝐸𝐷 [𝑦(𝑥; 𝐷)]}2] 

 where: 

𝐸𝐷 is the expected squared output error 

𝐵 is the bias 

𝑉 is the variance 

x is the input vector 

ℎ(𝑥) is the regression function characterizing the model 

y(x;D) is the prediction function of x over the dataset D  

So, the expected squared error ED is due to the squared 
error generated by the regression function adopted (bias) 
and also due to the behavior of the prediction function 
around its average for the dataset D (variance), in other 
words the sensitivity to the variation of dataset. 

The bias-variance decomposition is of low practical 
value, because it requires to know all the datasets the 
machine will handle, whereas in practice we have only a 
single observed dataset and we need to predict\train the 
behavior of the machine at its best. Moreover, the U-shaped 

error function of the bias-variance optimization doesn’t 
hold for deep neural networks [29]. 

For those reasons, in the following we don’t refer to the 
bias-variance dilemma, but simply refer to data bias as 
statistical features of a dataset in a ML context i . Such 
statistical features can be measured by several indexes (e.g. 
Gini, Shannon, see [16], [17], [18]) and the new ones that 
we are going to introduce in this paper.  

Moreover, this paper tries to recall a wider issue: how to 
address the manifold of measures that are continuously 
discovered, including, but not only, AI measures: in our 
view they can be all addressed under the ISO/IEC 25000 
umbrella [8][9]. 

In the following we introduce an application and some 
considerations taken from frame theory and close to the 
Principal Component Analysis [19], [7]. Intuitively, PCA 
finds the (hyper)ellipsoid that best fit the dataset, by 
centering dataset in the origin, and the axis of the 
(hyper)ellipsoid are the eigenvectors of the covariance 
matrix. In a similar view, we reshape the (hyper)ellipsoid 
into an (hyper)sphere and translate the dataset over its 
surface to assess its spread with the help of frame theory. 

 

Figure 1 PCA of a multivariate gaussian distribution 
(source: Nicoguaro - wikimedia) 

In our application, we consider each sample-point as the 
edge of a vector with the other edge in the origin and 
measure the overall span of such vectors. 
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Firstly, we recall the definition of frame and frame 
bounds with an example taken from [10].  

Definition 1: For a Hilbert space Hm of dimension m and 
with inner product <·,·> Hm , a finite or countable collection 
of vectors 𝜑𝑖 (𝑖∈𝐼)⸦ Hm  is said to be a frame of  Hm if there 

exist constants 0< c ≤C such that  

𝑐 ∥ 𝜑 ∥2 ≤ ∑ |< 𝜑𝑖  , 𝜑 >|2
𝑖∈𝐼 ≤ 𝐶 ∥ 𝜑 ∥2  (1) 

for all 𝜑 ∈ 𝐻𝑚 

A frame is said to be tight if 𝑐 = 𝐶 

  

(A)                              (B) 

Figure 2 Examples of frame spread 

 

The 𝜑𝑖  vectors are the black ones in (A) and (B) and are 
frames of R2. Blue and green vectors are instances of  𝜑 .  

With reference to figure 2 above, the black vectors are 
our frame and it is easy to realize that in (A) they are 
spreader in the space than in (B). 

It is also understandable at a glance that in (B) the green 
vector maximizes, as it forms narrow angles, the sum of dot 
product of each black vectors with the green one, leading 
to find C; and the blue vector minimizes, as it forms wide 
angles, the sum of dot product of each black vectors with 
the blue one, so leading to find c. 

In the same way, it is easy to check that in (A) the sum 
of the dot products of the green vector with the black ones, 
has the same value of the sum1 of the dot product of the 
blue vector with the black ones, leading to 𝑐 = 𝐶, so the 
frame in (A) is tight. 

Fortunately, it is possible to calculate tightness, that is 
the difference between C and c, not by 𝜑 trial and error but 
by the covariance matrix generated with mutual dot 
product among vectors, as C and c are respectively its 
maximum and the minimum eigenvalue.   

 

II. DATASET AND THE FRAME MODEL   

The first proposed bias measure is based on the 
following theorems and definitions [14]: 

-when the frame bounds c and C are equal, a frame is 
said to be tight. 

 
1 We mean the ∥ 𝜑 ∥2normalized squared sum according 
(1)  

Defined Φ = (

𝜑1

𝜑2
. .

𝜑𝑁

)  the matrix NxM that collects 

vectors 𝜑𝑖 of the frame, then: 

-the upper and lower frame bounds (see C and c above) 
of a frame are given by the largest and smallest eigen 
values of the frame operator S = Φ Φ T   respectively.  

-the non-zero eigen values of the frame operator S are 
the same of the non-zero eigen values of the Gram matrix 
G= Φ TΦ. 

-the rank of G is M. The M eigenvalues of G are 
positive. 

In this proposal we: 

(a) handle a numeric dataset as it was a frame: for a set 
of N tuples over a set of M attributes, then in the frame 
view the number M of attributes is the space dimension and 
the number N of tuples is the number of vectors of the 
frame;  

(b) then, we measure data bias in the same way we 
measure frame tightness, and in particular: 

(b.1) measure difference between upper and lower 
bounds of the frame  

(b.2) measure Frame Potential 

From those assumptions follows that a non-biased dataset 
is found when the corresponding frame is tight.   

The measures b.1 and b.2 can be considered equivalent 
for the purpose of evaluating bias of dataset; in this case 
even only one of them can be adopted, and the choose 
between the two can be driven by the computational effort 
required. In this paper we explore mainly the measure b.1. 

 

Measure b.1 

The basis of our analysis is the calculation of lower and 
upper frame bounds with the following steps: 

 

1. Collect a numeric data table with N tuple and M 
attributes and define it as a set of N row vectors { Φ1, Φ2,… 

ΦN }; 

2. Build the matrix (NxM)  Φ = (

Φ1
Φ2
. .

ΦN

)  

then  

3. Compute the Gramian matrix (MxM) G = Φ TΦ  

4. Compute M eigenvalues λi (i=1,..M) of G 

5. Sort the (non-zero) eigenvalues of G in descending 
order 

6. Find the upper eigenvalue λmax and the lower 
eigenvalue λmin  



 

 

 

7. Compute the difference D = λmax - λmin 

8. Assess the value of D considering that D = 0 means 
a tight frame. 

 

Measure b.2 

The second proposed bias measure is based on the 
following theorems and definitions. 

The frame potential FP is defined as [9]: 

 

FP = ∑ |〈𝜑𝑖 , 𝜑𝑗〉𝑖,𝑗𝜖𝐼 |2   

where 𝜑𝑖  are the frame vectors.  

 

In this measure, the step 4 above and further ones are 
replaced by the following 

4. Compute the FP from matrix G = Φ TΦ 

5. Assess the value of FP considering that a minimum 
value of FP, is reached when the frame is tight. 

For computing step 4, consider that  
〈𝜑𝑖 , 𝜑𝑗〉 with 𝑖, 𝑗𝜖𝐼 are the diagonal and upper -right 

elements (or lower – left as G is symmetric) of the Gramian 
matrix; FP in other words is the sum of the squared upper 
(or lower) elements of the Gramian, including diagonal 
ones; this measure may be easier to compute than the 
previous one.    

 

A first example for measure b.1 and b.2 

Consider a dataset with attributes “Age” and “Income”; 
domains are 6 age groups [20-30), [30-40), [40-50), [50-
60), [60-70), [70-80) and 7 income categories [10-20K€), 
[20-30k€), [30-40k€), [40-50k€), [50-60k€), [60-70k€), 
[70-80k€); here three samples of (Age, Income) are 
collected: 

     Age    Income  

 Φ= (
1 4
3 1
6 7

) = (
𝑡
𝑢
𝑣

) G=(
46 49
49 66

)  

 

From G we calculate measures b.1: 

 

D = λmax - λmin = 106 – 6 = 100  

 

and measure b.2: 

 

FP = 462+662+492= 8873 

 

 
2as for equiangular tight frames holds G=N\M*I, where I is 
the identity matrix [25].  

 

Figure 3 Frame vectors t,u,v are the rows of matrix Φ 

 

The measure b.1 is responsive to tuples order (e.g. 
swapping tuples in general leads to different measure 
values) and so it gives a measure of tightness of ordered 
tuples, where tightness is defined according (1). As we 
want a measure not responsive to the tuples order, in the 
following we explain how to solve this issue. 

 

III. A COMPARISON WITH PCA 

To explain visually the approach, we compare PCA 
(figure 1) with our method:  

(i) in PCA, if we find equal G eigenvalues  𝜆1 =
 𝜆2 … =  𝜆M, we can conclude that there isn’t any 
dominant component and the volume fitting data 
is an (hyper)sphere;   

(ii) similarly in our method, if we firstly project the 
data over an (hyper)sphere surface, and if we then 
find  equal G’ eigenvalues  𝜆1

′ =  𝜆2
′ … =  𝜆𝑀

′ , we 
can conclude that the projected data are evenly 
spread over the (hyper)sphere surface because 
they are the edges of an equiangular tight frame2.  

Possibly, to gain more information about data bias, both 
the approaches (i) and (ii) can be adopted. In this paper we 
consider only the approach (ii). 

 

IV. APPLICATION REMARKS 

According the method (ii), before applying steps 1-8, 
we apply the following 0.a, 0.b, 0.c steps: 

0.a discretize vectors coordinates domains 
0.b vertex mean translation so that the barycenter (average 

of the translated vertices) is zero. 
0.c normalize vectors module to unit 

As an example, we apply the measure b.1 over the 
dataset of covid-19 vaccinated people in Italy  
(https://github.com/italia/covid19-opendata-vaccini). 

The dataset contains the number of COVID-19 vaccine 
injections grouped by 9 age range [16-20), [20-30), [30-

https://github.com/italia/covid19-opendata-vaccini


 

 

 

40), [40-50), [50-60), [60-70), [70-80), [80-90), [90-
further). 

As elder people were firstly vaccinated (generally 2 
injections required for vaccination), the histogram of 
injections people shows the desired polarization in the 
higher age groups. 

  

Figure 4 Injections per group age at 8.4.2021 

Starting from elder people, vaccination was progressively 

extended to mid-age people, so about one and half month 

later it is found a different shaped histogram in figure 5. 

 

Figure 5 Injections per group age at 23.5.2021 

As we said before, measure b.1 is not understandable if 

directly applied to the original dataset: as shown in figure 

4, it leads to a sort of evaluation of the shape of the 

histogram, so we instead apply step 0.a dividing the 

domain of #vaccine_injections in 9 intervals and then 

apply step 0.b and 0.c. After normalization, we process 

Φnorm8.4.2021 and Φnorm23.5.2021 and we have respectively the 

results (figure 6):  

λnorm8.4.2021_1=2,92,  
 

λnorm8.4.2021_2=6,10 Dnorm8.4.2021=3,18 

 

 
3 Note that is also fulfilled [24] the normalized frames 

condition N= ∑ 𝜆𝑖
𝑀
𝑖=1       

 

Figure 6 Injections (3-steps normalization) at 8.4.2021 

 

and (figure 7): 

λnorm23.5.2021_1=2,2  

λnorm23.5.2021_2=6,84  Dnorm23.5.2021=4,64 

 

Figure 7 Injections (3-steps normalization) at 23.5.2021 

Note: the bigger circles stand for overlapping points  

Note that, applying the normalization steps to a generic 

dataset, we have the maximum Dnorm=8 for a uniform 

distribution, so the 23.5.2021 value it is closer to a uniform 

distribution than the 8.4.2021 value and that is the behavior 

expected3, because the aim was to have, later in time, high 

values of vaccinated people in all group ages (i.e. less 
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“tight”). Visually, in figure 7 some points got closer than in 

figure 6 and two more collapsed; and this is what we 

expected, as moving towards a uniform distribution means 

that even more points get closer or collapse. 

It is interesting transpose, for the purpose of assessing bias, 

some results from frame theory, for example: 

-care should be taken in choosing M and N, because some 

couples (M, N) don’t correspond to Equiangular Tight 

Frames4 [25] and\or don’t correspond to “highly symmetric 

frames”5 [26].  

From a bias point of view, this could mean that for some 

(M, N) couples it’s easier to build non-biased data. 

Moreover, the minimum value for Frame Potential FP for 

unit-norm tight frames, [9] is: 

FP = N   if M ≤ N 

FP = M2\N if M ≥ N 

and this helps to assess the data that have an FP close to 

the minimum, as it means they are “as orthogonal” to each 

other as possible. 

 

V. PROPOSAL  

To sum up, with this proposal we address the issue of 
finding a data quality measurement function (i.e. metric) 
through geometrical calculation.  

 

Its application is envisaged for, but not for only, evaluation 
of sampling bias across multiple attributes, as for example 
the protected ones [12]: a well-known issue in modern 
societies are the inequalities and with the measure above we 
can overall assess the bias of a population dataset over 
multiple attributes like “income”, “ethnicity”, “group age”, 
instead of assessing bias against single or couples of 
attributes.  

 

At the same time, we highlight the need to handle the 
manifold of measures that are discovered by the community 
of researchers with the approach explained in [8]: the new 
measure b.1 “tightness” can be defined in terms of a new  
measure conforming to [6] and\or to [28].  

The measure b.1 is documented in SQuaRE format in Table 
1. For the time being, we make the assumption that 
“tightness” is relevant to completeness characteristic, 
further refinements about characteristic relevance will 
depend on the work progress in [28]. For the scope of this 
paper, Table 1 shows a simplified measure documentation; 

 
4 From [25]:  ∄ RETF (19, 76) and ∄ RETF (20, 96); notation 
means “there not exists a real equiangular tight frame 
with parameters (M, N)” 
5 E.g.: there are no “highly symmetric” tight frames of five 
vectors in C3, but there are tight frames of five vectors like 
vertexes of a trigonal bipyramid 

a comprehensive way of measure documentation is 
described in [3].  

 
ID Com-I-4-IT-10 

Name Data values completeness 

Description Tightness of normalized dataset  

Measurement 
function 

X= A-B= λmax - λmin 

λmax,λmin are max, min eigenvalue of G = Φnorm
 T Φnorm  

matrix Φnorm is built from dataset normalized 
according steps 0.a, 0.b, 0.c 

DLC All Data Life Cycle 

Target Entity Dataset with N tuples and M attributes 

Property Data value 

 

NOTE X=0 means “tight” according the definition of frame theory 

 

NOTE ID includes additional part IT-10 [3] 

Table 1 Completeness measure - Tightness  

  

VI. FURTHER STUDIES 
Whereas data bias measurement starting from a given 

dataset appears relatively easy, designing a dataset (frame) 
starting from a level of bias (tightness), is not so simple 
[13]; this result, as far as possibly others from frame theory, 
can be taken into consideration when looking for an optimal 
training dataset for Machine Learning. 

Dataset spread measurement appears useful in 
conjunction with classification6 and it holds also for not 
pre-trained machine like SVM (Support Vector Machines). 

Due to the use of ML models in many fields (see Perceptron 
in mechanical statistic [31]), we cannot exclude other fields 
of application for this early study.  

   

The metric is applicable with some tricks [7] also to 
images and it will be analyzed in a future paper.  

 

VII. CONCLUSION   

In this early study the measures b.1 and b.2 appear 
suitable to measure data sample bias [12], that in turns is 
mainly related to accuracy and completeness data quality 
model characteristic [6], [28]. They can be considered in 
SC7 WG6 and appear relevant to SC42 WG2 and WG3 
work in progress on A.I. [27], [28].  

The manifold of metrics available for industry and 
research7, including the one introduced in this paper, can be 
addressed in the ISO/IEC 25000 perspective: applying the 
process described in [8], all the measures, including b.1 and 
b.2 presented in this paper, can be defined as ISO/IEC 
25000 conforming measures. 

 

6 In general classification is easier when data are not 
spread. 
7 See an example of the manifold of benchmarks in 
https://paperswithcode.com/sota and [30]. 

https://paperswithcode.com/sota
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