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Abstract

Causality mining has emerged as an important dimension of NLP research, especially with respect to
narrative understanding and story generation. Past research in poetics and reading comprehension has
identified the expression of causal relations as one of the primary functions of narrative communication.
Nevertheless, causality detection remains a formidable challenge for NLP. A recent survey by Ali et al.
highlights the many challenges of this interdisciplinary research across multiple domains [1]. One area
that remains under-researched is that of cross-domain consistency, whether causal relations and their
detection behave in similar ways across different kinds of texts. As Bamman et al. have established, many
NLP systems lose considerable performance when applied on fictional texts [2]. In this paper, we thus
establish the relative performance of baseline causal mining models on examples drawn from fictional
narratives and compare them with standard NLP benchmarks drawn from SemEval data. With a new
labeled dataset that we introduce, we train models to detect causality within and between sentences, and
uncover linguistic features that indicate a causal relationship between phrases. This research surfaces a
range of questions that will help advance the further study of understanding causality in narrative.
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1. Introduction

Understanding narrative as a form of causal reasoning first emerged in the work of French
structuralists [3, 4]. For Tzvetan Todorov, the causal association within or between statements
was one of the three fundamental dimensions of narrative. “Most works of fiction of the past are
organized according to an order that we may qualify as both temporal and logical;...the logical
relation we habitually think of as implication, or as we ordinarily say, causality” (p.41) [3].
Subsequent research has highlighted the significance of causality for narrative comprehension
[5]. Causality is not only a core feature that aids comprehension for developing readers
[6]; readers of all ages recall information more easily when it is encoded within causally
linked phrases [7]. Causal statements have been shown to be powerful predictors of reader
comprehension [8] and narrative persuasion [9]. As Graesser writes, summarizing much of
this research, “Comprehension is driven by why-questions to a much greater extent than other
types of questions (when, where, how, what-happens-next)” [10].

Text-based causality has been researched in non-literary contexts as well, for instance to
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explore clinical narratives [11] or in social science to analyze policy effects [12]. Within the
field of NLP, researchers have studied how causal inference can improve fairness in Al models
[13] and shown how causal relations are important components of event scripts, which are
themselves elements in the larger task of plot detection [14, 15, 16]

Causality is first and foremost a way of understanding event relationships [14]. Two or
more events can be said to be causally related when a temporally prior action or state causes a
subsequent action or state. For van den Broek [17], one of the pioneers of causality research,
causality consists of four interlocking criteria:

« temporal priority: the causal event must be temporally prior to the caused event;

« operativity: the causal event must be active when the caused event occurs (i.e. is not
subsumed by events when the caused event occurs);

« necessity: the caused event would not have occurred without the causal event;

« sufficiency: if given the circumstances of the story, the causal event occurs then the
caused event occurs;

While prior work has focused on the task of causality mining, one area that remains un-
derstudied is the behavior of models across different text domains. As the work of Bamman
et al. has shown [2], the performance of many NLP systems degrades considerably when
applied to fictional texts (in some cases by twenty points or more). Before proceeding with the
more general task of causality detection, we need to better understand its behavior in fictional
compared to non-fictional texts.

In this paper, we introduce a pilot dataset of manually annotated causally-related events in
sentences drawn from popular contemporary fictional narratives belonging to seven different
genres, available in a GitHub repository ! We also develop computational models to detect
causal relations and compare the relative performance of our models between the literary
fiction dataset and a set of non-fiction sentences drawn from the SemEval 2010 task-8 dataset
[18]. First, we create a model to detect relations between events by utilizing features derived
from semantic, syntactic, and dependency-related aspects of the text. Second, we develop a
deep-learning model to detect the presence of a causal relation, using pre-trained BERT layers.
We compare our models to state-of-the art models and explore implications for further study of
causality in narrative texts.

2. Data

2.1. Annotated Data

We provide a set of 548 positively annotated causal event pairs drawn from 141 literary passages
along with an equal number of non-causally related pairs from the same passages. Passages
from which the event pairs are drawn consist of three consecutive sentences randomly selected
from a larger set of over 1,200 literary works published in the past 15 years comprised of seven
different genres [19].

'The datasets and annotation handbook are available in a GitHub repository.
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Table 1
Literary Data Causal Events

Causal Event Caused Event Strength Score
she’d fallen asleep against the window  her forehead was cold 3
my oldest and best friend has a glam- the situation is all the more dismal 2.75
orous PR job and is freshly engaged

with both feet safely on the ground Vonetta became her old self 2.25

In order to annotate causal event pairs, over the course of several weeks we trained a team of
three undergraduate annotators all with majors in the humanities. In addition to being provided
van den Broek’s schema cited above, annotators were instructed to maximally annotate an
event such that all consecutive words associated with an event were captured (see Table 1
for examples). We define an event for our purposes as any action undertaken by an agent
that actually occurs (or does not occur) in the diegetic universe of the narrative. Negative
events (things that don’t happen) can be both the causal or caused event in our framework, but
hypothetical events cannot (“I would go to the market, but..”). We also condition our event
pairs on three-sentence excerpts so we only observe event pairs that are within a maximum of
two sentences.

Annotators were also asked to provide a “strength” score in accordance with van den Broek’s
theory that causality is not a purely binary phenomena but one of degree. For example, some
events may be more or less sufficient or necessary for a caused event to occur (while temporal
priority and operativity are considered to be binary). We therefore created a 3-point ordinal scale
to capture annotator confidence in the sufficiency and necessity of the causal event. Figure 1
provides a distribution of scores indicating that in over half of cases causal events were identified
as being “strongly” causal. This suggests that the use of an ordinal scale may be extraneous
and is worth further study. Overall, we observe moderate agreement between annotators, with
Fleiss’s Kappa k = 0.49484, in line with the inter-agreement score found in the semantic link
annotation framework introduced by Mostafazadeh et al. [14].

2.2. SemEval Dataset

We utilize the SemEval 2010 Task-8 dataset, commonly used by Natural Language Processing
researchers to train state-of-the-art causality mining algorithms. The SemFEval data contains
1003 causal-effect relations. The sentences are manually collected through pattern-based Web
search, examples shown in Table 2. The SemFEval researchers’ definition of cause-effect aligns
with ours, although they allow only a specific set of syntactic patterns in the causal relation.
For more details see their public annotation guidelines [18].

We combine the cause-effect samples with 1003 rows that do not contain a causal event, in
order to capture non-causal relationships. While SemEval annotates events at the word-level,
our literary data annotates at the phrase level. In order to compare these two datasets, we
computationally capture the phrase around the annotated event. After pre-processing, each
row in our dataset contains the causal phrase, the caused phrase, and the sentence.
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Figure 1: Distribution of literary data causal strength score for all positively annotated events

Table 2

SemEval 2010 Task-8 Annotation Examples
Sentence Causal Event  Caused Event
Those were cancers caused by radiation exposures. cancers exposures
He had chest pains and headaches from mold in the bedrooms. headaches mold

3. Models

The goal of causality mining for narrative understanding can assume two distinguishable and
important forms. The first is the detection of causal relatedness. The second is the identification
of causal pairs. Causal relatedness refers to the identification of the presence of causality
communicated in language without identifying the exact two causal units.

While less precise than causal pair detection, the identification of causal relatedness is a
valuable form of knowledge with respect to narrative texts. It allows researchers to identify
texts, text types (genres), or textual communities (online platforms) where causal argumentation
exists in more explicit and detectable ways. For example, we assume that children’s literature
makes causal relatedness more readily apparent to readers through the explicit use of causally
related language. As texts rise in complexity, we assume such causal language will decline,
allowing readers more interpretive freedom as to the causes of narrative progression.

The second task, identifying causal pairs, is the more traditional NLP task. This task is
important because it can help researchers identify the particular causal relations between agents
and events in any narrative environment. For example, we assume that different communities
might attribute the causes of Covid to different agents, and the accurate identification of causal
pairs could help surface these different community-based narrative understandings.

To address these two tasks we accordingly develop two separate modeling approaches for
causal pair detection and causal relation identification.
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3.1. Causal Pair Detection

To detect causal pairs, we build a feature set of syntactic, semantic, and dependency-driven
representations of the causal phrases in each dataset. We utilize all phrasal pairs from both intra-
sentence and inter-sentence causal events. We then experiment with widely used algorithms to
train a model on the feature set, and interpret the feature weights of the best model, assessed
by the F1 score.

To construct our experimental feature space, we aggregate our features into three general
categories:

« semantic features: To capture similarity in meaning between two phrases, we calculate
the ratio of similar words using a Word2Vec model.

« syntactic features: To capture syntactical structure of the two phrases, we maintained
a count for each part-of-speech present in the causal and caused phrase. We also engineer
a co-reference count between the two phrases, and overlapping entity counts.

» dependency relationships: For sentence-level phrase relationships, we count depen-
dency relations between two phrases.

We utilize Python libraries spaCy and neuralcoref for feature creation 2. While similar causal
research emphasizes the value of temporal relations in detecting causality [14], we lean only
on the linguistic qualities within each phrase, or causal unit, rather than such contextual
information.

We experiment with models in the widely used sklearn library: Random Forests, Support
Vector Machines, and Logistic Regression °. We utilize grid search and cross validation in order
to find the optimized parameter set and feature space, resulting in a trained Random Forest
model.

3.2. Causal Sentence Detection

In the 2021 paper “Causality Mining in Natural Languages Using Machine and Deep Learning
Techniques: A Survey” Ali et al. [1] review the state of research on causal relationships within
computational linguistics. While they review NLP’s advancements in causal mining using both
traditional and deep-learning techniques, they trained on only non-literary texts. Because we
aim to uncover how these types of deep-learning models perform on fictive literary data, we
trained a single layer on top of a BERT model to detect intra-sentence causality, i.e. the presence
of expressed causality within a given sentence. We then trained the same model architecture on
SemEval data to compare the performance. Given a sentence, the model returns the probability
of the sentence containing a causal event or not and selects the highest probability.

In our exploration of sentence level causal detection, we first attempted to apply Girju’s
causal structuring to our dataset [20]. These failed to label the literary text due to the necessary
semantic constraints of Girju’s pattern matching. These constraints follow a strict causal noun-
verb-effect noun structure and were based on Jaegwon Kim’s ontological framework of entities

“Refer to the spaCy and neuralcoref libraries.
*Refer to the sklearn library.
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Table 3
Causal Detection Model Parameters

Optimizer | Learning Epsilon Dropout Proba- | Train Max Word | Epochs
Rate bility Batch Length
Adam | 5e-5 | 1e-8 | 0.1 | 32 | 124 | 4

and causal relations [21]. Because these lexico-syntactic patterns did not work well on literary
data, we opted for a more robust technique in deep-learning.

BERT is a multilayered bidirectional Transformer based encoder [22]. It is pre-trained to
represent sequences of characters or symbols in left and right contexts. BERT is then fine-tuned
on an additional layer to model downstream tasks [23]. It is widely used for various NLP
tasks and has been employed to detect cause-effect relationships with Semeval 2010 Data [24].
However, this architecture has not been trained on literary data nor has narrative causality
been used to aid machine comprehension.

Our BERT architecture and hyperparamters are based on the findings from [23] and in-
corporates the methodology from the base C-BERT model developed from Vivek et al [24].
We implemented our model with the transformers and pytorch Python libraries . The data
was split 60-40 into a training and test set for the holdout method. The model was then fed
literary sentences as sequences of tokens, with a binary indicator of the presence of causality
representing non zero strength score. The output contexts vectors were then passed through
our Softmax activation layer. Our model used backpropagation with Adam on a learning rate of
5e-5 for the binary loss function on batch sizes of 32 over 4 epochs, see Table 3. This procedure
was then repeated with SemEval data.

4. Results

For both sub-problems, the literary datasets achieve similar scores to the SemEval dataset (-5.4
points for causal mining), indicating that existing approaches to causal detection in NLP apply
reasonably well to fiction data (Table 4). For both datasets, we achieve the best results when we
filter out data that has a low (below 2.0) causal strength score as provided by the annotators.

For sentence level causal detection, on both datasets, the models perform very well: the
model trained on SemEval 2010 data has an F1 score of 98.1% and the model trained on the
literary data has an F1 Score of 92.7%. This is a surprisingly smaller drop in performance than
initially anticipated, given prior work [2]. The application of Girju’s patterns on this literary
data did not generate meaningful results, but the patterns have previously achieved an F1 score
of 82% on SemEval data [24]. Previous entity recognition with machine learning models has also
achieved less than 70% F1 score with literary data [2]. While the size of the dataset might have
led BERT to overfit, we found consistency across trainings with randomly selected batches of
the training set. This indicates that BERT is successful in capturing the complexity of causality
in the literary data.

“Refer to the transformers and pytorch libraries.
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Table 4
Model Performance

Model Data Type | F1 Score
Causal Sentence (BERT) Literary 92.7%
Causal Sentence (BERT) SemEval 98.1%
Causal Pair (RF) Literary 80.2%
Causal Pair (RF) SemEval 75.1%
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Figure 2: Feature weights for the Random Forest models trained on the annotated literary data and
the SemEval data

For causal pair detection using Random Forest models, performance of the linguistic-feature-
based models is also shown in Table 4. Rather than prioritizing model performance, we are
interested in interpreting the feature weights. In the literary dataset and the SemEval dataset,
we find that the number of semantically similar words is the greatest indicator of causality, see
Figure 2. This follows our intuition that if an event causes an effect, there will be semantically
similar indicator words across the phrases.

As mentioned, applying Girju’s pattern matching [20] did not work for the literary dataset,
but we found that the presence of certain parts of speech, especially verbs within both the
caused and the causal phrase, helped to indicate causality. Certain features that we expected to
hold higher weight, like co-reference count, did not, though this might be a bias in the chosen
datasets.
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5. Discussion

Our models, along with recent research, suggest that causality detection on labeled data is
beginning to achieve reasonably high levels of accuracy. When it comes to predicting the pres-
ence of causal expression within a given sentence, current deep-learning models are extremely
accurate, with only a small decrease in performance for literary data.

Increasing model performance and model confidence however is limited by the relative lack
of training data and the complexity of annotating causality [14]. In our literary dataset, we find
examples where multiple events cause a subsequent event, or examples in which “necessity” of
the relation could be disputed in varying contexts. In our data, we extracted three sentences
from longer text passages that when taken out of context might impact reading comprehension.
We also only test on limited sentence windows, ignoring causal relatedness across large text
spans, which is arguably an important issue for long literary narrative.

In future research we would like to apply a tighter annotation framework to the labeling of
events following the schema of Mostafazadeh et al [14], which focuses on single word-phrases
that may be hierarchically nested. This would allow for more systematic comparison across
multiple domains. Further exploration of inter-annotator agreement and the validity of an
ordinal scale for capturing causal relations is also warranted.

6. Conclusion

Despite the inherent challenges in tagging the data, our study finds that it is possible to detect
the presence of causal relations in literary sentences utilizing pre-trained BERT layers, with
similar success to the SemFEval data. We achieve less of a drop in the F1 Score than suggested
by prior work with other semantic features [2]. We also show that in detecting the causal
phrase, consistent feature weights are used across the two datasets. This indicates that we
should be able to use preexisting architectures developed by the NLP community to detect
causal event relationships between phrases in literary data. In further research, we aim to apply
these architectures for the detection of causal pairs in literary data for both intra-sentence and
inter-sentence phrase pairs. This would allow us to perform causal network analysis in a text.
Across larger extracts of text, we would expect temporal understanding, using a schema like
TimeML, to be more essential [25].

This paper has established the relative performance of baseline models on our literary fiction
data versus the commonly-used SemEval dataset. We confirm that causality is a detectable
feature in fiction data, and that the models weigh the linguistic features similarly. Even with a
small set of hand-annotated training data, we are able to compare our model to state-of-the-art
results from the field. This will allow researchers to utilize the model architectures developed in
the Natural Language Processing field to study causality in literary texts. How causal relations
are encoded differently across different texts, text types, or textual communities remains an
open question, but one that might be approachable given our findings.
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