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Abstract
Non-English languages are notorious for their lack of available resources, and temporal tagging is no
exception. In this work, we explore transfer strategies to improve the quality of a German temporal
tagger. From a model perspective, we employ a weakly-supervised pre-training strategy to stabilize
the convergence of Transformer-based taggers. In addition, we also augment data with automatically
translated English resources, which serve as an alternative to commonly used alignments of latent em-
bedding spaces. With this, we provide preliminary empirical evidence that indicates the suitability of
transfer approaches to other low-resourced languages: A small number of gold data coupled with an
existing data set in a resource-rich language and a weak labeling baseline system may be su�cient to
boost performance.
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1. Introduction

Annotated data has become an essential part of modern-day NLP approaches, but non-English
resources remain scarce. In the absence of data, it then becomes increasingly di�cult to even
transfer existing approaches to a multilingual context. In this work, we particularly focus on
the task of Temporal Tagging, which serves a multitude of downstream applications in the
area of narrative extraction [1]. For example, more accurate temporal tags can be utilized in
timeline summarization [2, 3] or event reasoning [4]. For temporal tagging, too, the largest
resources exist without a doubt for English [5, 6, 7, 8]. While some non-English resources do
exist [9, 10], they are still scarce, and generally smaller than their English counterparts. Despite
attempts to approach the lack of language-speci�c resources through the lens of multilingual
transfer learning [11, 12], Heideltime [13, 14], a rule-based approach extending to multiple
languages, remains state-of-the-art. Yet, rule-based approaches generally su�er from a precision-
heavy tagging, since slight variations on patterns cannot be successfully detected. By applying
state-of-the-art neural models instead, such variations could be covered as well, increasing
the overall tagging performance. However, the lack of available data makes the training of
data-hungry neural models non-trivial. We illustrate a generic transfer pipeline with German
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as an example of a lower-resource language. By using a combination of automatically labeled
data for pre-training and additional translated English data, we boost the amount of available
training data. With this augmented corpus, we are able to �ne-tune Transformer models that
improve temporal tagging performance for German.

2. Related Work
The main reference point for temporal tagging of non-English resources is Heideltime [13,
14], which provides automatically transduced rules for other languages; the coverage varies
depending on the language’s syntactic structure. At the same time, they also provide language-
speci�c rules for a smaller set of languages, including German.
As for datasets, this work relies on the KRAUTS corpus [9], which consists of roughly 1,100
annotations of Tyrolian and German newspaper articles. WikiwarsDE [15] is another German-
speci�c resource, yet, the temporal annotations are not available in the current TIMEX3 format,
limiting their applicability for recent models.
Approaches dealing with German include Lange et al. [11], who experimented with adversar-
ially aligned embeddings. While their method beats the automatically translated rule set of
Heideltime, it falls short of the language-speci�c rule set. With a similar strategy, Starý et al. [12]
�ne-tuned a multilingual version of BERT with OntoNotes data. Both works use KRAUTS data
for evaluation, and have the advantage of automatically scaling to several target languages,
however, at the cost of language-speci�c performance.
Another notablemultilingual dataset is TimeBank [16, 17, 18, 19], which covers several languages
including French, Italian, Portuguese and Romanian. Taggers in low-resource settings are
generally limited, but do exist: TipSem [10] and Annotador [20] for Spanish, Bosque-T0 [21]
and the work by Costa and Branco [22] for Portuguese, and PET [23] for Persian.

3. A Transfer Pipeline for Temporal Tagging
Temporal tagging is the task of identi�cation of temporal expression, classi�cation of the type
and sometimes normalization of temporal values. In the work, we focus on identi�cation and
classi�cation of expression in four classes de�ned by TIMEX3 schema, namely DATE, TIME,
SET and DURATION. As previously mentioned, language-speci�c resources tend to perform
better than multilingual approaches. Therefore, we set out to construct a language-speci�c
German tagging approach with the help of Transformer-based language models [24]. We utilize
monolingual language models in this work, opposed to previously utilized multilingual networks.
Speci�cally, Chan et al. [25] present several iterations of German-speci�c Transformer networks;
we choose the best-performing model, which is based on the ELECTRA [26] architecture, namely
GELECTRA-large.
However, successfully employing the Transformer networks requires more data than what is
available in KRAUTS dataset [9]. For this purpose, we create a corpus of automatically tagged
news articles, using Heideltime’s German tagger. This provides around 500,000 temporal
expressions for an additional "pre-training step", exceeding the available German tagging data
by roughly 2,000 times, albeit at a lower guarantee of annotation quality.
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Table 1
Statistics of the training resources with TIMEX3 tag distribution. Note that the values for TempEval
refer to tags a�er automated translation. DATE, SET, DURATION, TIME are the temporal types.

#Docs #Expressions DATE SET DURATION TIME

HeideltimeDE train 64,299 400,824 292,388 2,502 66,867 39,067
HeideltimeDE test 14,768 97,981 66,713 634 13,892 16,742

TempEvalDE train 256 1,782 1,455 30 251 30

KRAUTS Dolomiten (train) 142 587 376 19 94 98
KRAUTS Die Zeit (test) 50 553 358 39 144 12

We further experiment with automatically translated English data, based on the TempEval-3
corpus [7]. Articles were automatically translated with the help of Google Translate1, and we
were able to retain about 90% of the original annotations in the German version. See Table 1
for a detailed comparison, including the tag distribution.

4. Experiments
For experimentation, we use the KRAUTS Dolomiten subset as the training set, and the Die Zeit
subset for testing. Further, all models were run on three NVIDIA A100 GPUs using the Adam
optimizer and linear weight decay. Pre-training was performed for 4 epochs, with a learning
rate of 1e-7 and batch size 16 on each GPU and gradient accumulation step of 4, which took
approximately 30 hours. Variants with automatically translated TempEval data were trained an
additional 8 epochs with batch size 16 and learning rate of 5e-5 on a single GPU before the �nal
�ne-tuning on Dolomiten for another 8 epochs. All metrics on �ne-tuned models are averaged
for 3 di�erent random seeds; pre-training was run once without pre-determined random seeds.
We use the o�cial TempEval-3 script for computing results, which also works with German
texts. TempEval generally di�erentiates between partial ("relaxed") and exact ("strict") tagging
overlap.

4.1. Results
Table 2 contains all available results. Note that the adversarially trained model by Lange et
al. [11] has transferred from English data, and seen no explicit German training data, which
explains its lower performance. ThemBERTNERmodel [12] does not perform type classi�cation.
We identify Heideltime as the best-performing baseline system, where its rule-based nature
tends to favor precision over recall.
To investigate the e�ect of continued pre-training, we report results for both o�-the-shelf
variants and additionally pre-trained models (denoted by "p"). Pre-training was performed
on the automatically labeled portion (HeideltimeDE train). "+ temp" denotes �ne-tuning on
translated TempEval data, and "+ dolo" �ne-tuning on Dolomiten data, respectively. For �ne-
tuning on both sets together, we �rst train for 8 epochs on TempEval data, and then for another
8 epochs on Dolomiten.

1translate.google.com, accessed: 2022-01-14
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Table 2
Tagging performance on the KRAUTS Die Zeit subset; bold highlights indicate best performance. For
mBERT results [12], it is unclear whether the entire KRAUTS dataset was used instead. Lange et al. [11]
only report F1 scores for their results, which is why the exact precision and recall scores are unknown.
Our own results are averaged across three fine-tuning runs with varying random seeds.

Strict Relaxed Type
Method F-1 Prec. Recall F-1 Prec. Recall F-1
Heideltime 69.72 77.11 63.62 79.30 87.71 72.37 75.38
Adversarial BERT [11] 66.53 ? ? 77.82 ? ? 69.04
mBERT NER [12] 43.15 53.92 35.96 64.94 64.94 54.13 �
GELECTRA + dolo 75.51 73.06 78.13 85.88 83.09 88.87 78.96
GELECTRA + temp + dolo 70.71 70.52 70.91 84.25 84.01 84.49 75.85
GELECTRAp 65.45 71.10 60.64 77.90 84.62 72.17 73.82
GELECTRAp + dolo 76.13 73.52 78.93 85.33 82.41 88.47 80.06
GELECTRAp + temp + dolo 75.32 74.03 76.68 86.13 84.65 87.67 79.49

Overall, our best model for relaxed matching (86.13 F1) is GELECTRAp + temp + dolo. However,
it appears that the automatically translated data is somewhat misleading for strict matches;
GELECTRAp + dolo, which is only trained on Dolomiten, has the highest strict match, as well
as best type classi�cation performance. Since the teacher, Heideltime, is precision-focused,
all pre-trained variants also carry slightly higher precision, implying that the choice of weak
labeler for pre-training directly a�ects the �ne-tuning performance as well. Variants without
pre-training are in comparison more recall-oriented. It is worth noting that even without any
�ne-tuning and only pre-training, GELECTRAp manages to perform close to Heideltime in
terms of F1 scores, which also highlights the cross-domain performance of neural methods.
Translations of TempEval data have a deteriorating e�ect on non-pre-trained models. A possible
explanation is that pre-training makes the model more stable and resilient to noisy inputs, which
is likely for automatic translation data. Overall, it can be observed that there is no singular
top-performing model across all metrics. Depending on user preferences, appropriate models
choices can then be made.
We also include results of type classi�cation. Note the highly uneven class distribution, which
is present in all datasets and makes prediction performance for rare classes a challenging
task. Accessing a larger corpora in pre-training also means more frequently encountering rare
class instances, which bene�ts the type prediction in the �nal evaluation. Correspondingly,
pre-trained models outperform their respective model counterparts without pre-training.
Additional training results with GottBERT [27] and GELECTRA-base were omitted for the sake
of brevity, but exhibited a worse performance than the presented models.

4.2. Current Limitations

Preliminary results indicate that our �ne-tuned models are clearly outperforming the baseline
tagger in almost every metric. However, it should be noted that the performance without
pre-training is already quite good and close to the pre-trained variants. Given the cost of
pre-training, this should be considered as a potential trade-o�.

Joao Paulo Cordeiro
86



Further, we want to point out the high similarity between German and English. This is particu-
larly relevant for automatically translated resources, where it is much easier to obtain additional
high-quality annotations through automated translation.
Finally, the approach still relies on existing resources for the �nal �ne-tuning, which includes
both existing monolingual models and datasets. However, we suspect multilingual models would
also be suitable after su�cient task-speci�c pre-training, which makes monolingual models
less of a requirement. As for data, the 500 tags used for �ne-tuning seem already su�cient to
learn a decent system on top of a base model, which is promising for other languages without
existing annotations.

5. Conclusion and Future Work

In this work, we have introduced a generic way to �ne-tune language-speci�c temporal taggers,
demonstrated at the example of a German tagger. While there are limitations to the current
approach, we successfully demonstrate surpassing the current state-of-the-art tagger for German,
which is a promising start.
For future work, we are planning to investigate patterns of incorrect labels to determine areas
of improvement, and employ bootstrapping with semi-supervised learning to further increase
the tagging accuracy for precision-heavy model variants.
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