
Controlling LEGO Linefollower Vehicle with Neural
Networks
Jakub Maćkowiaka, Sandra Świeczaka and Bartosz Wanota

aFaculty of Applied Mathematics, Silesian University of Technology, Kaszubska 23, 44100 Gliwice, POLAND

Abstract
In the article we present our idea for learning system made for a LEGO robot. We built a line following robot which is using
four sensors to trace the line. Track trace logic is based on our original implementation written in Python language for LEGO
Mindstorm and on a neural network implemented using Python as well. As a result of our work we see that using neural
network might be an effective way of teaching a robot to follow a line, but not in case of LEGO EV3.

Keywords
Artificial neural network, Lego blocks, line follower robot

1. Introduction
The fast pace of enrolling technology into our lives makes
it much easier and more available to implement robotics
for house needs. Especially those are a great opportunity
for young engineers to learn programming and develop
skills needed for creating advanced machines. There are
many companies, that have tried to capitalize on that
exact idea - teaching the youth about future technologies.
Lego has also taken part in that competition, with their
LEGO Mindstorms. The concept of combining robotics
and LEGO bricks have revolutionise the market, making
it extremely easy to produce any type of robot, limited
only by the creators imagination. On company’s offi-
cial EV3 site there are many tutorials on how to create
template robots and in that group line-following robot
can be found. The idea behind the vehicle created and
programmed for the article, was to check and improve
the formula of self-driving robot, compiling our own
code which includes sophisticated AI algorithm based on
neural network trained with backpropagation.

There are many interesting applications in which neu-
ral networks work with images as classifiers. In [1] was
presented special manager in federated learning to im-
prove image processing. The model presented in [2] show
how to work with neural networks to improve resolution
of images and can be used for vritual immersion also [3].
There are also many important aspects of training algo-
rithms. In [4, 5, 6, 7, 8, 9]. was presented how to select the
best training algorithm to fit the data input describing
objects.

ICYRIME 2021 @ International Conference of Yearly Reports on
Informatics Mathematics and Engineering, online, July 9, 2021
" jakumac927@student.polsl.pl (J. Maćkowiak);
sandswi038@student.polsl.pl (S. Świeczak);
bartwan560@student.polsl.pl (B. Wanot)

© 2021 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

2. Related works
This article won’t be revolutionary technologically-wise,
since there have been many attempts of implementing a
bit more complex algorithms into EV3 controlled LEGO
robotics like fuzzy set rules [10, 11, 12, 13, 14, 15]. The use
of additional code has in fact improved robots abilities in
driving.

Many of the studies our research group has came
through, are treating about a use of LEGO EV3 based
machines in teaching robotics [16, 17, 18]. The ones in
our reference section are slightly old, but the conclusion,
that one can learn artificial intelligence implementation
into robotics, using the same tools our group did, is still
relevant, and it supports our statements from the intro-
duction.

For the purpose of the article we have implemented
feed-forward neural network [19, 20] trained by back-
propagation algorithm [21].

3. Assumptions of the project
The assumption of the project is to build a vehicle con-
trolled by an artificial intelligence system based on neural
network. AI system must be able to set appropriate mo-
toric power, dependent on position of a black line on a
track, in each of four engines. The vehicle must not go
off the track, and move as slightly as possible.

4. Robot construction
We have built a robot (Fig. 1) using LEGO Mindstorm
elements. A vehicle has an EV3 Intelligent Brick, which
has:

• a six-button interface
• a black and white display

64

mailto:jakumac927@student.polsl.pl
mailto:sandswi038@student.polsl.pl
mailto:bartwan560@student.polsl.pl
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


Jakub Maćkowiak et al. CEUR Workshop Proceedings 64–70

Figure 1: Linefollower vehicle.

Figure 2: Side view of the vehicle.

• USB port
• a mini SD card reader
• a speaker
• four input ports and four output ports

It includes four EV3 Color Sensors which tell the dif-
ference between black and white and four EV3 Medium
Servo Motors which allow robot to drive. A side plan of
the vehicle is shown at Fig. 2, top view at Fig. 3 and back
view at Fig. 4.

5. Mathematical Model
Our code for the machine is modular: we have started
the code from a basic line follower with 4 engines (2 for
each side) and 4 color detectors used as light sensors, also
2 for each side - their placement determines decisions
the vehicle should make. We are going to present only
right turns, as the left side related movements are just a
mirror copy of the previously mentioned ones.

Figure 3: Top view of the vehicle.

Figure 4: .Back view of the vehicle

5.1. Normalization
The sensors are calibrated with a number from 0 to 100,
where 0 is no light reflection (black) and 100 is the max-
imum value of reflected light. Due to the wear of the
sensors, the data had to be normal- ized. The formula for
the sensor 1 (see eq. 1) is similar for all sensors. For the
right side, a sign of the equation changes.

𝑆𝐾𝑅1 =
𝑆𝐾𝑅𝑀𝐴𝑋 · (𝑠𝑒𝑛𝑠𝑜𝑟1.𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛()−𝑚𝑎𝑥𝑐𝐿)

𝑚𝑖𝑛𝑐1 −𝑚𝑎𝑥𝑐𝐿
(1)

𝑆𝐾𝑅𝑀𝐴𝑋 is maximum turn of the vehicle, sensor.reflection()
is a value sent by the sensor and 𝑚𝑎𝑥𝑐𝐿 is a sum of max-
imum values of left-side sensors after calibration process
(2). Analogue equation is for right-side sensors.

𝑚𝑎𝑥𝑐𝐿 = 𝑚𝑎𝑥𝑐1 +𝑚𝑎𝑥𝑐3 (2)

Depending on the mode selected by the program, val-
ues of 𝑆𝐾𝑅1, 𝑆𝐾𝑅2, 𝑆𝐾𝑅3 and 𝑆𝐾𝑅4 are calculated
or set to 0. Then SKR is a sum of all of them (eq. 3).

65



Jakub Maćkowiak et al. CEUR Workshop Proceedings 64–70

𝑆𝐾𝑅 = 𝑆𝐾𝑅1 + 𝑆𝐾𝑅2 + 𝑆𝐾𝑅3 + 𝑆𝐾𝑅4 (3)

A final engine power is determined by an equation
below (eq. 4). This equation is for left first engine, the
rest of equations are similar with the change of a sign for
right engines.

𝑚𝑜𝑡𝑜𝑟𝐿1.𝑟𝑢𝑛 = 𝑀𝑂𝐶 + 𝑆𝐾𝑅 (4)

5.2. Basis
Depending on the values read from the sensors, the vehi-
cle can choose one of 6 options:

• Case1 (and-1)

If one of the internal sensors notices less than
50% of possible light reflection, external sensor
is starting to be taken into account. If it notice
the black line, the vehicle turns until the other
internal sensor sees the line. If sensor 2 has seen
the line, sensor 4 is activated and if it has seen
the line, the vehicle turns right until the sensor 1
sees the black line. Analogous situation is for left
turn.

Figure 5: Start of the mode 1.

• Case2 (and-2)

If three of the sensors see the black line, a vehicle
has to go beyond a line and then turn toward
sensors that have seen the line until an internal
sensor on the other side see the line again. If
sensors 1,2 and 4 have seen the line, the vehicle
turns right until the sensor 1 sees the black line.
Analogous situation is for left turn.

• Default

The vehicle is going straight, the black line is
between internal sensors.

Figure 6: Turning moment in mode 1.

Figure 7: Start of the mode 2.

Figure 8: Turning moment in mode 2.

5.3. Neural Network
The assumption of the project was to create a neural net-
work and train it so that the vehicle would run smoother
than using the basic program. Our neural network is
trained by backward propagation of errors which cal-
culates the gradient of the error function and allow to

66



Jakub Maćkowiak et al. CEUR Workshop Proceedings 64–70

Figure 9: Default mode of the vehicle.

Figure 10: Architecture of the neural network.

change weights on nodes. The network (Fig. 10) has 4
neurons in an input layer, one for each of sensors and
two hidden layers with 12 and 24 neurons. 21 neurons in
an output layer represents percentages from 0 to 100%,
every 5 percent. We create two neural networks, one
for the left, and one for the right engines. A decision of
neural network, a value of one of output

neurons is used in an equation below (eq. 5) to calculate
percentage of maximum power of the engines which will
change into appropriate turn. The equation is given for
the left side.

𝑀𝑂𝐶𝐿 = 𝑀𝐴𝑋𝑀𝑂𝐶 · 𝑠𝑡𝑟𝑜𝑛𝑎𝐿

𝑚𝑖𝑎𝑛𝑜𝑤𝑛𝑖𝑘
(5)

Where StronaL is an index of chosen output neuron
multiplied by 5 to get a percentage value. mianownik
depends on which neural network made the decision on
the higher index.

6. Implementation
Program implementation is based on two parts:

• Basic program

It is used for collecting data and creating a database.
The program is also responsible for keeping the
vehicle on the trace when it is not well trained
yet.
It contains initial values of calibrated sensors,
maximum power engine and maximum turn rate.
It also initializes all motors and sensors of the
vehicle (Fig. 11).

Figure 11: Default mode of the vehicle.

• Neural network program

Neural network is used to compute motor speeds
basing on sensor values (Fig. 12). It returnes table
of results form output layout. The index of neu-
ron witch returned the highest value is converted
to percent of MAXMOC (Fig. 10).

Figure 12: Compute function.

However, before riding the route becomes possi-
ble, network have to be well trained. To do this,
we used backpropagation algorithm. Training
takes place outside the robot, using database cre-
ated by basic program (Fig. 13). After training,
weights are exported from simulation to robot.

7. Experiments

7.1. Preparing
A test route for creating a database of sensors values
and for training the vehicle with neural network was

67



Jakub Maćkowiak et al. CEUR Workshop Proceedings 64–70

Figure 13: Training functions.

made with white photographic paper and a black tape.
The trace is shown at Fig. 15 below. First we needed
a database with sensors values and turns calculated by
the basic program. The vehicle collected data (shown
at Fig. 16) which was sent to the program with neural
network. Neural network has been correcting weights
and learning to make appropriate decisions on the trace.
The vehicle went through the trace twice and gave us
the database containing almost 10000 records (Fig. 17).
All of the records were normalized.

7.2. Neural network
First our neural network was supposed to look different
which is shown at Fig. 18. We wanted to create only
one network with smaller hidden layers. Output layers
was supposed to contain only two neurons, one for each
wheel of the vehicle, which were supposed to return ve-
locity of a motors. This method was not optimal and has
been given inappropriate values. We change a concept
to build a much larger neural network. The new concept
is given much better results. After giving random values
in nodes weights, before training the network, a sum of
errors was enormous, but after training with backprop-
agation, errors were almost completely reduced. Below
you can see the sum of errors of all neurons before and

Figure 14: Flow chart of the algorithm and flow of data.

Figure 15: A test route for the vehicle.

after training the network (Fig. 19 and Fig. 20). Neural
network with backpropagation algorithm allowed to get
really satisfying results, at least in the simulation. But
calculations are too slow and the vehicle is not keeping
up with making decisions. There are huge delays so that
the vehicle runs mainly under the control of the basic

68



Jakub Maćkowiak et al. CEUR Workshop Proceedings 64–70

Figure 16: The vehicle in the process of creating database.

Figure 17: Fragment of the database.

program, which helps to go back to the line, after getting
off the track.

Figure 18: First concept of neural network.

8. Conclusions
Despite the very promising simulations, because of the
delays and hardware limitations we cannot say that our
robot passed the route using artificial neural network.
Program requires optimization and some changes. What
is more, an EV3 system would need more RAM memory
and better CPU to work properly.

Fortunately, not all of our work was in vain. During
the experiments we have found out that neural network

Figure 19: Errors before training the network.

Figure 20: Errors after training the network.

is doing much better with classifying using more neurons
on output layout, than returning precise results.

References
[1] D. Połap, M. Woźniak, Meta-heuristic as manager

in federated learning approaches for image process-
ing purposes, Applied Soft Computing 113 (2021)
107872.

[2] X. Liu, S. Chen, L. Song, M. Woźniak, S. Liu, Self-
attention negative feedback network for real-time
image super-resolution, Journal of King Saud
University-Computer and Information Sciences
(2021).

[3] D. Połap, K. Kęsik, A. Winnicka, M. Woźniak,
Strengthening the perception of the virtual worlds
in a virtual reality environment, ISA transactions
102 (2020) 397–406.

[4] M. Wozniak, J. Silka, M. Wieczorek, M. Alrashoud,
Recurrent neural network model for iot and net-
working malware threat detection, IEEE Transac-
tions on Industrial Informatics 17 (2021) 5583–5594.

[5] M. Woźniak, D. Połap, C. Napoli, E. Tramontana,
Graphic object feature extraction system based on
cuckoo search algorithm, Expert Systems with Ap-

69



Jakub Maćkowiak et al. CEUR Workshop Proceedings 64–70

plications 66 (2016) 20 – 31. doi:10.1016/j.eswa.
2016.08.068.

[6] M. Woźniak, M. Wieczorek, J. Siłka, D. Połap, Body
pose prediction based on motion sensor data and
recurrent neural network, IEEE Transactions on
Industrial Informatics 17 (2020) 2101–2111.

[7] G. Capizzi, G. Lo Sciuto, C. Napoli, E. Tramontana,
M. Woźniak, A novel neural networks-based tex-
ture image processing algorithm for orange defects
classification, International Journal of Computer
Science and Applications 13 (2016) 45–60.

[8] G. Capizzi, G. Lo Sciuto, C. Napoli, R. Shikler,
M. Wozniak, Optimizing the organic solar cell
manufacturing process by means of afm measure-
ments and neural networks, Energies 11 (2018).
doi:10.3390/en11051221.

[9] G. De Magistris, S. Russo, P. Roma, J. Starczewski,
C. Napoli, An explainable fake news detector based
on named entity recognition and stance classifica-
tion applied to covid-19, Information (Switzerland)
13 (2022). doi:10.3390/info13030137.

[10] K. Grzesica, J. Wadas, Fuzzy system as a method of
controlling lego linefollower vehicle using c
programming language, in: SYSTEM 2020: Sympo-
sium for Young Scientists in Technology, Engineer-
ing and Mathematics, CEUR-WS, ????, pp. 9–15.

[11] N. Brandizzi, V. Bianco, G. Castro, S. Russo, A. Wa-
jda, Automatic rgb inference based on facial emo-
tion recognition, volume 3092, 2021, p. 66 – 74.

[12] M. Akmal, N. Jamin, N. A. Ghani, Fuzzy logic con-
troller for two wheeled ev3 lego robot, in: 2017
IEEE Conference on Systems, Process and Control
(ICSPC), IEEE, 2017, pp. 134–139.

[13] N. Azlan, F. Zainudin, H. Yusuf, S. Toha, S. Yusoff,
N. Osman, Fuzzy logic controlled miniature lego
robot for undergraduate training system, in: 2007
2nd IEEE Conference on Industrial Electronics and
Applications, IEEE, 2007, pp. 2184–2188.

[14] G. Capizzi, C. Napoli, S. Russo, M. Woźniak, Lessen-
ing stress and anxiety-related behaviors by means
of ai-driven drones for aromatherapy, volume 2594,
2020, p. 7 – 12.

[15] N. N. M. Khairi, S. S. S. Ahmad, The effectiveness
of lego mindstorms nxt in following complicated
path using improved fuzzy-pid controller, Interna-
tional Journal of Innovative Science and Research
Technology 2 (2017) 155–161.

[16] M. Carbonaro, M. Rex, J. Chambers, Using lego
robotics in a project-based learning environment,
The Interactive Multimedia Electronic Journal of
Computer-Enhanced Learning 6 (2004) 55–70.

[17] A. B. Williams, The qualitative impact of using lego
mindstorms robots to teach computer engineering,
IEEE Transactions on Education 46 (2003) 206.

[18] R. Brociek, D. De Magistris, F. Cardia, F. Coppa,

S. Russo, Contagion prevention of covid-19 by
means of touch detection for retail stores, volume
3092, 2021, p. 89 – 94.

[19] A. Krizhevsky, I. Sutskever, G. E. Hinton, Gradient-
based learning applied to document recognation,
Commun. Acm 60 (2017) 84–90.

[20] G. Lo Sciuto, G. Capizzi, S. Coco, R. Shikler, Geomet-
ric shape optimization of organic solar cells for effi-
ciency enhancement by neural networks, Lecture
Notes in Mechanical Engineering (2017) 789–796.
doi:10.1007/978-3-319-45781-9_79.

[21] I. Goodfellow, Y. Bengio, A. Courville, Deep learn-
ing, MIT press, 2016.

70

http://dx.doi.org/10.1016/j.eswa.2016.08.068
http://dx.doi.org/10.1016/j.eswa.2016.08.068
http://dx.doi.org/10.3390/en11051221
http://dx.doi.org/10.3390/info13030137
http://dx.doi.org/10.1007/978-3-319-45781-9_79

	1 Introduction
	2 Related works
	3 Assumptions of the project
	4 Robot construction
	5 Mathematical Model
	5.1 Normalization
	5.2 Basis
	5.3 Neural Network

	6 Implementation
	7 Experiments
	7.1 Preparing
	7.2 Neural network

	8 Conclusions

