
A Fuzzy Logic Based Autonomous Car Simulation in Unity
Justyna Walotek1, Jagoda Oleksiak1, Pawel Cebula1, Adam Stanek1 and Mateusz Szczypinski1

1Faculty of Applied Mathematics, Silesian University of Technology, Kaszubska 23, Gliwice, Poland

Abstract
Our project focuses on using fuzzy logic to make a car drive by itself. Autonomous cars are nothing new nowadays, but the
path that we took differs from what is commonly implemented in such cases. When searching for a self-driving car, most of
the results rely on a neural network, that learns how to navigate through the track. The issue with this approach is that the
network only knows this one particular track and any other track would require training the network all over again. Our idea
was to make a car, that would be able to navigate through any given track without the need to learn how to do it. To better
describe the technologies that we used first we need to talk about the history of games and AI, then move focus to the more
technical aspects of this project, including how the car gathers input and how it is being analyzed, to then cover all of the
tests conducted on different car settings consisting of weight, drivetrain and maximum torque, finally reaching our small
contest between AI and two different players.

Keywords
unity, fuzzy, car, simulation, game

1. Introduction
To understand the connection between video games and
artificial intelligence we need to know how these two
came into existence. Let us focus on games first. In Octo-
ber 1958 physicist William Higinbotham made the first
video game - Pong. It was a really basic game with the
aim to bounce a ball past the opponent. Since then games
began to appear rapidly, starting quite simple but getting
more and more complex parallel to the advances in the
technology available. Suddenly a need for something
new appeared - something that would make games more
challenging and fun to play. Conveniently around this
time, artificial intelligence came in handy, giving game
developers a lot more room for creativity. Artificial in-
telligence started to become an integral part of video
games in the 1970s, with the first wellknown game con-
taining AI - Space Invaders. Code of this game analyses
player’s movement and increases difficulty as time goes
on. Another famous game with an AI onboard is Pac-
Man, where different ghosts have different approaches
for hunting the main character. Today AI in games is far
more advanced and takes to account much more variables.
For example in racing games, AI is aware of the track
pattern as well as weight distribution and powerband of
the car. Using this and the knowledge about defensive,
offensive, or balanced driving it can be a really tough
opponent. In our project we decided to focus on one task:
avoiding obstacles. Even though it might sound quite
simple, a lot of work had to be put into the code, yet we
did not fully achieve it.

ICYRIME 2021 @ International Conference of Yearly Reports on
Informatics Mathematics and Engineering, online, July 9, 2021
" justwal728@student.polsl.pl (J. Walotek)

© 2021 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

2. Related works
Among other works related to the topic of games, game
theory, and fuzzy logic, we can mention ’A Game The-
oretical Based System Using Holt-Winters and Genetic
Algorithm With Fuzzy Logic for DoS/DDoS Mitigation
on SDN Networks’ [1] where the authors propose a sys-
tem to faster detect possible attacks based on the de-
nial of service (DoS) using the anomaly detection and
identification provided by an HWDS system with an au-
tonomous decision-making model based on game theory.
Another worth mentioning paper is ’A fuzzy logic and
game theory-based adaptive approach for securing oppor-
tunistic networks against black hole attacks’ [2] where a
security protocol named FuzzyPT is proposed to combat
blackhole attacks in OppNets. Fuzziness aids the system
in being adaptive by modeling the single nodes as neither
benign nor malicious but rather judging a set of nodes
based on relationships between different parameters, re-
sulting in a decreased number of false positives and false
negatives. Again in [3], the fuzzy-entropy-based game
was proposed by the analysis from the perspective of
uncertainty. Similarly, a soft matrix game was shown in
[4], where another approach of hesitant fuzzy MCDM
was used. However, fuzzy logic can be used not only in
the Internet of Things - in ’An adaptive self-organizing
fuzzy logic controller in a serious game for motor impair-
ment rehabilitation’ [5] the authors present ReHabGame,
a game that can be easily used by patients and thera-
pists to assess and enhance sensorimotor performance
and also help to increase the activities in the daily lives
of patients. The different quantities of movement pro-
vide fuzzy input from which crisp output is determined
and used to generate an appropriate rehabilitation game
level, making it a personalized, autonomously learned
rehabilitation program. The latest years brought many

77

mailto:justwal728@student.polsl.pl
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


Justyna Walotek et al. CEUR Workshop Proceedings 77–84

interesting approaches to game theory and its applica-
tions. For instance, virtual reality [6] was improved by
using the convolutional neural networks and many differ-
ent sensors for increasing the inversion in virtual reality.
Machine learning solutions was also applied in many dif-
ferent real scenario [[7, 10]. Games are used for different
purposes, not only in entertainment but also in educa-
tional areas. It was shown in [14, 16, 17, 12, 13], where
fuzzy logic was analyzed in mobile games for students.
Fuzzy logic as other areas of artificial intelligence can be
used in many areas [18, 20, 21].

3. Fuzzy logic and the power of
words

One of the biggest differences between humans and com-
puters is the ability to use abstract concepts to describe
reality. We can say for example that something is small,
short, blue or that it is far away from us. While doing it,
we do not assign a certain value to it, like 2cm3 2 seconds,
#007EFF or 100km. Instead, we perceive those values as
a scale - a certain range of values can be assigned to a
certain word. For example, one person can perceive some-
thing as light when it weighs up to 2 kg, while another
person may think that 5kg is still light and their scale
for the definition of the word ’light’ is more like 1-6kg
because something under 1kg is perceived as ’very light’.
But how does it apply to computers? Computers do not
understand abstract concepts, they use exact values to
describe things. While in some cases it is the preferred
approach, in others it might be a real issue. Imagine us-
ing a brake only when the distance between the driven
car and the car in front of it is smaller than 1.5m and
in addition always using only the full force of the brake.
Standing in traffic would be unbearable, would it not?
One of the solutions for this type of issue is using fuzzy
logic. Fuzzy logic is a type of logic, where input contain-
ing exact values is converted into linguistic values called
antecedents, which can be then processed using rules,
giving us different linguistic values describing the output
called consequents, which are then defuzzyfied giving us
new exact values for the final output. This may sound
difficult or complicated, but actually, it is not that hard
to achieve. Using the example of our project, we will try
to show this process as simply as possible. Our car mea-
sures the distance to the nearest obstacle in 7 directions:
to the front, 15∘, 30∘ and 75∘ to the left, similarly to the
right. Next, those falues are being used to calculate the
weighted average for 3 directions: left, front, and right.
It is done because of two reasons:

1. we decided to have just two output values - hori-
zontal and vertical - which determine if the car
goes forward and if it turns in either direction,

Figure 1: Linguistic values depending on the distance mea-
sured

Figure 2: Measuring the distance using raycast in Unity

2. the number of input values determines the count
of rules - having 7 input values and 3 possible lin-
guistic values gives us 3 7 possible situations and
all of them need a rule. Decreasing the number of
input values to 3 the count of rules changes to 33

, making it possible to manage and less resource
consuming.

Every input value needs to be fuzzified - a linguistic
value is being assigned depending on the range the input
value suits best.

The mathematical equation (eq. 1) used for fuzzyfying
the input:

(1)

In the eq. 1 the values a bvand c depend on the lin-
guistic value the equation is used for. If we write those
values as linguisticValue=[a,b,c] then:
red=[0, 0, 5]
yellow=[3,6,10]
green=[8, 12, 100]
This means, that every input value has 3 new values
assigned, one for each linguistic value, so for example
input=5 would give us 0 for red, 0.6 for yellow, and 0 for

78



Justyna Walotek et al. CEUR Workshop Proceedings 77–84

Figure 3: rules

green. When all of the input values have those linguistic
values assigned, we can move on to the rules. When all
of the input values have those linguistic values assigned,
we can move on to the rule shown in Fig. 3

As we said before, we need 27 rules to cover every
possible situation that may occur. Every rule consists
of linguistic values for the input and linguistic values
for the output. Using values of how well the inputs fit
the red, yellow and green range, rule values are being
calculated simply by multiplying the values assigned to
the linguistic values in the rule. For example rule a con-
sists of all red, so the rule value will be: 𝑟𝑢𝑙𝑒𝑉 𝑎𝑙𝑢𝑒 =
𝑙𝑒𝑓𝑡𝑅𝑒𝑑𝑉 𝑎𝑙𝑢𝑒 * 𝑓𝑟𝑜𝑛𝑡𝑅𝑒𝑑𝑉 𝑎𝑙𝑢𝑒 * 𝑟𝑖𝑔𝑡ℎ𝑅𝑒𝑑𝑉 𝑎𝑙𝑢𝑒
This way we determine which rule is the most accurate
for the given input - we simply take the one with the
highest rule value. In our case the simplest way to de-
fuzzyfy was to assign certain values to the consequent
values and compute the output by multiplying the rule’s
consequent and its ruleValue (Fig.4)

Figure 4:

Figure 5:

Finally, as we described earlier we compute the final
output - horizontal and vertical values. Later it came
to our attention, that those values needed to be slightly
modified, so we added some more factors to the multipli-
cation (Fig.5)

This certainly is not the most optimal way to do it, but
for our needs was good enough

4. Raycast in Unity
Raycast is a technology that allows you to determine the
distance of a casting point projecting from a mesh that
has crossed its path (Of course, if this mesh has a collider).
In order to properly project a raycast, it is necessary to
provide it with a starting point and a direction relative
to the object associated with it, for example, a car or a
rifle. This technology is successfully used in fps and RPG
games to detect whether the target of a specific character
is in its field of view and is not obstructed by anything
(for example, enemies looking for the main character). In
the case of the former, raycast is also very often used to
determine where the shot fired from the weapon will hit.
Although this method is slowly being abandoned as it is

79



Justyna Walotek et al. CEUR Workshop Proceedings 77–84

Figure 6: Flowchart of the AI’s algorythm

not realistic enough - in the real world, the projectile’s
flight path is not a perfectly straight line and additionally,
its speed is limited, so where the raycast would register
a hit, the real bullet could miss the target if it is mov-
ing. Therefore, the gaming industry is slowly starting to
use a different method, which is to generate additional
bullets with a given initial velocity and mass. Of course,
however, there are exceptions where the raycast has an
advantage over simulated ballistics. One such exception
is dynamic fps games with relatively small maps. After
all, the ballistics and the velocity of a projectile at short
distances are not that significant, and raycast consumes
much fewer hardware resources. This is because it is only
active for one frame (short hit test immediately after the
shot), while the position of the bullet with active ballis-
tics must be counted until the hit and, additionally, many
such bullets can appear in the memory at the same time.
In our case, raycast was the best option for gathering data
about the surroundings, because it is a simple and fast
way to do it. When driving a car we need as little delay
as possible, so the simpler and less resourceconsuming
method the better.

To make our car move, we needed a simple script and
a bit of Unity’s physics. We added round colliders into
the car’s wheels and we by rotating them we move the
car.

The car also has a rigidbody attribute, so the Unity’s
physics engine can apply gravity to it and detect colli-
sions.

It is very unlikely for cars to float in space so we needed

Figure 7:

to create a track. Our first idea was simple: pick any
premade area. This could be enough if the car would
be driven by a user, but not for AI because a standard
track would not give the AI any information about its’
boundaries. The next guess was to upgrade the course
for our car, upgraded version should have some kind of
barriers to create a path to the finish line. This plan was
quickly discarded and the next concept was to create a
track using prepared parts like turns or u-turns. The
biggest issue with this solution was the fact, that if the
substrate was not perfectly flat, AI did not work properly.
The last idea, other than forcing our car to fly, was to
create a route ourselves from scratch. We decided on
recreating one of the most famous auto and motorcycle
raceways: Laguna Seca Raceway. To better suit our needs
it was shrunk (to spend less time on every lap) and the
driving surface was increased to make the turns simpler.
The base structure of the road was made in Blender. Due
to problems with mesh colliders, the walls are reinforced
with additional blocks made from basic cubes in Unity.
This way the raycast could finally work properly. There
are two turns that turned out to be difficult both for AI
and the players.

The left one (a) looks simple at first glance but with
a long straight road before the turn where the car can
drastically accelerate, it was enough to make the car
unable to pass through without hitting the wall. The right
one (b) is a u-turn which requires some skill from the
players to drive without a collision, so it was too difficult
for AI regardless of the car’s speed when entering the
turn. The title of this paragraph still seems to be unrelated
to the topic, so let us explain. Accidentally we recreated
one of the scenes from the series ’Initial D’, because the
car one of the members of our group picked from Unity
Asset Store is a model of Toyota AE86 (main character’s
car) and the turn (a) was also difficult for the characters
of this series. Unfortunately AI we created does not drift

80



Justyna Walotek et al. CEUR Workshop Proceedings 77–84

Figure 8: Car with the rigidbody attribute in Unity

Figure 9: Original Laguna Seca track - layout painted by
Alexander Jones

very well. At the moment of writing this article, the
model is no longer available, because the package has
been deprecated from the Asset Store.

5. Experiments
In order to optimize the vehicle so that it would lap the
track in the best time possible and without collisions, e
had to conduct a series of tests consisting of changing
selected parameters in Unity and checking which config-
urations would give the best results. Before conducting
more constructive tests, we began with random parame-
ters and started testing how MaxTorque and the wheel
drive impact a car’s ability to maneuver (simultaneously
we were trying to find room for the code’s improvement).

We found that as the expected time needed to lap the
track decreased as MaxTorque increased until the point,
where the car could no longer respond fast enough and
started to hit a wall. Some of the values stayed unmea-
sured because we found them insignificant. In the table

Figure 10: Our version adjusted to better suit our needs in
Unity

Figure 11: Model of the car in the Asset Store

some of the values are colored, here are their meanings:

• yellow - the best time achieved on those settings,
• orange - the car was really close to hitting one of

the walls
• red - the car nudged the wall but it did not stop

it for long,
• purple - the car hit the wall and it did have some

trouble continuing the lap

With this knowledge we focused on selecting the fric-
tion and drag parameters for the physics of the vehicle
wheels. Until the expected results were obtained, we
modified both the sliding and the static friction. Op-
timal effects were acquired only when the extreme of
static friction was about twice as high as the sliding
friction. We also needed to adjust the weights of the
wheels and of the car itself to more reasonable amounts.
WheelFrictionCurve is used by the WheelCollider to
describe the friction properties of the wheel tire. The
curve takes a measure of tire slip as an input and gives
a force as output. The curve is approximated by a two-
piece spline. The first section goes from (0,0) to (ex-
tremumSlip,extremumValue), at which point the curve’s
tangent is zero. The second section goes from (extremum-
Slip,extremumValue) to (asymptoteSlip,asymptoteValue),

81



Justyna Walotek et al. CEUR Workshop Proceedings 77–84

Figure 12: Starting variables in car’s attributes in Unity

where curve’s tangent is again zero. Wheel collider com-
putes friction separately from the rest of the physics
engine, using a slip based friction

model. It separates the overall friction force into a
”forwards” component (in the direction of rolling, and
responsible for acceleration and braking) and ”sideways”
component (orthogonal to rolling, responsible for keep-
ing the car-oriented). Tire friction is described separately
in these directions using WheelCollider.forwardFriction
and WheelCollider.sidewaysFriction. In both directions
it is first determined how much the tire is slipping. Then
the slip value is used to find out the tire force exerted on
the contact. Finally, after making many adjustments to
the parameters, we came to the conclusion that the best
results were obtained when both of the drag parameters
were set to the minimum. Then the center of friction
force application acting on the wheels was lowered in

Figure 13: Time per lap depending on MaxTorque value for
all wheel drives

Figure 14: Wheel settings after adjusting in Unity

relation to the center of mass of the wheel with a radius
of 30 centimeters. As a result, we achieved not only the
lack of the vehicle overturning but also the curb weight
and the engine torque was significantly reduced. After
establishing which friction and drag parameters were the
most effective, we moved onto the next text in which we
wanted to see how changing the maximum torque param-
eters will affect the time the car will finish the race. The
table below shows the dependence of max torque on time.
Changing max torque values from 500 to 1000 in steps
of 100 with the Front Wheel Drive. Then we decided
to check which drivetrain setting would be the most ef-
fective for the fastest track completion. In this test, the
maximum torque remained 800 for both the front-wheel-
drive and the rear-wheel drive, but 400 for the all-wheel
drive. It was measured for 3 attempts. The table below
shows the dependence of different drive layouts on time

82



Justyna Walotek et al. CEUR Workshop Proceedings 77–84

Table 1
Obtained results

Table 2
Max torque value and obtained time

To summarize, by setting the max torque value to 800,
the best time to complete the track was achieved. As
for the drivetrain, the front wheel drive turned out to
be the best choice, also achieving the fastest completion
times. Taking into consideration all the tests performed,

Figure 15: WheelFriction graph

Table 3
Time needed for a different wheel drive

it can be seen that in order to obtain a collision-free test
with the fastest possible time to complete the race, the
following parameters turned out to be the best choice:

• the extreme of static friction about twice as high
as the sliding friction

• both of the drag parameters set to the minimum
• the center of friction force application acting on

the wheels lowered in relation to the center of
mass of the wheel

• front-wheel drive
• max torque value of 800

6. Conclusion
In conclusion, AI works properly up to a certain velocity.
However, after reaching higher speeds, it is not able to
respond fast enough, which results in a collision with
the wall. The car is also not capable of coping with an
obstacle placed closely in front of it, falling into the path
selection loop of going slightly forwards and slightly
backward. Not surprisingly, when it comes to checking
whether the player or artificial intelligence is doing a
better job, as long as the best technique to achieve the
best time will be drifting, AI will fall far behind the play-
ers or even not finish the lap. Despite the difficulties
encountered, the following situation was achieved: the
car, regardless of its starting point, is able to move and
complete the given track without major issues. However,
the results achieved by a human driver are still noticeably
better than those achieved by artificial intelligence. Ulti-
mately, the chosen goal was accomplished because the
car can indeed successfully drive without human inter-
vention and without the need to be trained beforehand.

83



Justyna Walotek et al. CEUR Workshop Proceedings 77–84

References
[1] M. V. De Assis, A. H. Hamamoto, T. Abrao, M. L.

Proenca, A game theoretical based system using
holt-winters and genetic algorithm with fuzzy logic
for dos/ddos mitigation on sdn networks, IEEE Ac-
cess 5 (2017) 9485–9496.

[2] A. Chhabra, V. Vashishth, D. K. Sharma, A fuzzy
logic and game theory based adaptive approach for
securing opportunistic networks against black hole
attacks, International Journal of Communication
Systems 31 (2018) e3487.

[3] Q. Zhang, M. Gao, F. Zhao, G. Wang, Fuzzy-
entropybased game theoretic shadowed sets: A
novel game perspective from uncertainty, IEEE
Transactions on Fuzzy Systems (2020).

[4] J. Jana, S. Kumar Roy, Soft matrix game: A hesi-
tant fuzzy mcdm approach, American Journal of
Mathematical and Management Sciences 40 (2021)
107–119.

[5] S. S. Esfahlani, S. Cirstea, A. Sanaei, G. Wilson,
An adaptive self-organizing fuzzy logic controller
in a serious game for motor impairment rehabil-
itation, in: 2017 IEEE 26th International Sympo-
sium on Industrial Electronics (ISIE), IEEE, 2017, pp.
1311–1318.

[6] D. Polap, K. Kesik, A. Winnicka, M. Wozniak,
Strengthening the perception of the virtual worlds
in a virtual reality environment, ISA transactions
102 (2020) 397–406.

[7] X. Shi, A. Emrouznejad, M. Jin, F. Yang, A new
parallel fuzzy data envelopment analysis model for
parallel systems with two components based on
stackelberg game theory, Fuzzy Optimization and
Decision Making 19 (2020) 311–332.

[8] Brandizzi N., Bianco V., Castro G., Russo S., Wa-
jda A., Automatic RGB Inference Based on Facial
Emotion Recognition (2021) CEUR Workshop Pro-
ceedings, 3092, pp. 66 - 74.

[9] Brociek R., Magistris G.D., Cardia F., Coppa F.,
Russo S., Contagion Prevention of COVID-19 by
means of Touch Detection for Retail Stores (2021)
CEUR Workshop Proceedings, 3092, pp. 89 - 94

[10] D. Połap, M. Wlodarczyk-Sielicka, N. Wawrzyniak,
Automatic ship classification for a riverside mon-
itoring system using a cascade of artificial intelli-
gence techniques including penalties and rewards,
ISA transactions (2021).

[11] Capizzi G., Napoli C., Paternò L., An innovative
hybrid neuro-wavelet method for reconstruction of
missing data in astronomical photometric surveys
(2012) Lecture Notes in Computer Science (includ-
ing subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), 7267 LNAI
(PART 1), pp. 21 - 29, DOI: 10.1007/978-3-642-29347-

4_3.
[12] A. Ozdemir, K. F. Balbal, Fuzzy logic based per-

formance analysis of educational mobile game for
engineering students, Computer Applications in
Engineering Education 28 (2020) 1536–1548.

[13] C. Troussas, A. Krouska, C. Sgouropoulou, Collabo-
ration and fuzzy-modeled personalization for mo-
bile game-based learning in higher education, Com-
puters & Education 144 (2020) 103698.

[14] G. Capizzi, G. Lo Sciuto, C. Napoli, E., Tramontana,
A multithread nested neural network architecture
to model surface plasmon polaritons propagation
(2016) Micromachines, 7 (7), art. no. 110

[15] De Magistris G., Russo S., Roma P., Starczewski
J.T., Napoli C., An Explainable Fake News Detec-
tor Based on Named Entity Recognition and Stance
Classification Applied to COVID-19 (2022) Informa-
tion, 13 (3), art. no. 137, DOI: 10.3390/info13030137.

[16] G. Lo Sciuto, G. Capizzi, S. Coco, R. Shikler, Geo-
metric shape optimization of organic solar cells for
efficiency enhancement by neural networks (2017)
Lecture Notes in Mechanical Engineering.

[17] G. Capizzi, F. Bonanno, C. Napoli, Hybrid neural
networks architectures for SOC and voltage predic-
tion of new generation batteries storage (2011) 3rd
International Conference on Clean Electrical Power:
Renewable Energy Resources Impact, ICCEP 2011,
art. no. 6036301, pp. 341 - 344

[18] D. Polap, M. Wozniak, Meta-heuristic as manager in
federated learning approaches for image processing
purposes, Applied Soft Computing (2021) 107872.

[19] Połap D., Wózniak M., Napoli C., Tramontana E., Is
Swarm Intelligence Able to Create Mazes? (2015) In-
ternational Journal of Electronics and Telecommu-
nications, 61 (4), pp. 305 - 310, DOI: 10.1515/eletel-
2015-0039.

[20] Cardarilli, G.C., Nunzio, L.D., Fazzolari, R., Panella,
M., Re, M., Rosato, A., Spano, S., A Parallel Hard-
ware Implementation for 2-D Hierarchical Cluster-
ing Based on Fuzzy Logic (2021) IEEE Transactions
on Circuits and Systems II: Express Briefs, 68 (4),
art. no. 9234481, pp. 1428-1432.

[21] K. Bhattacharya, S. K. De, A robust two layer green
supply chain modelling under performance based
fuzzy game theoretic approach, Computers & In-
dustrial Engineering 152 (2021) 10700

84


	1 Introduction
	2 Related works
	3 Fuzzy logic and the power of words
	4 Raycast in Unity
	5 Experiments
	6 Conclusion

