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Abstract
Real-world tasks of interest are generally poorly defined by human-readable descriptions and have no
pre-defined reward signals unless it is defined by a human designer. Conversely, data-driven algorithms
are often designed to solve a specific, narrowly defined, task with performance metrics that drives the
agent’s learning. In this work, we present the solution that won first place and was awarded the most
human-like agent in the 2021 NeurIPS Competition MineRL BASALT Challenge: Learning from Human
Feedback in Minecraft, which challenged participants to use human data to solve four tasks defined
only by a natural language description and no reward function. Our approach uses the available human
demonstration data to train an imitation learning policy for navigation and additional human feedback
to train an image classifier. These modules, combined with an estimated odometry map, become a
powerful state-machine designed to utilize human knowledge in a natural hierarchical paradigm. We
compare this hybrid intelligence approach to both end-to-end machine learning and pure engineered
solutions, which are then judged by human evaluators. Codebase is available at https://github.com/
viniciusguigo/kairos_minerl_basalt.
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1. Introduction

In this paper, we present the solution that won first place and was awarded the most human-like
agent in the 2021 Neural Information Processing Systems (NeurIPS) MineRL Benchmark for
Agents that Solve Almost-Lifelike Tasks (BASALT) competition1. Most artificial intelligence (AI)
and reinforcement learning (RL) challenges involve solving tasks that have a reward function
to optimize over. Real-world tasks, however, do not automatically come with a reward function,
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and defining one from scratch can be quite challenging. Therefore, teaching AI agents to
solve complex tasks and learn difficult behaviors without any reward function remains a major
challenge for modern AI research. The MineRL BASALT competition is aimed to address
this challenge by developing AI agents that can solve complex, almost-lifelike, tasks in the
challenging Minecraft environment [1] using only human feedback data and no reward function.

The MineRL BASALT competition tasks do not contain any reward functions for the four
tasks. We propose a human-centered machine learning approach instead of using traditional
RL algorithms [2]. However, learning complex tasks with high-dimensional state-spaces (i.e.
from images) using only end-to-end machine learning algorithms requires large amounts of
high-quality data [3, 4]. When learning from human feedback, this translates to large amounts of
either human-collected or human-labeled data. To circumvent this data requirement, we opted
to combine machine learning with knowledge engineering, also known as hybrid intelligence
[5, 6]. Our approach uses human knowledge of the task to break them down in a natural
hierarchy of subtasks. Subtask selection is controlled by an engineered state-machine, which
relies on estimated agent odometry and the outputs of a learned state classifier. We also use the
competition-provided human demonstration dataset to train a navigation policy subtask via
imitation learning to replicate how humans traverse the environment.

In this paper, we give a detailed overview of our approach and perform an ablation study to
investigate how well our hybrid intelligence approach works compared to using either learning
from human demonstrations or engineered solutions alone. Our two main contributions are:

• An architecture that combines engineered knowledge of the tasks to be solved together
with machine learning modules to solve complex hierarchical tasks in Minecraft.

• Empirical results on how hybrid intelligence compares to both end-to-end machine
learning and pure engineered approaches when solving complex, real-world-like tasks,
as judged by real human evaluators.

2. Background and Related Work

End-to-end machine learning: in this work we use the term “end-to-end machine learning”
for algorithms that learn purely from data with minimal bias or constraints added by human
designers, besides the ones that are already inherently built-in the learning algorithm. For
example, deep reinforcement learning algorithms learning directly from raw pixels [7, 8] and
algorithms that automatically decompose tasks in hierarchies with different time scales [9, 10].
This often includes massive parallelization and distributed computation [11, 12] to fulfill the data
requirement of these algorithms. Other works train robotic agents to navigate through their
environment using RGB-D (visible spectrum imagery, plus depth) information to determine
optimal discrete steps to navigate to a visual goal [13]. Despite all advances made in this field,
these techniques have not been demonstrated to scale to tasks with the complexity presented in
the MineRL BASALT competition.
Human-in-the-loopmachine learning: Learning from human feedback can take different

forms depending on how human interaction is used in the learning-loop [14, 15]. A learning
agent can be trained based on human demonstrations of a task [16, 17, 3]. Agents can learn from
suboptimal demonstrations [18], end goals [19], or directly from successful examples instead



of a reward function [20]. Human operators can augment the human demonstrations with
online interventions [21, 22, 23, 24] or offline labeling [25, 26] while still maintaining success.
Agents can learn the reward or cost function used by the demonstrator [27, 28] through sparse
interactions in the form of evaluative feedback [29, 30, 31] or human preferences given a pair
of trajectories [32]. Additionally, agents can learn from natural language-defined goals [33].
Finally, agents can learn from combining human data with reinforcement learning [34, 35, 36].
However, these techniques have not scaled to tasks with the complexity presented in the MineRL
BASALT competition.
The Minecraft learning environment: Minecraft is a procedurally-generated, 3D open-

world game, where the agent observes the environment from a first-person perspective, collects
resources, modifies the environment’s terrain, crafts tools that augment the agent’s capabilities,
and possibly interacts with other agents in the same environment. Given the open-world nature
of this environment, there are no predefined tasks or built-in reward signals, giving the task
designer flexibility to define tasks with virtually any level of complexity. The release of Malmo
[1], a platform that enabled AI experimentation in the game of Minecraft, gave researchers the
capability to develop learning agents to solve tasks similar or analogous to the ones seen in the
real world.

The Minecraft environment also served as a platform to collect large human demonstration
datasets such as the MineRL-v0 dataset [37] and experiment with large scale imitation learning
algorithms [38] as a world generator for realistic terrain rendering [39], a sample-efficient
reinforcement learning competition environment using human priors (MineRL DIAMOND
challenge) [2]; and now as a platform for a competition on solving human-judged tasks defined
by a human-readable description and no pre-defined reward function, the MineRL BASALT
competition [40].

3. Problem Formulation

The 2021 NeurIPS MineRL BASALT competition, “Learning from Human Feedback in Minecraft”,
challenged participants to come up with creative solutions to solve four different tasks in
Minecraft [40] using the “MineRL: Towards AI in Minecraft”2 simulator [37]. These tasks aimed
to mimic real-world tasks, being defined only by a human-readable description and no reward
signal returned by the environment. The official task descriptions for the MineRL BASALT
competition3 were the following:

• FindCave: The agent should search for a cave and terminate the episode when it is inside
one.

• MakeWaterfall: After spawning in a mountainous area, the agent should build a beautiful
waterfall and then reposition itself to take a scenic picture of the same waterfall.

• CreateVillageAnimalPen: After spawning in a village, the agent should build an animal
pen containing two of the same kind of animal next to one of the houses in a village.

2MineRL webpage: https://minerl.io/.
3MineRL BASALT documentation: https://minerl.io/basalt/.
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• BuildVillageHouse: Using items in its starting inventory, the agent should build a new
house in the style of the village, in an appropriate location (e.gṅext to the path through
the village) without harming the village in the process.

The competition organizers also provided each participant team with a dataset of 40 to 80
human demonstrations for each task, not all completing the task, and the starter codebase to
train a behavior cloning baseline. Additionally, the training time for all four tasks together
was limited to four days and participants were allowed to collect up to 10 hours of additional
human-in-the-loop feedback.

4. Methods

Figure 1: Diagram illustrating our approach. Using data from the available human demonstration
dataset, humans provide additional binary labels to image frames to be used to train a state classifier
that can detect relevant features in the environment such as caves and mountains. The available hu-
man demonstration dataset is also used to train a navigation policy via imitation learning to replicate
how humans traverse the environment. A separate odometry module estimates the current agent’s
position and heading solely based on the action taken by the end. During test time, the agent uses
the learned state classifier to provide useful information to an engineered state-machine that controls
which subtask the agent should execute at every time-step.

Since no reward signal was given by the competition organizers and compute time was
limited, direct deep reinforcement learning approaches were not feasible [7, 41, 8]. With the
limited human demonstration dataset, end-to-end behavior cloning also did not result in high-
performing policies, because imitation learning requires large amounts of high-quality data
[3, 4]. We also attempted to solve the tasks using adversarial imitation learning approaches
such as Generative Adversarial Imitation Learning (GAIL) [42], however, the large-observation
space and limited compute time also made this approach infeasible.

Hence, to solve the four tasks of the MineRL BASALT competition, we opted to combine
machine learning with knowledge engineering, also known as hybrid intelligence [5, 6]. As



seen in the main diagram of our approach shown in Figure 1, the machine learning part of
our method is seen in two different modules: first, we learn a state classifier using additional
human feedback to identify relevant states in the environment; second, we learn a navigation
subtask separately for each task via imitation learning using the human demonstration dataset
provided by the competition. The knowledge engineering part is seen in three different modules:
first, given the relevant states classified by the machine learning model and knowledge of the
tasks, we designed a state-machine that defines a hierarchy of subtasks and controls which one
should be executed at every time-step; second, we engineered solutions for the more challenging
subtasks that we were not able to learn directly from data; and third, we engineered an estimated
odometry module that provides additional information to the state-machine and enables the
execution of the more complex engineered subtasks.

4.1. State Classification

(a) has_cave (b) inside_cave (c) danger_ahead (d) has_mountain

(e) facing_wall (f) at_the_top (g) good_waterfall_view (h) good_pen_view

(i) good_house_view (j) has_animals (k) has_open_space (l) ani-
mals_inside_pen

Figure 2: Illustration of positive classes of states classified using additional human feedback. Humans
were given image frames from previously collected human demonstration data and were assigned to
give binary labels for each of the illustrated 12 states, plus a null case when no relevant states were
identified.

Our approach relies on a state machine that changes the high-level goals depending on the



task to be solved. Without having information about the environment’s voxel data, we opted
to use the visual RGB information from the simulator to determine the agent’s current state.
Due to the low resolution of the simulator of 64× 64× 3, we decided to use a classifier that
labels the whole image rather than parts of the image, such as You Only Look Once (YOLO) [43].
Multiple labels can be present on the same image as there were cases with multiple objects or
scenes of interest at the same time in the field of view of the agent. These labels are used by the
state-machine to decide which subtask should be followed at any time-step.

There are 13 possible labels for an RGB frame, as illustrated in Figure 2 and described below:

• none: frame contains no relevant states (54.47 % of the labels).
• has_cave: agent is looking at a cave (1.39 % of the labels).
• inside_cave: agent is inside a cave (1.29 % of the labels).
• danger_ahead: agent is looking at a large body of water (3.83 % of the labels).
• has_mountain: agent has a complete view of a mountain (usually, from far away) (4.38 %

of the labels).
• facing_wall: agent is facing a wall that cannot be traversed by jumping only (4.55 % of

the labels).
• at_the_top: agent is at the top of a mountain and looking at a cliff (3.97 % of the labels).
• good_waterfall_view: agent see water in view (3.16 % of the labels).
• good_pen_view: agent has framed a pen with animals in view (4.12 % of the labels).
• good_house_view: agent has framed a house in view (2.58 % of the labels).
• has_animals: frame contains animals (pig, horse, cow, sheep, or chicken) (9.38 % of the

labels).
• has_open_space: agent is looking at an open-space of about 6x6 blocks with no small cliffs

or obstacles (flat area to build a small house or pen) (7.33 % of the labels).
• animals_inside_pen: agent is inside the pen after luring all animals and has them in view

(0.81 % of the labels).

The possible labels were defined by a human designer with knowledge of the relevant states
to be identified and given to the state-machine to solve all tasks. These labels were also
designed to be relevant to all tasks to ease data collection and labelling efforts. For example,
the “has_open_space” label identifies flat areas that are ideal to build pens or houses for both
CreateVillageAnimalPen and BuildVillageHouse tasks. Unknown and other non-relevant states
were attached the label “none” to indicate that no important states were in view.

To train this system, we labeled 81, 888 images using a custom graphical user interface (GUI),
as showed in Appendix A. Once the data was labeled, 80% of images were used for training,
10% were used for validation, and 10% for testing. The model is a convolutional classifier with
a 64 × 64 × 3 input and 13 × 1 output. Our autoencoder is modeled after the Deep TAMER
(Training Agents Manually via Evaluative Reinforcement) [31] model. The problem of training
with an uneven number of labels for each class was mitigated by implementing a weighted
sampling scheme that sampled more often classes with lower representation with probability:

𝑃 (𝑥𝑖) = 1− 𝑁𝑖

𝑀
, (1)

where 𝑃 (𝑥𝑖) is the probability of sampling class 𝑖 that contains 𝑁𝑖 number of labels out of the
total 𝑀 labels for all classes.



4.2. Estimated Odometry

Figure 3: Example of odometry map (right frame) generated in real time from the agent’s actions as it
traverses the environment. Besides the agent’s pose, the classified states from image data (left frame)
also have their locations tagged in the map to be used for specific subtasks. For example, when the
agent finishes building the pen, it uses the location of previously seen animals to attempt to navigate
and lure them to the pen.

Some of the engineered subtasks required basic localization of the agent and relevant states of
the environment. For example, the agent needs to know the location of previously seen animals
to guide them to a pen in the CreateVillageAnimalPen task. However, under the rules of the
competition, we were not allowed to use any additional information from the simulator besides
the current view of the agent and the player’s inventory. Which means there is no information
about the ground truth location of the agent, camera pose, or any explicit terrain information
available.

Given these constraints, we opted to implement a custom odometry method that took into
consideration only the actions from the agent and basic characteristics of the Minecraft simulator.
It is known that the simulator runs at 20 frames per second, which means there is a 0.05 second
interval between each frame. According to the Minecraft Wiki4, walking speed is approximately
4.317 m/s, 5.612 m/s while sprinting, or 7.127 m/s when sprinting and jumping at the same
time, which translates to approximately 0.216, 0.281, or 0.356 meters per frame when walking,
sprinting, or sprinting and jumping, respectively. If we assume the agent is operating in a flat
world, starting at position (0, 0) in map coordinates facing north, when the agent executes a
move forward action its position is moved 0.216 meters north to position (0, 0.216). The agent
does not have acceleration in MineRL and their velocity is immediately updated upon keypress.
Another limitation is that we were not able to reliably detect when the agent is stuck behind an
obstacle, which causes the estimated location to drift even though the agent is not moving in
the simulator.

Since the agent already commands camera angles in degrees, the heading angle 𝜃 is simply
updated by accumulating the horizontal camera angles commanded by the agent. More generally,
this odometric estimation assumes the agent follows point-mass kinematics:

�̇� = 𝑉 𝑐𝑜𝑠(𝜃)

4Minecraft Wiki - Walking: https://minecraft.fandom.com/wiki/Walking.
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�̇� = 𝑉 𝑠𝑖𝑛(𝜃),

where 𝑉 is the velocity of the agent, which takes into consideration if the agent is walking,
sprinting, or sprinting and jumping.

Using this estimated odometry and the learned state classifier, it is possible to attach a
coordinate to each classified state and map important features of the environment so they can be
used later by different subtasks and the state-machine. For example, it is possible to keep track
of where the agent found water, caves, animals, and areas of open space that can be used to
build a pen or a house. Figure 3 shows a sample of the resulting map overlaid with the classified
states’ location and current odometry readings.

4.3. Learning and Engineering Subtasks and the State-Machine

One of the main complexities in solving the proposed four tasks is that most required the
agent to have certain levels of perception capabilities, memory, and reasoning over long-term
dependencies in a hierarchical manner. For example, the CreateVillageAnimalPen task required
the agent to first build a pen nearby an existing village, which requires identifying what a
village is, then indicating a good location to build a pen such as a flat terrain. Once the pen was
built, the agent had to search for at least two of the same animal type in the nearby vicinity
using 64 × 64 resolution images as input. Return animals to the pen required coordination
to combine different blocks and place them adjacently to each other in a closed shape. After
the animals were found, the agent had to lure them with the specific food type they eat, walk
them back to the pen the agent initially built, leave the pen, lock the animals inside, then take a
picture of the pen with the animals inside.

Reasoning over these long-term dependencies in hierarchical tasks is one of the main chal-
lenges of end-to-end learning-based approaches [10]. Conversely, reactive policies such as the
one required to navigate with certain boundaries and avoid obstacles have been learned directly
from demonstration data or agent-generated trajectories [44, 3]. In this work, we use human
knowledge of the tasks to decompose these complex tasks in multiple subtasks, which are either
reactive policies learned from data or directly engineered, and a state-machine that selects the
most appropriate one to be followed at every time-step. The subtask that performs task-specific
navigation is learned from the provided human demonstration dataset. For example, searching
for the best spot to place a waterfall in the MakeWaterfall task requires navigation. Subtasks
with little demonstration data available are engineered in combination with the learned state
classifier. Throwing a snowball while inside the cave to signal the end of the episode can be
engineered using human demonstration data.

Once the complex tasks are decomposed into multiple small subtasks, we engineered a state-
machine in combination with the learned state classifier to select the best subtask to be followed
at every time-step. Each of these engineered subtasks was implemented by a human designer
who hard-coded a sequence of actions to be taken using the same interface available to the
agent. In addition to these subtasks, the human designer also implemented a safety-critical
subtask allowing the agent to escape a body of water whenever the state classifier detects that
the agent is swimming. Appendix B describes in detail the sequence of substasks followed by
the state-machine for each task.



4.4. Evaluation Methods

In this work, we compared four different approaches to solve the four tasks proposed in the
Minecraft competition:

• Hybrid: the main proposed agent in this work, that combines both learned and engi-
neered modules. The learned modules are the navigation subtask policy (learns how to
navigate using the human demonstration data provided by the competition) and the state
classifier (learns how to identify relevant states using additional human-labeled data). The
engineered modules are the multiple subtasks, hand-designed to solve subtasks that were
not able to be learned from data. These engineered modules are the estimated odometry
and the state-machine, which uses the output of the state classifier and engineered task
structure to select which subtask should be followed at each time-step.

• Engineered: almost identical to the Hybrid agent described above, however, the nav-
igation subtask policy that was learned from human demonstrations is now replaced
by a hand-designed module that randomly selects movement and camera commands to
explore the environment.

• Behavior Cloning: end-to-end imitation learning agent that learns solely from the
human demonstration data provided during the competition. This agent does not use any
other learned or engineered module, which includes the state classifier, the estimated
odometry, and the state-machine.

• Human: human-generated trajectories provided by the competition. They are neither
guaranteed to solve the task nor solve it optimally because they depend on the level of
expertise of each human controlling the agent.

To collect human evaluations for each of the four baselines in a head-to-head comparison we
set up a web application5 similar to how the teams were evaluated during the official MineRL
BASALT competition, as seen in Appendix C. In our case, each participant was asked to see
two videos of different agents performing the same task then to answer three questions:

1. Which agent best completed the task?
2. Which agent was the fastest completing the task?
3. Which agent had a more human-like behavior?

For each question, the participants were given three possible answers: “Agent 1”, “Agent 2”, or
“None”.

Our database had videos of all four types of agents (Behavior Cloning, Engineered, Hybrid,
and Human) performing all four tasks (FindCave, MakeWaterfall, CreateVillageAnimalPen,
and BuildVillageHouse). There were 10 videos of each agent type solving all four tasks, for a
total of 160 videos in the database. Task, agent type, and videos were uniformly sampled from
the database at each time a new evaluation form was generated and presented to the human
evaluator.

We collected a total of 268 evaluation forms (pairwise comparison where a human evaluator
judged which agent was the best, fastest, and more human-like performing the tasks) from 7
different human evaluators.

5Custom MineRL BASALT evaluation webpage: https://kairosminerl.herokuapp.com/.
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Table 1
Summary of the TrueSkillTM[45] scores with mean and standard deviation computed from human eval-
uations separately for each performance metric and agent type averaged out over all tasks. Scores were
computed after collecting 268 evaluations from 7 different human evaluators.

Task Performance Metric TrueSkill Rating

Behavior Cloning Engineered Hybrid Human

All Tasks
Combined

Best
Performer

20.30± 1.81 24.21± 1.46 25.49± 1.40 32.56± 1.85

Fastest
Performer

19.42± 1.94 26.92± 1.45 27.59± 1.38 28.36± 1.69

More Human-like
Behavior

20.09± 2.04 26.02± 1.56 26.94± 1.57 36.41± 2.12

All agent-generated videos were scaled from the original 64× 64 image resolution returned
by the environment to 512× 512 image resolution in an attempt to make the videos clearer for
the human evaluators. The videos of the ”Human” agent type were randomly selected from the
video demonstrations provided by the MineRL BASALT competition and scaled to 512× 512
image resolution to match the agent-generated videos. All videos were generated and saved
at 20 frames per second to match the sampling rate of the Minecraft simulator used by both
agents and humans.

5. Results and Discussion

Each combination of condition (behavior cloning, engineered, hybrid, human) and performance
metric (best performer, fastest performer, most human-like performer) is treated as a sepa-
rate participant of a one-versus-one competition where skill rating is computed using the
TrueSkillTM6 Bayesian ranking system [45]. In this Bayesian ranking system, the skill of each
participant is characterized by a Gaussian distribution with a mean value 𝜇, representing the
average skill of a participant and standard deviation 𝜎 representing the degree of uncertainty in
the participant’s skill. There are three possible outcomes after each comparison: the first agent
wins the comparison, the second agent the comparison, or there is a draw (human evaluator
selects ”None” when asked which participant performed better in a given metric). Given this
outcome, the TrueSkillTM ranking system updates the belief distribution of each participant
using Bayes’ Theorem [45], similar to how scores were computed in the official 2021 NeurIPS
MineRL BASALT competition. We used the open-source TrueSkill Python package7.

The final mean and standard deviation of the TrueSkillTM scores computed for each perfor-
mance metric and agent type are shown in Table 1. The scores were computed after collecting
268 evaluations from 7 different human evaluators. Our main proposed “Hybrid” agent, which
combines engineered and learned modules, outperforms both pure hand-designed (“Engineered”)

6Microsoft’s TrueSkillTM Ranking System: https://www.microsoft.com/en-us/research/project/
trueskill-ranking-system

7TrueSkill Python package: https://github.com/sublee/trueskill and https://trueskill.org/.

https://www.microsoft.com/en-us/research/project/trueskill-ranking-system
https://www.microsoft.com/en-us/research/project/trueskill-ranking-system
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https://trueskill.org/


and pure learned (“Behavior Cloning”) agents in the “Best Performer” category, achieving 5.3%
and 25.6% higher mean skill rating when compared to the “Engineered” and “Behavior Cloning”
baselines, respectively. However, when compared to the “Human” scores, our main proposed
agent achieves 21.7% lower mean skill rating, illustrating that even our best approach is still
not able to outperform a human player with respect to best performing the task.

When looking at the “Fastest Performer” metric, our “Hybrid” agent outperforms both
“Engineered” and “Behavior Cloning” baselines, respectively, scoring only 2.7% lower than
the human players. As expected, in the “More Human-like Behavior” performance metric the
“Human” baseline wins by a large margin, however, the “Hybrid” still outperforms all other
baselines, including the “Behavior Cloning” agent, which is purely learned from human data.
We attribute this to the fact that the pure learned agent did not make use of the safety-critical
engineered subtask, which allowed the agent to escape bodies of water and other obstacles
around the environment. Plots showing how the TrueSkillTM scores evolved after each match
(one-to-one comparison between different agent types) are shown in Appendix D.

Table 2 breaks down the results presented in Table 1 for each separate task. Similar to what
was discussed for Table 1, excluding the “Human” baseline, the “Hybrid” approach outperforms
both “Behavior Cloning” and “Engineered” baselines in terms of mean skill rating in 8 out of
the 12 performance metrics, or in 66.6% of the comparisons. Similarly, hybrid intelligence
approaches, which include both “Hybrid” and “Engineered” baselines, outperform the pure
learning “Behavior Cloning” approach in all 12 performance metrics, not taking into account
the “Human” baseline. The “Hybrid” approach only outperforms the “Human” baseline in 4 out
of the 12 performance metrics, or in 33.3% of the comparisons.

Particularly for the MakeWaterfall task, the proposed hybrid approach outperforms human
players for all performance metrics. The largest margin observed is for the “Fastest Performer”
metric; the hybrid approach scores 53.2% higher than the human players. This large margin
comes from human players taking more time to find the best spot to place the waterfall and
signal the end of the episode when compared to the engineered subtasks. Plots showing all
results for each individual pairwise comparison are shown in Appendix E.

We now consider qualtitative evaluation of our agents. When solving the FindCave task8, the
agent spawns in the plains biome and uses the learned navigation policy to search for caves
while avoiding water while simultaneously building the map of its environment. Once the agent
finds the cave, it throws the snowball to signal the end of the episode. In the MakeWaterfall
task9, the hybrid agent spawns in a mountainous area, uses the learned navigation policy to
climb the mountains, detects a good location to build the waterfall, builds it, then moves to
the picture location using engineered subtasks, and throws the snowball to signal the end
of the episode. For the CreateVillageAnimalPen task10, the agent uses the learned navigation
policy and the state classifier to search for an open location to build a pen, builds the pen using
an engineered building subtask that repeats the actions taken by the human demonstrators,
uses the state classifier and odometry map to go to previously seen animal locations, and then
attempts to lure them back to the pen and throws the snowball to signal the end of the episode.

8Sample trajectory of hybrid agent solving the FindCave task: https://youtu.be/MR8q3Xre_XY.
9Sample trajectory of hybrid agent solving the MakeWaterfall task: https://youtu.be/eXp1urKXIPQ.

10Sample trajectory of hybrid agent solving the CreateVillageAnimalPen task: https://youtu.be/b8xDMxEZmAE.
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Table 2
Summary of the TrueSkillTM[45] scores with mean and standard deviation computed from human eval-
uations separately for each performance metric, agent type, and task. Scores were computed after
collecting 268 evaluations from 7 different human evaluators.

Task Performance Metric TrueSkill Rating

Behavior Cloning Engineered Hybrid Human

FindCave

Best
Performer

24.32± 1.27 24.29± 1.21 25.14± 1.19 32.90± 1.52

Fastest
Performer

24.65± 1.27 24.16± 1.21 24.79± 1.19 32.75± 1.54

More Human-like
Behavior

21.53± 1.70 26.61± 1.43 28.25± 1.51 38.95± 1.96

MakeWaterfall

Best
Performer

15.16± 2.10 23.16± 1.60 26.53± 1.39 24.39± 1.62

Fastest
Performer

14.67± 2.26 28.95± 1.74 28.88± 1.46 18.85± 2.02

More Human-like
Behavior

21.27± 1.98 24.51± 1.52 26.91± 1.35 26.48± 1.61

CreateVillage
AnimalPen

Best
Performer

21.87± 1.94 23.56± 1.38 26.49± 1.48 33.89± 1.73

Fastest
Performer

18.62± 2.27 27.00± 1.32 29.93± 1.50 28.59± 1.53

More Human-like
Behavior

21.54± 2.29 25.53± 1.57 27.99± 1.68 40.60± 2.44

BuildVillage
House

Best
Performer

19.83± 1.92 25.81± 1.66 23.81± 1.55 39.05± 2.53

Fastest
Performer

19.75± 1.97 27.58± 1.54 26.76± 1.35 33.24± 1.67

More Human-like
Behavior

16.04± 2.19 27.42± 1.72 24.61± 1.72 39.61± 2.46

Finally, when solving the BuildVillageHouse task11, our hybrid agent spawns nearby a village
and uses the learned navigation policy and the state classifier to search for an open location
to build a house, builds a house using an engineered building subtask that repeats the actions
taken by the human demonstrators, tours the house, and throws the snowball to signal the end
of the episode. Each of the described subtasks are shown in Appendix F as a sequence of frames.

6. Conclusions

In this paper, we presented the solution that won first place and was awarded the most human-
like agent in the 2021 NeurIPS MineRL BASALT competition, “Learning from Human Feedback

11Sample trajectory of hybrid agent solving the BuildVillageHouse task: https://youtu.be/_uKO-ZqBMWQ.

https://youtu.be/_uKO-ZqBMWQ


in Minecraft.” Our approach used the available human demonstration data and additional human
feedback to train machine learning modules that were combined with engineered ones to solve
hierarchical tasks in Minecraft.

The proposed method was compared to both end-to-end machine learning and pure engi-
neered solutions by collecting human evaluations that judged agents in head-to-head matches
to answer which agent best solved the task, which agent was the fastest, and which one had the
most human-like behavior. These human evaluations were converted to a skill rating score for
each question, similar to how players are ranked in multiplayer online games.

After collecting 268 human evaluations, we showed that hybrid intelligence approaches
outperformed end-to-end machine learning approaches in all 12 performance metrics computed,
even outperforming human players in 4 of them. Our results also showed that incorporating
machine learning modules for navigation as opposed to engineering navigation policies led to
higher scores in 8 out of 12 performance metrics.

Overall, we demonstrated that hybrid intelligence approaches are viable solutions to solve
hierarchical tasks when the subcomponents of the task are understood by human experts and
limited human feedback data is available.
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Appendix

A. State Classifier Labeling GUI

Figure 4: Custom GUI to relabel human dataset provided by the competition to train a classifier to
identify relevant states for the state-machine.

The labeling process of relevant states to the state-machine uses both mouse clicks and
keyboard presses and takes place in a custom GUI, as seen in Figure 4. On the top left of the
GUI, users can double-check which dataset and frame number they are labeling. Below that,
the GUI displays the RGB frame to be labeled (center left) and the options for labels (center
right, same labels for all tasks). To label a frame, the user can simply press the keyboard key
corresponding to the desired label (shown in brackets, for example, [𝑐] for ℎ𝑎𝑠_𝑐𝑎𝑣𝑒), or click
in the white circles in front of the label, which will then turn green, indicating that the label
was selected. Frames will automatically advance when a key is pressed. If the users only use
the mouse to select the labels, they will istill need to press the keyboard key to advance to the



next frame (any key for a label that was already selected clicking).

B. State-Machine Definition for each Task

The sequence of subtasks used by the state-machine for each task is defined as follows:

• FindCave:

1. Use navigation policy to traverse the environment and search for caves;
2. If the state classifier detects the agent is inside a cave, throw a snowball to signal

that the task was completed (end of episode).

• MakeWaterfall:

1. Use navigation policy to traverse the environment and search for a place in the
mountains to make a waterfall;

2. If the state classifier detects the agent is at the top of a mountain, build additional
blocks to give additional height to the waterfall;

3. Once additional blocks are built, look down and place the waterfall by equipping
and using the bucket item filled with water;

4. After the waterfall is built, keep moving forward to move away from it;
5. Once the agent has moved away from the waterfall, turn around and throw a

snowball to signal that a picture was taken, and the task was completed (end of
episode).

• CreateVillageAnimalPen:

1. Use navigation policy to traverse the environment and search for a place to build a
pen;

2. If the state classifier detects an open-space, build the pen. The subtask to build
the pen directly repeats the actions taken by a human while building the pen, as
observed in provided demonstration dataset;

3. Once the pen is built, use the estimated odometry map to navigate to the closest
animal location. If no animals were seen before, use navigation policy to traverse
the environment and search for animals;

4. At the closest animal location, equip food to attract attention of the animals and
lure them;

5. Using the estimated odometry map, move back to where the pen was built while
animals are following the agent;

6. Once inside the pen together with the animals, move away from pen, turn around
and throw a snowball to signal that the task was completed (end of episode).

• BuildVillageHouse:

1. Use navigation policy to traverse the environment and search for a place to build a
house;



2. If the state classifier detects an open-space, build the house. The subtask to build
the house directly repeats the actions taken by a human while building the house,
as observed in provided demonstration dataset;

3. Once the house is built, move away from it, turn around and throw a snowball to
signal that the task was completed (end of episode).

C. Human Evaluation Interface

Figure 5: Web evaluation form used to collect additional human evaluation data to evaluate the mul-
tiple agent conditions presented in paper.

Figure 5 shows a sample of the web evaluation form available at https://kairosminerl.
herokuapp.com/ that was used to collect human evaluations for each of the four baselines

https://kairosminerl.herokuapp.com/
https://kairosminerl.herokuapp.com/


in a head-to-head comparison, similar to how the teams were evaluated during the official
MineRL BASALT competition. Each participant was asked to see two videos of different agents
performing the same task then answer three questions with respect to the agent’s performance.

D. TrueSkillTM Score per Match

Figures 6, 7, 8, and 9 show the evolution of the TrueSkillTM scores after each match (one-to-
one comparison between different agent types) for each performance metric when the agents
are solving the FindCave, MakeWaterfall, CreateVillageAnimalPen, and BuildVillageHouse tasks,
respectively. The bold line represents the mean estimated skill rating and shaded area the
standard deviation of the estimation.

(a) Best Performer (b) Fastest Performer (c) More Human-like Behavior

Figure 6: TrueSkillTM[45] scores computed from human evaluations separately for each performance
metric and for each agent type performing the FindCave task.

(a) Best Performer (b) Fastest Performer (c) More Human-like Behavior

Figure 7: TrueSkillTM[45] scores computed from human evaluations separately for each performance
metric and for each agent type performing the MakeWaterfall task.

E. Pairwise Comparison per Performance Metric and Task

Figures 10, 11, 12, and 13 show bar plots with the individual pairwise comparisons compiled
from the human evaluations for the FindCave, MakeWaterfall, CreateVillageAnimalPen, and



(a) Best Performer (b) Fastest Performer (c) More Human-like Behavior

Figure 8: TrueSkillTM[45] scores computed from human evaluations separately for each performance
metric and for each agent type performing the CreateVillageAnimalPen task.

(a) Best Performer (b) Fastest Performer (c) More Human-like Behavior

Figure 9: TrueSkillTM[45] scores computed from human evaluations separately for each performance
metric and for each agent type performing the BuildVillageHouse task.

BuildVillageHouse tasks, respectively. Each bar represents the percentage of the time a given
condition was selected as a winner for each performance metric by the human evaluator when
they were presented with a video of the agent performance solving the task for each analysed
condition. For example, when analyzing Figure 10(a), we can see that the human evaluator was
presented with a video of the “Behavior Cloning” agent and another from the “Engineered” agent,
they selected the “Engineered” agent as the best performer 33.3% and the “Behavior Cloning”
agent 22.2% of the time. The remaining accounts for the “None” answer to the questionnaire
selected when none of the agents were judged to have solved the task.

When directly comparing the “Behavior Cloning” baseline to the main proposed “Hybrid”
method for all tasks, as shown in Figures 10, 11, 12, and 13 (c) plots, we observe that the
proposed hybrid intelligence agent always match or outperforms the pure learned baseline.
This is similar to the case we compare the “Engineered” agent to the “Hybrid” agent, where
the proposed hybrid method outperforms the fully engineered approach in all tasks except
the BuildVillageHouse task, as seen in Figure 13. The human players always outperform the
hybrid agent with exception to the MakeWaterfall task, where the “Hybrid” agent is judged to
better solve the task 70% of the time, to solve it faster 90% of the time, and even present a more
human-like behavior 60% of the time. The “Hybrid” agent performing better can be attributed
to the fact that the human players were not always able or willing to solve the task as described



(a) BC vs Engineered (b) BC vs Human (c) BC vs Hybrid

(d) Engineered vs Hybrid (e) Human vs Engineered (f) Human vs Hybrid

Figure 10: Pairwise comparison displaying the normalized scores computed from human evaluations
separately for each performance metric on all possible head-to-head comparisons for all agent type
performing the FindCave task.

in the prompt.

F. Samples of Hybrid Agent Solving the Tasks

In terms of qualitative results, Figures 14, 15, 16, and 17 show a sample episode illustrated by a
sequence of frames of our hybrid agent solving the FindCave, MakeWaterfall, CreateVillageAni-
malPen, and BuildVillageHouse tasks, respectively. Each figure shows the image frames received
by the agent (left panel) overlaid with the actions taken (top), output of the state classifier
(center), and the subtask currently being followed (bottom). The right panel shows the estimated
odometry map overlaid with the location of the relevant states identified by the state classifier.
Link to the videos are provided in the figure captions.



(a) BC vs Engineered (b) BC vs Human (c) BC vs Hybrid

(d) Engineered vs Hybrid (e) Human vs Engineered (f) Human vs Hybrid

Figure 11: Pairwise comparison displaying the normalized scores computed from human evaluations
separately for each performance metric on all possible head-to-head comparisons for all agent type
performing the MakeWaterfall task.

(a) BC vs Engineered (b) BC vs Human (c) BC vs Hybrid

(d) Engineered vs Hybrid (e) Human vs Engineered (f) Human vs Hybrid

Figure 12: Pairwise comparison displaying the normalized scores computed from human evaluations
separately for each performance metric on all possible head-to-head comparisons for all agent type
performing the CreateVillageAnimalPen task.



(a) BC vs Engineered (b) BC vs Human (c) BC vs Hybrid

(d) Engineered vs Hybrid (e) Human vs Engineered (f) Human vs Hybrid

Figure 13: Pairwise comparison displaying the normalized scores computed from human evaluations
separately for each performance metric on all possible head-to-head comparisons for all agent type
performing the BuildVillageHouse task.

(a) (b)

(c) (d)

Figure 14: Sequence of frames of our hybrid agent solving the FindCave task (complete video available
at https://youtu.be/MR8q3Xre_XY).

https://youtu.be/MR8q3Xre_XY


(a) (b)

(c) (d)

Figure 15: Sequence of frames of our hybrid agent solving the MakeWaterfall task (complete video
available at https://youtu.be/eXp1urKXIPQ).

(a) (b)

(c) (d)

Figure 16: Sequence of frames of our hybrid agent solving the CreateVillageAnimalPen task (complete
video available at https://youtu.be/b8xDMxEZmAE).

https://youtu.be/eXp1urKXIPQ
https://youtu.be/b8xDMxEZmAE
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Figure 17: Sequence of frames of our hybrid agent solving the BuildVillageHouse task (complete video
available at https://youtu.be/_uKO-ZqBMWQ).

https://youtu.be/_uKO-ZqBMWQ
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