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Abstract
Autonomous robots and vehicles are expected to become an integral part of our environment soon. Un-
satisfactory issues (esp. for path planning) regarding interaction with existing road users, performance
in mixed-traffic areas, and lack of interpretable behavior remain key obstacles. To address these, we
present a physics-based neural network, based on a hybrid approach combining a social force model
extended by group force (SFMG) with Multi-Layer Perceptron (MLP) to predict pedestrian trajectories
considering its interaction with static obstacles, other pedestrians, and pedestrian groups. We quantita-
tively and qualitatively evaluate the model concerning realistic prediction, prediction performance, and
prediction "interpretability". Initial results suggest that, even when solely trained on a synthetic dataset,
the model can predict realistic and interpretable trajectories with better than state-of-the-art accuracy.
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1. Introduction

There has been growing research interest in autonomous technologies like autonomous vehi-
cles, service robots, goods carriers, and surveillance robots. It is generally expected that such
autonomous entities will soon be a part of our daily environment. However, before this, several
hard issues remain to be resolved. Firstly, their performance in mixed-traffic zones and interac-
tion with existing road users (e.g. cars, pedestrians, cyclists) requires further inspection [1], [2].
Secondly, uncertainty or lack of interpretability in their motion behavior and decisions make
them less "socially acceptable" [2]. Again, in a mixed-traffic zone, autonomous robots/vehicles
need to predict the future trajectories of other road users (cars, pedestrians, cyclists, etc.) to plan
their trajectories and navigate safely. However, doing so is a complex task due to overlapping
interactions among road users, road user groups, and static obstacles.

Figure 1 shows an example scenario. Service robot R1 is placed in a mixed-traffic zone, trying
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Figure 1: A robot placed in a mixed-traffic zone traveling towards a destination.

to navigate through other road users to reach its destination X. On its path, it will encounter
cars (C2), pedestrians (P1, P2, P3, and P4), and static obstacles (e.g. trees, lamps). For that, it
may need to predict the trajectories of these other road users and plan its path based on that.
However, the behavior of an individual road user can also depend on other factors present in
the environment. Factors like interaction with static obstacles, other road users, and (if the road
user is traveling in a group) other group members. So, the robot/vehicle has to consider all
these factors while predicting other road users’ trajectories and planning its path.

As pedestrians are vulnerable road users and form the majority in most mixed-traffic zones,
modeling pedestrian behavior warrants high importance. This task entails estimating a pedes-
trian’s future motion within seconds based on its previous motion and environment-related
information.

The main contribution of this paper is a novel pedestrian motion prediction model, a pre-
requisite for autonomous robot/vehicle path planning, which considers pedestrian interaction
with static obstacles, other pedestrians, and pedestrian groups. We take a hybrid approach
combining the classical social force model (SFM) [3] extended by pedestrian group behavior
modeling [4], with a neural network for predicting pedestrian motion.

The remainder of this paper is arranged as follows: Section 2 reviews related work on
trajectory prediction. Section 3 then briefly discusses SFMG; our model architecture is described
in Section 4, followed by its evaluation in Section 5. Section 6 concludes and discusses future
research opportunities.

2. Related work

Broadly, road user trajectory prediction algorithms can be divided into theory-based or physics-
based approaches and learning-based approaches. The first group of approaches uses do-
main/theoretical knowledge and/or physics-based models to model road user motion. The social
force model [3] and its various extensions ([6], [7], [8], [4], [9]) are widely used for this purpose.



At its core, SFM defines pedestrian motion as being motivated by external forces exerted upon it
by static obstacles and other road users. These methods can model road user motion realistically,
and they are interpretable. However, the complexity of estimating model parameters hinders
their scalability, and they require too much explicit expert involvement, which in turn restricts
their suitability to include new road user types [10].

Learning-based approaches using machine learning algorithms, especially artificial neural
networks (ANN) have the potential to overcome the above-mentioned issues. With a sufficient
amount of relevant data, a machine learning algorithm can be trained to estimate the underlying
motion dynamics of a road user. Different types of neural network architectures have been used
to predict pedestrian trajectory, including Multi-layer Perceptron [11], Long Short-Term Memory
(LSTM) and Gated Recurrent Unit (GRU) ([12], [13], [14]), Conditional Variational Auto-encoders
[15], Generative Adversarial Networks [16], Graph Neural Networks [17], and Graph Attention
Networks [18] and so on. However, the size of the neural network needed to estimate complex
human behavior and the number of training samples needed jointly become a major bottleneck.
Moreover, neural networks tend to be like "black boxes", lacking explainability. Explainability is
required for autonomous entities to analyze their behavior, attribute responsibility, and engender
trust [19]. The lack of a prior model in an ANN makes explainability hard or nearly impossible.
There have been some attempts to combine theory-based and learning-based approaches to
avail the advantages of both and consequently design a "Grey-box" model [20].

Johora et al. [21], proposes combining GSFM, an agent-based model, and LSTM-DBSCAN, a
learning-based model, in a hierarchical manner, i.e. GSFM takes over when LSTM-DBSCAN
predicts conflicting trajectories. Kim et al. [22], combines an ANN with a cellular automata
model to estimate traffic congestion. Here, an ANN helps to estimate the cellular automata
model’s parameters. Karpatne et al. [23] suggests a new paradigm of approaches that aim to
combine theory-based knowledge with data-driven approaches and avail subsequent advantages.
Antonucci et al. [24], suggests a combination of SFM and MLP to predict pedestrian trajectories.
Here, the neural network architecture has been designed in such a manner that it estimates SFM
parameters. This work [24] can estimate the acceleration force towards the desired destination
and repulsive forces exerted by the nearby obstacles using two different MLPs. Interestingly,
the second MLP consists of both the acceleration force part and repulsive force part together in
a single network, jeopardizing its interpretable nature. Moreover, the authors do not consider
interaction with other road users. Another approach to combining SFM and neural networks
to design a differentiable simulation model is introduced in Kreiss et al. [25]. Here, the neural
network is used to estimate the interaction potentials. Pedestrian interaction with obstacle/s
and other pedestrian/s is considered by the authors. The authors did not test the model [25]
on real data. Noticeably, none of these works consider interactions among pedestrians and
pedestrian group/s, although pedestrian groups contribute toward 70% of the road users [26].

Therefore, in this work we combine SFMG and neural network to model pedestrian motion
and, consider interactions with obstacles, other pedestrians, and pedestrian groups. Here,
SFMG helps understand and model/predict a pedestrian’s motivation behind making a certain
motion behavior (i.e. through corresponding forces). The neural network architecture mimics
the SFMG equations, and it is solely used to estimate the equation parameters. SFMG serves



as a prior model for the neural network. Thus, the overall approach retains the social force
model’s interpretability. Again, we employ individual networks to estimate individual forces
and combine them in a modular manner to get total force. Refer to Section 4 for further details
on the model architecture.

3. Social force model with pedestrian groups (SFMG)

In this section, we briefly discuss the social force model [3] to understand how we can incorporate
it with Multi-Layer Perceptron (MLP). Suppose, a certain pedestrian 𝛼 is moving towards its
destination −→𝑥 𝑜

𝑎 at a certain desired velocity −→𝑤 𝛼(𝑡) := 𝑣𝑜𝛼
−→𝑒 𝛼(𝑡) at time t. Its motion path can

be disturbed by static obstacles in the environment (e.g. walls, trees, etc.) and other road users.
Then, according to SFM [3], the total force acting upon 𝛼 is defined as:

𝑑−→𝑣𝛼(𝑡)
𝑑𝑡

=
−→
𝑓 𝑜

𝛼 +
∑︁
𝛽

−→
𝑓 𝑆𝑂𝐶

𝛼𝛽 +
∑︁
𝐵

−→
𝑓 𝑆𝑂𝐶

𝛼𝐵 +
∑︁
𝑖

−→
𝑓 𝑆𝑂𝐶

𝛼𝑖 + 𝜉 (1)

Again, the acceleration force towards the destination,
−→
𝑓 𝑜

𝛼 is defined as:

−→
𝑓 𝑜

𝑎 = (𝑣𝑜𝛼
−→𝑒 𝛼(𝑡)−−→𝑣 𝛼(𝑡))/𝜏 (2)

Here, −→𝑣 𝛼(𝑡) is the current velocity, 𝜏 is relaxation time and −→𝑒 𝛼(𝑡) =
−→𝑥 𝑛

𝑎−−→𝑥 𝑎

||−→𝑥 𝑛
𝑎−−→𝑥 𝑎|| is the desired

direction. −→𝑥 𝑛
𝑎 and −→𝑥 𝑎 denote next position and current position of pedestrian 𝛼 respectively.

A pedestrian’s tendency to keep a safe distance from static obstacles is denoted by the repulsive
force

−→
𝑓 𝑆𝑂𝐶

𝛼𝐵 as:
−→
𝑓 𝑆𝑂𝐶

𝛼𝐵 = 𝑈𝑜
𝛼𝐵𝑒

−𝑑𝛼𝐵(𝑡)/𝑅−→𝜂 𝛼𝐵 (3)

Here, B denotes a static obstacle, and 𝑈𝑜
𝛼𝐵 is the interaction strength between 𝛼 and obstacle

B. 𝑑𝛼𝐵 and −→𝜂 𝛼𝐵 are the distance and the direction unit vector between 𝛼 and B respectively.
The repulsive force between 𝛼 and another pedestrian 𝛽 is denoted by:

−→
𝑓 𝑆𝑂𝐶

𝛼𝛽 = 𝑉 𝑜
𝛼𝛽𝑒

−𝑑𝛼𝛽(𝑡)/𝜎−→𝜂 𝛼𝛽𝐹𝛼𝛽 (4)

where, 𝑑𝛼𝛽 and −→𝜂 𝛼𝛽 are distance and unit direction vector between 𝛼 and 𝛽. 𝐹𝛼𝛽 represents
the anisotropic behavior of a pedestrian, and it is defined as:

𝐹𝛼𝛽 = 𝜆𝛼 + (1− 𝜆𝛼)(1 + cos (𝜑𝛼𝛽))/2 (5)

Here, 𝜆𝑎 is a constant and 𝜑𝛼𝛽 is the angle between the motion direction of pedestrian 𝛼 and
the vector pointing in the direction of 𝛼 to 𝛽. i.e. cos (𝜑𝛼𝛽) = −→𝜂 𝛽𝛼(𝑡).

−→𝑒 𝛼(𝑡). Combining
equation 4 and 5, and simplifying it, we get:

−→
𝑓 𝑆𝑂𝐶

𝛼𝛽 = 𝑉 𝑜
𝛼𝛽(𝐴1𝑒

−𝑑𝛼𝛽(𝑡)/𝜎−→𝜂 𝛼𝛽 +𝐴2
−→𝜂 𝛼𝛽

−→𝜂 𝛼𝛽
−→𝑒 𝛼(𝑡)𝑒

−𝑑𝛼𝛽(𝑡)/𝜎) (6)

where, 𝐴1 = 𝜆𝛼 + (1− 𝜆𝛼)/2 and 𝐴2 = (1− 𝜆𝛼)/2 are constants.



The attractive force towards points of interest (e.g. friends, street artists, etc.) is given by
−→
𝑓 𝑆𝑂𝐶

𝛼𝑖 . We ignore this force in our work to avoid further complexity. SFM has been extended
by [4], [27] to include pedestrian group interaction by introducing the group force

−→
𝑓 𝑔𝑟𝑜𝑢𝑝 as:

−→
𝑓 𝑔𝑟𝑜𝑢𝑝 =

−→
𝑓 𝑣𝑖𝑠 +

−→
𝑓 𝑎𝑡𝑡 (7)

In the above equation,
−→
𝑓 𝑣𝑖𝑠 denotes the pedestrian’s desire to keep other group members

within his/her field of view (FOV).
−→
𝑓 𝑎𝑡𝑡 is an attraction force representing the pedestrian’s

motivation to maintain group coherence. The terms
−→
𝑓 𝑣𝑖𝑠 and

−→
𝑓 𝑎𝑡𝑡 can be described as:

−→
𝑓 𝑣𝑖𝑠 = 𝑆𝑣𝑖𝑠 * 𝜃 *

−→
𝑉 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 (8)

−→
𝑓 𝑎𝑡𝑡 =

{︃
𝑆𝑎𝑡𝑡 * −→𝑛 (𝐴𝑖𝑗 , 𝐶𝑖), if 𝑑𝑖𝑠𝑡(𝐴𝑖𝑗 , 𝐶𝑖) ≥ 𝑑 𝑎𝑛𝑑

−→
𝑉 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 ̸= 0

0, otherwise.
(9)

Here, 𝜃 is the minimum rotation angle. 𝑆𝑣𝑖𝑠 and 𝑆𝑎𝑡𝑡 are global strength parameters.
−→
𝑉 𝑑𝑒𝑠𝑖𝑟𝑒𝑑

is the desired velocity of any pedestrian 𝐴𝑖𝑗 in group 𝐺𝑖. −→𝑛 (𝐴𝑖𝑗 , 𝐶𝑖) represents the normalized
unit length vector between 𝐴𝑖𝑗 and group centroid 𝐶𝑖. Adding

−→
𝑓 𝑔𝑟𝑜𝑢𝑝 and omitting

−→
𝑓 𝑆𝑂𝐶

𝛼𝑖

equation 1 becomes:

𝑑−→𝑣𝛼(𝑡)
𝑑𝑡

=
−→
𝑓 𝑜

𝛼 +
∑︁
𝛽

−→
𝑓 𝑆𝑂𝐶

𝛼𝛽 +
∑︁
𝐵

−→
𝑓 𝑆𝑂𝐶

𝛼𝐵 +
−→
𝑓 𝑔𝑟𝑜𝑢𝑝 + 𝜉 (10)

We use the force equations of the social force model with pedestrian group behavior modeling
described in this section to design our pedestrian motion prediction model architecture.

4. Physics-based neural network (SFMGNet)

We aim to design our neural network based framework in such a way that it estimates the
total force acting upon a pedestrian according to Equation 10. Equation 10 aggregates four
individual forces, namely acceleration force (

−→
𝑓 𝑜

𝛼), repulsion from boundaries (
−→
𝑓 𝑆𝑂𝐶

𝛼𝐵 ), repulsive
force from other pedestrians (

−→
𝑓 𝑆𝑂𝐶

𝛼𝛽 ) and group force (
−→
𝑓 𝑔𝑟𝑜𝑢𝑝). We employ four individual

networks to estimate these four forces separately. We call these individual networks as modules.
A final network combines these individual modules to give final force (𝑑−→𝑣𝛼(𝑡)/𝑑𝑡). Figure 2
shows the overall model architecture and highlights the individual modules. The model specific
hyperparameters (e.g. activation function, learning rate, etc.) were chosen empirically. Further
details are presented in Section 4.2 and Section 4.3.

4.1. Problem statement

We formulate our trajectory prediction problem similar to standard approaches used in the
literature [17], [28]. Given the trajectories of all pedestrians in a scene, we need to predict their
future trajectories. LetX = [𝑋1, 𝑋2, ..., 𝑋𝑁 ] be the current trajectories of all pedestrians present
in the scene. We need to predict future trajectories, 𝑌 = [𝑌1̂, 𝑌2̂, ..., 𝑌�̂� ]. Here, for a certain
pedestrian 𝛼, the given trajectories are 𝑋𝛼 = [𝑥𝛼

𝑡, 𝑦𝛼
𝑡] at time-steps 𝑡 = 0, 1, 2, ..., 𝑇 . The real

or ground truth future trajectories for 𝛼 are 𝑌𝛼 = [𝑥𝛼
𝑡, 𝑦𝛼

𝑡] at time-steps 𝑡 = 𝑇 + 1, ..., 𝑇𝑒.
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Figure 2: SFMGNet architecture. Here, net1 (a), net2 (b), net3 (c) and net4 (d) are the individual
networks corresponding to the forces in Equation 10. Note, net3 contains nine instances like net3_1.

4.2. Individual modules

net1: Acceleration This module estimates the goal-directed acceleration force (
−→
𝑓 𝑜

𝛼) as
defined by Equation 2. The model architecture is designed according to Equation 2. This module
is largely based on [24]. The module inputs are n previous positions (p) of the pedestrian 𝛼,
till the current time-step t. The position values are normalized by subtracting the first position
value of the window (𝑝(𝑡−𝑛)) to avoid spatial bias. The new position values are termed as ∆𝑝(𝑡).

net1 consists of two parts: one sub-network to estimate the instantaneous velocity −→𝑣 𝛼(𝑡) and
second sub-network estimates the desired velocity 𝑣0𝛼

−→𝑒 𝛼(𝑡). The inputs to the networks are
∆𝑝(𝑡) and 𝐷(𝑡) respectively. Here 𝐷(𝑡) refers to the instantaneous velocity magnitudes, and it
is calculated as: 𝐷(𝑡) = [||∆𝑝

′
(𝑡)1||, ...., ||∆𝑝

′
(𝑡)𝑛−1||]. Where, ∆𝑝

′
(𝑡) = ∆𝑝(𝑡)−∆𝑝(𝑡− 1).

The first sub-network consists of two MLPs, where the first MLP is given sigmoid activation and
the second MLP rescales the outputs. The second sub-network also has two MLPs in it, with
tanh activation for the first MLP and second MLP rescales the outputs. This output is multiplied
with goal directed unit vector, −→𝑒 𝛼(𝑡), which is estimated by the approach described in Section
4.4. Finally, the two sub-networks outputs are aggregated by another MLP to give

−→
𝑓 𝑜

𝛼. Figure 2
(a) shows the net1 architecture. The net1 architecture can be expressed as:

−→
𝑓 𝑜

𝛼 = 𝑠𝑖𝑔(𝐷(𝑡)𝑊𝑣𝑑)𝑊𝑣𝑑𝑠
−→𝑒 𝛼(𝑡)− 𝑡𝑎𝑛ℎ(∆𝑝(𝑡)𝑊𝑣𝑖) ·𝑊𝑣𝑖𝑠 (11)

Here 𝑊𝑣𝑑, 𝑊𝑣𝑑𝑠, 𝑊𝑣𝑖 and 𝑊𝑣𝑖𝑠 are weight matrices. This net1 architecture mimics Equation 2.



net2: Repulsive force from static obstacles This network is responsible for estimating the
repulsive force from obstacles [24]. In this work, we only consider the nearest obstacle point.
This force is defined by Equation 3. So, net2 architecture is designed according to this equation.
Figure 2 (b) shows net2 architecture. The distance between pedestrian 𝛼 and obstacle B (𝑑𝛼𝐵),
and the direction vector pointing towards B to 𝛼 (−→𝜂 𝛼𝐵) are network inputs. net2 consists of
two MLPs, where the first one is followed by a sigmoid activation and another MLP rescales the
outputs. net2 architecture can be expressed as:

−→
𝑓 𝑆𝑂𝐶

𝛼𝐵 = 𝑠𝑖𝑔(𝑊𝑈𝑒
𝑑𝛼𝐵/𝑊𝑅−→𝜂 𝛼𝐵) ·𝑊𝑓𝐵 (12)

Here, 𝑊𝑈 , 𝑊𝑅 and 𝑊𝑓𝐵 are weight matrices. This structure mimics SFMG force Equation 3.

net3: Repulsive force from other pedestrians This section focuses on estimating the
repulsive forces experienced by a pedestrian from other pedestrians. Equation 6 defines this
force. So, this corresponding network aims to mimic this equation. The input parameters are
−→𝜂 𝛼𝛽 , 𝑑𝛼𝛽 and −→𝑒 𝛼. 𝐴1, 𝐴2, 𝜎 and 𝑉 𝑜

𝛼𝛽 are the learn-able parameters. Figure 2 (c) shows the
network architecture used to estimate repulsive force exerted by one neighboring pedestrian.
This network consists of two sub-networks. First sub-network takes −→𝜂 𝛼𝛽 and 𝑑𝛼𝛽 as inputs
and it has one MLP which is followed by relu activation. This subsection estimates the first part
of Equation 6. Second sub-network estimates second part of Equation 6 with inputs: −→𝜂 𝛼𝛽 , 𝑑𝛼𝛽
and −→𝑒 𝛼. It also has similar architecture as the first sub-network. Finally, outputs of these two
sub-networks are combined by another MLP, to get

−→
𝑓 𝛼𝛽 force. The architecture is expressed as:

−→
𝑓 𝑆𝑂𝐶

𝛼𝛽 = (𝑟𝑒𝑙𝑢(𝑊𝐴1 exp [𝑑𝛼𝛽(𝑡)/𝑊𝜎]
−→𝜂 𝛼𝛽)+

𝑟𝑒𝑙𝑢(𝑊𝐴2
−→𝜂 𝛼𝛽

−→𝜂 𝛼𝛽
−→𝑒 𝛼(𝑡) exp [−𝑑𝛼𝛽(𝑡)/𝑊𝜎2])) ·𝑊𝛼𝛽 (13)

Here, 𝑊𝐴1, 𝑊𝐴2, 𝑊𝜎 , 𝑊𝜎2 and 𝑊𝛼𝛽 are weight matrices. This structure mimics Equation 6.
Again, one pedestrian can have multiple nearby pedestrian exerting repulsive force on it. So,

we empirically consider a maximum of nine nearby pedestrians for a certain pedestrian. We
employ instances of the network described above for finding repulsive forces from them. These
networks are named as net3_i, where i = 1, 2, 3, ..., 9. A final network, net3 is used to combine
the outputs of these networks to get total repulsive force from other pedestrians.

net4: Group force net4 approximates the force exerted by pedestrian groups. The group
force is given by Equation 7. Group force has two parts: visibility force (𝑓𝑣𝑖𝑠) and attraction force
(𝑓𝑎𝑡𝑡). So, net4 also has two sub-networks to estimate these two forces. Figure 2 (d) shows the
net4 architecture. The first network inputs are 𝜃 and −→𝑣 𝑑𝑒𝑠𝑖𝑟𝑒𝑑. It has two MLPs: the first MLP is
followed by relu activation, and second MLP rescales the relu output. The second sub-network
has similar architecture, with −→𝑛 (𝐴𝑖𝑗 , 𝐶𝑖) as input. The two outputs are combined by another
MLP to estimate the final group force. This can be expressed as:

−→
𝑓 𝑔𝑟𝑜𝑢𝑝 = (relu(𝑊𝑔1𝜃

−→
𝑉 𝑑𝑒𝑠𝑖𝑟𝑒𝑑) + relu(𝑊𝑔2

−→𝑛 (𝐴𝑖𝑗 , 𝐶𝑖))) ·𝑊𝐺 (14)

Here, 𝑊𝑔1, 𝑊𝑔2 and 𝑊𝐺 are weight matrices. This structure is similar to Equation 7.



4.3. Module: Final recombination

This final recombination module aggregates the outputs of net1, net2, net3 and net4 to predict
total force 𝑑−→𝑣𝛼(𝑡)

𝑑𝑡 . This network consists of two MLPs. First MLP is followed by relu activation,
and second MLP rescales this output. Figure 2 shows the overall architecture. Expressed as:

𝑑−→𝑣𝛼(𝑡)
𝑑𝑡

= relu((
−→
𝑓 𝑜

𝛼⏟ ⏞ 
𝑛𝑒𝑡1

+
−→
𝑓 𝑆𝑂𝐶

𝛼𝐵⏟  ⏞  
𝑛𝑒𝑡2

+
∑︁
𝛽

−→
𝑓 𝑆𝑂𝐶

𝛼𝛽⏟  ⏞  
𝑛𝑒𝑡3

+
−→
𝑓 𝑔𝑟𝑜𝑢𝑝⏟  ⏞  
𝑛𝑒𝑡4

)𝑊𝐼𝐹 ) ·𝑊𝐹𝐹 (15)

𝑊𝐼𝐹 and 𝑊𝐹𝐹 are weight matrices. Note, as we consider only the nearest obstacle point, we
do not need to sum repulsive forces from static obstacles.

As we compare, the overall architecture described by Equation 15 and portrayed in Figure 2,
strongly emulates the complete SFMG force described by Equation 10.

4.4. Goal prediction

An estimated goal or destination is required as a goal-directed unit vector (−→𝑒 𝛼) is an input for
net1 and net3. In an environment with other pedestrians and static obstacles, a pedestrian’s
previous positions cannot be exploited to estimate −→𝑒 𝛼. So, we use Multiple Model Approach
(MMA) [29] to estimate it. Specifically, we use Interaction Multiple Model (IMM) estimators.
Different goal hypotheses based Kalman filters are chosen as filters for the IMM estimator.
The goal hypotheses were generated using the Constant turn rate and velocity (CTRV) [30]
model. Then, the IMM estimator compares the different filter-generated trajectories with the
observations and selects the most likely one.

5. Evaluation

In this section, we perform a set of experiments to qualitatively and quantitatively evaluate
SFMGNet in terms of realistic (Section 5.4), interpretable (Section 5.5) and accurate (Section 5.6
and Section 5.7) trajectory prediction. We discuss the experimental setup, dataset details and
feature extraction process in Sections 5.1, 5.2 and 5.3 respectively.

5.1. Experimental setup

We train our model using a synthetic dataset to demonstrate our model’s performance in cases
where the relevant data is scarce or unavailable. Only the models trained with synthetic dataset
were used during the evaluation process, even while testing on real-world datasets. We create the
synthetic dataset using the trajectories simulated by an SFMG (SFM extended with group force)
based simulator 1 in a closed environment (crossing passageways). We run 1000 simulations of
30-second duration sampled at 0.1 seconds. The simulation run scenarios were chosen randomly

1SFM: https://github.com/svenkreiss/socialforce/tree/579543a3abe22716835acfa0b7d2d57fc1c199b6. Extended
for groups.

https://github.com/svenkreiss/socialforce/tree/579543a3abe22716835acfa0b7d2d57fc1c199b6


following a discrete uniform distribution. The following conditions were chosen to simulate
scenarios rich with different types of interactions. The pedestrians’ starting positions were
chosen randomly among four possible starting zones within 7 to 10 meters distance to the
destination point. The number of pedestrians in a certain scenario was also chosen randomly
between 2 to 10. The presence of a group of sizes 2 to 4 is chosen randomly. Relaxation time 𝜏
= 0.5, is constant. We divide the dataset with sample randomization into three sets: 50% for the
training set, 25% for the development set, and 25% for the testing set.

We train the models net1, net2, net4, net3, and individual instances of net3 for different
neighboring pedestrians (net3_1, net3_2, ..., net3_9) with an Adam optimizer with a learning
rate of 0.001 and batch size 16. The number of epochs was chosen based on model performance
on the development set. The final recombination layer was trained by Adam with a 0.1 learning
rate. The window of motion observation is empirically chosen as n = 10. We train and optimize
the model based on corresponding mean squared errors (MSE). The final MSE values for net1,
net2, net3, net4 and SFMGNet are 0.0066, 0.5295, 0.1594, 0.0181 and 0.2640 units respectively.

5.2. Dataset overview

To assess SFMGNet’s performance quantitatively, we test its performance on two benchmark
datasets namely ETH [31] dataset and UCY [32] dataset. The ETH dataset consists of two scenes:
ETH and Hotel. ETH scene consists of 360 pedestrians and 61 pedestrian groups. The hotel
scene has 389 pedestrians and 41 groups. The UCY dataset has five scenes: namely zara01,
zara02, students01, students03 and uni_examples. zara01 has 148 scenes and 45 groups. Zara02
consists of 204 pedestrians and 58 groups. students03 scene consists of 434 pedestrians and
104 groups. students01 consists of 414 pedestrians and uni_examples has 118 pedestrians.
students01, students03, and uni_examples scenes together are called UNIV. All the datasets are
sampled at 0.4 seconds. All these scenes consist of multiple pedestrians being present in the
same frame. We use the group and destination-related information given by the work in [33].

5.3. Feature extraction

For a certain pedestrian 𝛼 at time-step t, the SFMGNet model requires: distance and direction
unit vector from the nearest obstacle (𝑑𝛼𝐵 and −→𝜂 𝛼𝐵), distance and direction unit vector towards
nearest (up to nine) pedestrian 𝛽 (𝑑𝛼𝛽 and −→𝜂 𝛼𝛽). If in a group, then it needs a group Centroid
directed unit vector (−→𝜂 (𝐴𝑖𝑗 , 𝐶𝑖)) and minimum rotation angle (𝜃). However, a trajectory dataset
normally consists of time-step, velocity, and positions. Additionally, information about group
formation [33] and obstacles are provided (or extracted). So, we follow the approach depicted
in the flowchart in Figure 3 to extract features. A dataset (D), group (GroupList), and obstacle
(ObstacleList) information are given to the algorithm. Then, at every time-step t in the dataset,
we follow the following steps. First, the nearest obstacle is taken from ObstacleList, distance
from pedestrian and −→𝜂 𝛼𝐵 is calculated and stored in an array (ObstacleSet). Next, we check
for multiple pedestrians’ presence. If true, we treat as neighbors to ego pedestrian (𝛼) and,
calculate and store 𝑑𝛼𝛽 and −→𝜂 𝛼𝛽 in NeighbourList. Next, we check the existence of groups
from GroupList. If true, first we get the corresponding group member positions. Now, we
need −→𝜂 (𝐴𝑖𝑗 , 𝐶𝑖) and 𝜃. For calculating −→𝜂 (𝐴𝑖𝑗 , 𝐶𝑖), first, we find the group Centroid based on
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Figure 4: Real (solid lines), predicted (dashed lines), and SFMG simulated (dotted lines) trajectories of
eight pedestrians. Here, arrows indicate the motion directions of the pedestrians.

group member positions and find their corresponding −→𝜂 (𝐴𝑖𝑗 , 𝐶𝑖). Next, we store it in an array
(etaCentroidList). For 𝜃, first, we randomly choose a group leader, then we calculate 𝜃 based on
the group leader and other member positions (see [4], [27]), and store it in an array (ThetaSet).

5.4. Realistic trajectory prediction

This section aims to evaluate SFMGNet’s ability to predict realistic trajectories through a case
study. For this, we choose a sample scenario (time-step: 4630 - 4880) from the ETH scene from
ETH dataset [31] with multiple numbers of pedestrians and pedestrian groups. This scenario
consists of eight pedestrians namely: 84, 85, 86, 87, 88, 89, 90 and 91. Here, 86, 87, and 91
are traveling from right to left direction. And other pedestrians are traveling in the opposite
direction. 84 and 85 are in a pedestrian group. Similarly, 88 and 89 are also in a group. We
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Figure 5: (a) Real, predicted and SFMG simulated trajectories of a pedestrian. Here, the numbers
indicate the corresponding time steps. (b) Total predicted force acting on the pedestrian.

predict all the pedestrian trajectories with SFMGNet by taking 1.2 seconds of previous motion
information as input and predicting the next 4.8 seconds of the trajectory (if possible) at a
time. We also simulate their trajectories with SFMG [3] [4] for comparison. Figure 4 shows
the real (solid lines), predicted (dashed lines) and SFMG simulated (dots) trajectories. Arrows
show the corresponding pedestrian’s motion direction. We see that predicted trajectories are
similar to the real pedestrian trajectories, barring a couple of time steps. The SFMGNet can
predict and model slight deviations in every pedestrian’s motion accurately. Conversely, SFMG
simulated trajectories are flatter, not covering the influences of environment related influences
on the pedestrian. Also, SFMG simulated pedestrian trajectories fail to reach or overtake the
destination point. As an example, we take a look at 85 in Figure 5 (a). The numbers represent
the time steps. Our model predicted trajectory matches with the real trajectory and reaches the
destination. Whereas, SFMG simulated trajectory is flatter and fails to reach the destination.

5.5. Interpreting trajectory prediction

In this section, we aim to interpret the SFMGNet predicted trajectories to a certain degree as a
proof of concept. For that, we look at the predicted and simulated forces acting upon a certain
pedestrian and try to establish a causal relationship with the environment elements/influences.
We choose pedestrian 85 for this evaluation. Figure 4 shows the overall scenario, Figure 5 zooms
into 85 trajectories (a) and, predicted and SFMG simulated total force (b). Looking into the
predicted total force (Figure 5 (b)), we see an almost constant force acting upon the pedestrian,
approximately 0.01 units on X-axis and 0.01 units on Y-axis. It points to the idea, that the
pedestrian maintains a rather stable trajectory with subtle direction changes in its journey. The
SFMG simulated force also remains stable apart from a spike at the beginning. However, the
total force does not paint the whole picture. So, we explore the individual forces.

Figure 6 shows the individual forces, namely: acceleration force (a), the repulsive force from
boundaries (b), repulsive from other pedestrians (c), and group force (d). The predicted attraction
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Figure 6: Predicted (dashed line) and simulated (solid line) acceleration force (a), repulsive force from
obstacles (b), repulsive forces from other pedestrians (c) and group force (d) acting upon pedestrian 85.

force (Figure 6 (a)) changes over time, starting at positive values, falling towards zero at around
time-step 12, and continues falling afterward. This could point toward the pedestrian’s need
to change its velocity overtime to compensate for other environmental facts. That is, it would
feel like a constant acceleration force in an open environment with no other road users and
obstacles. But it’s not the case here. However, the SFMG simulated acceleration force remains
stable throughout. Next, we look at the forces exerted by other actors; static and dynamic.
Figure 6 (b) shows that, the pedestrian feels a constant repulsive force (both predicted and
simulated) from boundaries throughout its journey. This corresponds to its desire to keep a safe
distance from boundaries. As the nearest boundary point is quite far from it, the force values
are low. Again, the pedestrian is surrounded by seven other pedestrians, so, it should feel a
strong cumulative repulsive force from other pedestrians. This behavior is emulated by the
predicted repulsive force from other pedestrians shown in Figure 6 (c). However, SFMG fails to
emulate this properly, as it simulates force values nearing zero units. Moreover, 85 is traveling
in a group with 84. Therefore, it feels like group forces influencing it, as we see in Figure 6
(d). The SFMGNet predicted group forces are much higher (in magnitude) compared to SFMG
simulated group forces. The predicted group force better represents 85’s desire to stay closer
to 84. The nature of group force depends on the combination of the visibility force, 𝑓𝑣𝑖𝑠 and
attraction force towards group centroid, 𝑓𝑎𝑡𝑡. But, we do not consider that level of granularity
in this work to avoid further complexity. To conclude, we can establish a high-level causality
behind a pedestrian’s motion behavior motivation by inspecting individual force predictions.

5.6. Quantitative comparison

We quantitatively assess our model based on two commonly used [13], [28] distance-based
parameters: average displacement error (ADE) and mean final displacement error (FDE). ADE
refers to the mean of all euclidean distance values between the real and predicted values at each



Table 1
ADE/MDE error (in meters) comparison between SFMGNet and other baseline models.

Metric Dataset CV FF S-LSTM S-GAN SFM-NN SFMGNet

ADE/FDE

Hotel 0.27/0.51 1.59/3.12 0.15/0.33 0.72/1.61 0.36/0.82 0.07/0.11
ETH 0.58/1.15 0.67/1.32 0.60/1.31 0.81/1.52 0.68/1.63 0.10/0.14

UNIV 0.46/1.02 0.69/1.38 0.52/1.25 0.60/1.26 0.46/1.12 0.35/0.64
zara01 0.34/0.76 0.39/0.81 0.43/0.93 0.34/0.69 0.35/0.85 0.11/0.17
zara02 0.31/0.69 0.38/0.77 0.51/1.09 0.42/0.84 0.38/0.95 0.13/0.23

Average 0.39/0.83 0.74/1.48 0.44/0.98 0.58/1.18 0.45/1.07 0.15/0.26

time-steps. FDE is the distance between the last predicted position and the last real position.
The lower the values of both ADE and FDE parameters, the better the model performance.

For comparison, we choose constant velocity model (CV), a MLP or feed-forward network-
based model [11] (FF), S-LSTM model [13], S-GAN model [16] and the model described in [24]
(SFM-NN) as baselines. The baseline models (expect SFM-NN) take 3.2 seconds (8 time-steps) of
trajectory values as input and predict the next 4.8 seconds of trajectory, and report error values.
They are also trained on the corresponding real-world datasets. The SFM-NN is trained on a
synthetic dataset and takes 1 second of data as input to predict 4.8 seconds of trajectory. Our
model (SFMGNet) is trained solely on a synthetic dataset. It takes 1.2 seconds (as n = 10 chosen)
of data as input and predicts the next 4.8 seconds of data. Then, we calculate the error values.
The error values are reported in Table 1. The bold values represent the lowest or best error
values. As we can see, our model SFMGNet outperforms every baseline model in every scene
dataset. Especially, the lowest ADE and FDE values (i.e. 0.07 and 0.11 respectively) are found
for hotel scene data in ETH dataset. Our model shows the worst performance on UNIV dataset:
ADE = 0.35 and FDE = 0.64. Still, the model performance is noticeably better than the baseline
models. The average ADE and FDE values are: 0.15 and 0.26.

We evaluate SFMGNet’s ability to predict feasible and realistic trajectories by calculating
the evaluation metric introduced in [34]. That is, we calculate the percentage of near-collisions
among pedestrians for each frame or time-step. A near-collision takes place when the Euclidean
distance between the pedestrians is below 0.1 meters [34]. We compute the average percentage of
human near-collision in each frame of ETH and UCY datasets. Our model (SFMGNet) predicted
trajectories do not contain any near-collisions in both datasets. That is, SFMGNet predicts 0.0%
near-collisions for all frames in ETH, ETH hotel, UNIV, zara01, and zara02 scenes. This in turn
strongly indicates that SFMGNet can predict feasible and realistic trajectories.

5.7. Ablation study

To assess the impact of different modules in our proposed model framework, i.e. acceleration
force, the repulsive force from static obstacles, the repulsive force from other pedestrians, and
group force, we test the performance of several ablative models. We choose three different
model versions, namely: Att, ABr, and ABrPr for this study. Where the model Att considers
only acceleration force towards the destination, model ABr considers both acceleration force
and repulsive force from static obstacles, and model ABrPr considers all forces except group
force. Finally, we compare them with the complete framework, SFMGNet. We test them on ETH



Table 2
Evaluation of the ablative models and the proposed model (SFMGNet) based on ADE/MDE (in meters).

Metric Dataset Att ABr ABrPr SFMGNet

ADE/FDE

Hotel 0.63/1.11 0.13/0.23 0.13/0.21 0.07/0.11
ETH 2.92/5.42 3.23/5.51 2.14/4.06 0.10/0.14

UNIV 1.12/2.16 0.37/0.67 0.37/0.67 0.35/0.64
zara01 0.90/1.71 0.20/0.34 0.15/0.25 0.11/0.17
zara02 0.93/1.74 0.23/0.41 0.15/0.25 0.13/0.23

Average 1.30/2.43 0.83/1.43 0.59/1.09 0.15/0.26

and UCY datasets and report the corresponding ADE/FDE error values in Table 2. We can see,
the model performance improves with the addition of each force estimation module. Model Att
performs the worst across all datasets, and performance increases significantly when repulsive
force from obstacles is considered in model ABr. This trend follows for model ABrPr, which
considers repulsive force from other pedestrians. Models Att, ABr, and ABrPr perform notably
worse on the ETH scene compared to the other scenes. However, SFMGNet outperforms these
ablative models significantly, indicating the strong importance of pedestrian groups.

Based on the above quantitative and qualitative evaluation, we conclude that SFMGNet can
model realistic, interpretable pedestrian trajectories. Also, it shows better than state-of-the-art
performance on two real-world benchmark datasets in terms of distance-based metrics.

6. Conclusion and outlook

This work proposes SFMGNet, a physics-based neural network-based framework to predict
pedestrian trajectories while considering the influences of static obstacles, other pedestrians,
and pedestrian groups. SFMGNet combines the social force model with group behavior modeling
(SFMG) and multi-layer perceptron (MLP). SFMG provides knowledge about the motivation
behind pedestrian motion behavior, which is then engineered in the MLP based network’s
architecture. This combination allows the MLP based model to inherit the SFMG model’s inter-
pretable nature. This model has the potential to contribute to better planning and understanding
motion behavior of robots and autonomous vehicles. Based on the evaluation results, we con-
clude that the model predicts realistic trajectories and outperforms state-of-the-art models on
the ETH and UCY datasets. We can also causally interpret model predictions. However, there
remains potential for further improvement. We aim to include other types of road users (e.g.,
cars, cyclists) in the model to better emulate heterogeneous mixed-traffic zones. Again, we want
to explore our model’s potential in modeling new types of road users (e.g., cargo-movers, tram
buses), even when relevant data is scarce/absent.
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