
xPACE and TASC Modeler: Tool Support for
Data-Driven Context Modeling
Rodrigo Falcão1, Rafael King1 and Antônio Lázaro Carvalho2

1Fraunhofer IESE, Fraunhofer-Platz 1, Kaiserslautern, 67663, Germany
2Computer Science Graduate Program, UFBA, Av. Milton Santos s/n, Salvador, 40170-110, Brazil

Abstract
From a requirements engineering point of view, the elicitation of context-aware functionalities calls for
context modeling, an early step aimed at understanding the application contexts and how it may influence
user tasks. In practice, however, context modeling activities have been overlooked by practitioners due
to their high complexity. To improve this situation, we implemented xPACE and TASC Modeler, which
are tools that support the automation of context modeling based on existing contextual data. In this
demonstration paper, we present our implementation of a data-driven context modeling approach, which
is composed of a contextual data processor (xPACE) and a context model generator (TASC Modeler). We
successfully evaluated the results provided by the tools in a software development project.

Keywords
requirements elicitation, context modeling, automation

1. Introduction

Computers have become increasingly ubiquitous, and we are witnessing the rise of applications,
sensors, and networks that together deliver smart behaviors to users. Context awareness plays
a key role in this game as a core characteristic of ubiquitous computing [1] [2] and is frequently
behind the perceived “intelligence” of modern software solutions[3].

Context-aware functionalities are functionalities that consider context to produce a certain
system behavior, typically an adaptation or recommendation. From a requirements engineering
point of view, the elicitation of context-aware functionalities requires context modeling, an
early step involving identification of contextual elements, analysis of accessibility (i.e., which
contextual elements have available sources from which their values can be read), analysis of the
relevance of these contextual elements for user tasks of interests, and analysis of combinations of
contextual elements for these user tasks [4]. The analysis of relevance and combinations can be
challenging, though: In a scenario with dozens of contextual elements, how to figure out which
contextual elements, particularly in combination with each other, may influence a given user
task? As the number of contextual elements increases, the number of potential combinations

In: J. Fischbach, N. Condori-Fernández, J. Doerr, M. Ruiz, J.-P. Steghöfer, L. Pasquale, A. Zisman, R. Guizzardi, J.
Horkoff, A. Perini, A. Susi, M. Daneva, A. Herrmann, K. Schneider, P. Mennig, F. Dalpiaz, D. Dell’Anna, S. Kopczyńska, L.
Montgomery, A. G. Darby, and P. Sawyer (eds.): Joint Proceedings of REFSQ-2022 Workshops, Doctoral Symposium, and
Poster & Tools Track, Birmingham, UK, 21-03-2022, published at http://ceur-ws.org
$ rodrigo.falcao@iese.fraunhofer.de (R. Falcão)
� 0000-0003-1222-0046 (R. Falcão); 0000-0001-7107-5390 (R. King); 0000-0002-0013-4565 (A. L. Carvalho)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:rodrigo.falcao@iese.fraunhofer.de
https://orcid.org/0000-0003-1222-0046
https://orcid.org/0000-0001-7107-5390
https://orcid.org/0000-0002-0013-4565
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


grows exponentially. In practice, practitioners have overlooked these context modeling activities
due to their high complexity, regarding them as time-consuming, non-intuitive, and error-prone
[5]. Hence, opportunities for discovering unexpected context-aware functionalities are missed.

We approached this problem by automating context modeling for the elicitation of context-
aware functionalities. For this purpose, we designed a data-driven context modeling process
(first introduced in [4]) that has three parts. First, the user task of interest is analyzed; then,
contextual data that relates to the user task is collected; and finally, at the core of the data-driven
context modeling process, the contextual data is processed to identify relevant combinations of
contextual elements – and finally a context model is generated. Note that the model does tell
how the context influences the task, but describing requirements based on it is a creative step.

To come alive, the proposed automation in the process requires the implementation of
two software components. One is the Contextual Data Processor, which is responsible for
analyzing a contextual dataset. Its output is used by the other component, the Context Model
Generator, which is responsible for creating the concrete context model that is expected to
support requirements engineers in the elicitation of context-aware functionalities. In this paper,
we present our implementations of these software components: xPACE and TASC Modeler 1,
and briefly discuss its application in a software development project at Fraunhofer IESE.

2. Solution overview

Once a user task of interest has been chosen and corresponding contextual data has been
collected, a contextual dataset is available. Then the requirements engineer uses TASC Modeler
to generate the desired context model, providing the contextual dataset as input, in addition
to a metadata file that configures the behavior of both the context model generator – how the
contexts will be presented in the model – and the contextual data processor – how the dataset
should be analyzed. The detailed specification of the input files can be found with the source
code1. TASC Modeler forwards the dataset and the metadata to xPACE, which analyzes the data
and returns the findings in a data structure named standardized task-specific contexts, which is
created to decouple the data analysis from the context model generation. Then TASC Modeler
translates the standardized task-specific contexts provided by xPACE into a context model
representation. Figure 1a shows the component diagram of the solution.

In our case, the context model is represented as a directed acyclic graph with one root node.
This representation supports data-driven context modeling approaches, expressing how the
context influences individual user tasks. Each path from the root node towards a leaf describes
how a context influences a user task of interest. Figure 2 shows an example. Consider the user
task “Prepare a cup of coffee”. Each of the two paths contains a set of instantiated contextual
elements that, together, were found to influence the task (e.g., “When location = WORK and
time = AFTERNOON then user prepares a cup of coffee”, i.e., the context “location =WORK and
time = AFTERNOON” influences the user task “Prepare a cup of coffee”, according to the model).
Note in the example how the model structure differentiates intrinsic contextual elements (those
that intrinsically characterize the entity “cup of coffee”, which is the object of the task), from
extrinsic ones.

1Source code available: https://github.com/rmfalcao/tasc-modeler-xpace



«Computing Node» 
localhost

«use»

«Context Model Generator» 
 

TASC Modeler 
«use»

«Contextual Dataset» 
dataset.csv

«Role» 
Requirements 

Engineer

«Standardized task-specific
contexts»

contexts.json

«use» «create»«Context Model» 
Task-specific

Context Model

«create»

«Metadata» 
metadata.csv

«use» «use»

«create»

«Contextual 
Data Processor» 

xPACE 

«use»

«use»

(a) Component diagram of the solution.

«Contextual Data Processor» 
xPACE 

«Execution Environment» 
RScript

«Component» 
 

Web API

«Deployment Artifact»

main.R

«Deployment Artifact» 
load_libraries.R

«Deployment Artifact» 
util.R

«Deployment Artifact» 
load_data.R

«use»

«use»

«use»«use»

(b) Detailed view of xPACE.

Figure 1: Architecture of the solutions (functional view at runtime).

WHEN

location = HOME time = MORNING
day type = 
WEEKEND

THEN
User prepares 
cup of coffee

WITH
coffee size = 

LARGE

location = WORK
time = 

AFTERNOON
THEN

User prepares 
cup of coffee

First part:
general contextual element instances

Second part:
task

Third part:
intrinsic contextual element instances

Figure 2: Example of a task-specific context model.

3. xPACE – eXtended Pairwise Analysis of Contextual Elements

The eXtended Pairwise Analysis of Contextual Elements (xPACE) was implemented using a
strategy that can be divided into two parts. First, it uses statistical methods to search for
correlations between pairs of contextual elements (CEs) in the contextual dataset. Whenever
correlations are found, the algorithm identifies which CE instances (i.e., concrete values of the
CEs) are correlated. This is necessary because it is not enough to know that two CEs relate to
each other (e.g. “location” and “time”), but it also needs to be know which instances relate to
each other (e.g., “at home” and “evening”). After that, the pair is ordered to express the direction
of the relationship. After analyzing all pairs of CEs, we end up with a list of pairwise relations,
which is a set of directed pairwise relations among CE instances. The second part of the strategy
takes the list of pairwise relations and builds a graph 𝐺 by treating each pair as an edge of the
graph. When all pairs have been added to 𝐺, each path in the graph starting from a root node
and ending on a leaf node will represent a relevant combination of CEs that were found by
xPACE to influence the user task. Figure 3 contains an activity diagram that illustrates the data
processor algorithm. The employed statistical methods are named in the corresponding steps.

The algorithm is implemented using the R language2, and a Web API component implemented
in Java provides handy access to it. The core takes as input the name of the user task and two
files: a contextual dataset and a metadata file that describes the dataset; as output, it produces
a standardized task-specific contexts file, which can be used by any context model generator

2https://www.r-project.org/



G
ra

ph
 

an
al

ys
is

Add relation to 
list of pairwise

relations

Combine CEs in
pairs

is next pair
available?

Test correlation 
(Kruskal-Wallis,

Cramer's V) 
yes

no

is there 
correlation?

Identify instances 
(Standardized residuals,

Conover's Test) 
yes

Order CEs 
(Kruskal-Wallis, 

Theil's U) 

no

is next relation
available?

Create standardized
task-specific

contexts file from 
list of contexts

no

no

does relation 
start with root

element?
yes

Add all paths 
from root until leaves
into list of contexts

yes

S
ta

tis
tic

al
m

et
ho

ds

Figure 3: Activity diagram illustrating the algorithm of xPACE.

that complies with its layout. Figure 1b shows the internal structure of xPACE. The principal
file in the core is main.R. It contains the algorithm that we implemented to analyze contextual
data to identify potential relevant contexts for the user task in focus. The other R files are
helpers (“load_libraries.R” loads the necessary packages into the memory, “util.R” defines some
functions, and “load_data.R” reads the input files into the memory).

4. TASC Modeler

Figure 4: Screenshot of the TASC Modeler showing an excerpt of the task-specific context model.

The Task-specific Context Modeler (TASC Modeler) is responsible for creating the graphical
representation of the context model. The requirements engineer interacts directly with TASC
Modeler, providing the contextual dataset, the metadata, and the task name as input. TASC
Modeler then interfaces with a contextual data processor to provide the input data and receive the
standardized task-specific context files as response. In our case, TASC Modeler uses xPACE, but
it could be any other contextual data processor implementation able to generate the standardized
task-specific context file via a REST API. TASC Modeler reads from a configuration file the
information about which contextual data processor it should use.



We implemented TASC Modeler as a single-page application written in Typescript using
the React Library3. When the application is loaded, the user is presented a form where they
can provide the dataset file, the metadata file, and the name of the user task in focus. When
the button “Generate” is pressed, the application sends the input data to xPACE through its
Web API. Then xPACE returns its implementation of the standardized task-specific contexts file,
which is used by TASC Modeler to build the context model.

5. Application and evaluation

We used TASC Modeler and xPACE to support the elicitation of context-aware functionalities
for DorfFunk4, a live communication app with approx. 25,000 active users developed and
maintained by Fraunhofer IESE. We chose a user task (“create a comment”), collected contextual
data (approx. 56,000 tuples from 15 contextual elements), and used the tools. Figure 4 shows a
screenshot of TASC Modeler with an excerpt of the data-driven context model generated using
DorfFunk data. The generated context model was evaluated in a controlled experiment with
professional software engineers (because elicitation of context-aware functionalities is often not
limited to requirements engineers [5]), where it showed its potential to support the identification
of relevant contexts for given user tasks. All participants were asked to elaborate context-aware
functionalities to improve the targeted user task. Participants of the treatment group received
the data-driven context model, whereas participants of the control group received the list of
contextual elements that were available to describe context-aware functionalities. On average,
participants of the treatment group were able to elaborate context-aware functionalities that
combine more contextual elements. They also stated that they found the context model valuable
for supporting the elicitation of context-aware functionalities.

20.0%

100.0%

80.0%

100.0%

PE.3 (n=5)

PE.2 (n=5)

PE.1 (n=5)

100%80%60%40%20%0%20%40%60%80%100%

1

2

3

4

5

(a) Performance expectation.

40.0%

20.0%

100.0%

60.0%

80.0%

100.0%

AT.4 (n=5)

AT.3 (n=5)

AT.2 (n=5)

AT.1 (n=5)

100%80%60%40%20%0%20%40%60%80%100%

1

2

3

4

5

(b) Attitude towards using technology.

Figure 5: Participants’ assessment of the model’s usefulness.

While the details of the experiment can be found in our previous paper [6], we here reproduce
some parts that concern the usage of the context model. Our hypothesis was: “The data-driven
context model is perceived by individuals as a useful instrument to support the elicitation
of context-aware functionalities”. In order to test this hypothesis, we employed the UTAUT

3https://reactjs.org/
4https://www.digitale-doerfer.de/unsere-loesungen/dorffunk/



(Unified Theory of Acceptance and Use of Technology [7]). In Figure 5, the positive trend
towards the acceptance of the context model can be noted.

6. Conclusion and future work

Context modeling to support the elicitation of context-aware functionalities has been disre-
garded by practitioners due to its high complexity. To improve this scenario, we designed and
implemented a data-driven context modeling process that automates the analysis of combina-
tions of contextual elements that influence user tasks and the generation of the context model.
The automation of this process is supported by two tools: the Contextual Data Processor and
the Context Model Generator. In this demo paper, we presented our implementation of these
tools: xPACE and TASC Modeler.

As future work, we plan to apply the tools in different projects and evaluate their quality
attributes, in particular time behavior, capacity, and scalability, when they have to deal with
much bigger contextual datasets. So far, our evaluation has focused on the results produced
by the tools and not on their usage, so we will now also evaluate their usability, which is a
essential step towards enabling adoption by practitioners. Moreover, since data processing
and context model representation are decoupled, we also want to check to which extent other
representations (such as CGM [8]) may be suitable for this particular purpose.

Acknowledgements

This work was partially supported by CNPq, Brazil.

References

[1] S. Poslad, Ubiquitous computing: smart devices, environments and interactions, John Wiley
& Sons, 2011.

[2] R. O. Spínola, G. H. Travassos, Towards a framework to characterize ubiquitous software
projects, Information and Software Technology 54 (2012) 759–785.

[3] M. K. Pinheiro, C. Souveyet, Supporting context on software applications: a survey on
context engineering, Modélisation et utilisation du contexte 2 (2018).

[4] R. Falcão, Improving the elicitation of delightful context-aware features: A data-based
approach, in: RE17, 2017, pp. 562–567. doi:10.1109/RE.2017.42.

[5] R. Falcão, K. Villela, V. Vieira, M. Trapp, I. L. de Faria, The practical role of context modeling
in the elicitation of context-aware functionalities: a survey, in: RE21, IEEE, 2021, pp. 35–45.

[6] R. Falcão, M. Trapp, V. Vieira, A. Vianna Dias da Silva, Using a data-driven context model
to support the elicitation of context-aware functionalities–a controlled experiment, in:
PROFES 2021, Springer, 2021, pp. 119–135.

[7] V. Venkatesh, M. G. Morris, G. B. Davis, F. D. Davis, User acceptance of information
technology: Toward a unified view, MIS quarterly (2003) 425–478.

[8] R. Ali, F. Dalpiaz, P. Giorgini, A goal-based framework for contextual requirements modeling
and analysis, Requirements Engineering 15 (2010) 439–458.

http://dx.doi.org/10.1109/RE.2017.42

	1 Introduction
	2 Solution overview
	3 xPACE – eXtended Pairwise Analysis of Contextual Elements
	4 TASC Modeler
	5 Application and evaluation
	6 Conclusion and future work

