
Query Answering and Scaling Extensions of Konclude
Andreas Steigmiller1, Birte Glimm2 and Thorsten Liebig3

2Ulm University, Germany
3derivo GmbH, Germany

Abstract
Konclude is a well-performing reasoner for ontologies formulated via the Web Ontology
Language. In this paper, we give an overview of new or extended optimizations that lead to
additional improvements, such as an individual derivations cache for handling large amounts of
assertions more efficiently. We further describe new (functional) extensions (e.g., RDF/SPARQL
support) and capabilities (such as conjunctive query answering) that are ready for first practical
use-cases. Last but not least, we show some evaluations and comparisons for the new version
of Konclude.

1. Introduction
Konclude [1] is designed as a high-performance reasoner for the Web Ontology Language
(OWL), supporting the Description Logic (DL) 𝒮ℛ𝒪ℐ𝒬(𝒟) [2] with nominal schemas,
i.e., OWL 2 with most datatypes and some kind of support for rule-based knowledge.
It is implemented in C++ by using the Qt framework and it is freely available under
the Lesser GPL v3. Although the design focus of the system was to perform well for
the expressive OWL 2 DL profile, it also has excellent and competitive performance
on various reasoning tasks of the less expressive profiles. In fact, many implemented
algorithms follow a pay-as-you-go approach, where one tries to keep the overhead for
more expressive language features at a minimum. On the one hand, this is achieved by
using specialized procedures such as completion/consequence-based saturation procedures
in the reasoning system that are specifically designed for less expressive fragments and,
hence, perform eminently well. On the other hand, the fully-fledged reasoning algorithms
(e.g., tableau) exploit intermediate results/consequences from the specialized procedures
and operate only on parts of the knowledge base that are not already sufficiently handled.
Moreover, most optimization techniques are developed and implemented in a way such
that they work with all language features, i.e., they are not simply deactivated if, for
example, nominals occur, but are restricted to parts of the knowledge base that are not
affected by nominals.

SemREC’21: Semantic Reasoning Evaluation Challenge, ISWC’21, Oct 24 – 28, Albany, NY
" birte.glimm@uni-ulm.de (B. Glimm); liebig@derivo.de (T. Liebig)
~ https://www.uni-ulm.de/in/ki/inst/alumni/dr-andreas-steigmiller/ (A. Steigmiller);
https://www.uni-ulm.de/in/ki/inst/team/prof-dr-birte-glimm/ (B. Glimm); https://www.derivo.de/
(T. Liebig)

© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution
4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:birte.glimm@uni-ulm.de
mailto:liebig@derivo.de
https://www.uni-ulm.de/in/ki/inst/alumni/dr-andreas-steigmiller/
https://www.uni-ulm.de/in/ki/inst/team/prof-dr-birte-glimm/
https://www.derivo.de/
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

Although Konclude showed remarkable performance in international competitions
by winning several reasoning disciplines (cf. previous OWL Reasoner Evaluation Com-
petitions [3, 4]), it struggled a bit with very large ontologies. On the one hand, this
was caused by an inefficient management of assertions, which were handled as ordinary
axioms (such that for each class/property assertion an internal concept expression had
to be created). On the other hand, tableau-based methods try to create one model
abstraction covering all assertions, which can require a huge amount of memory if there
are many. There were also several shortcomings of Konclude, which had to be addressed.
In fact, Konclude had no efficient way to handle more complex queries. Users who were
interested in the instances of a complex class expression, had to add a new class name
in the ontology that was defined as equal to that class expression, realize this extended
ontology, and retrieve the instances of the newly added class name.

In the following, we describe how these issues were addressed by new or updated
optimizations and by functional extensions (Section 3). Before going into more details, we
sketch the overall architecture of Konclude (Section 2), which, however, did not change
significantly. We also compare with the previous version (Section 4).

2. System Architecture
Konclude is mainly designed as a server application that provides reasoning services,
i.e., clients usually communicate with Konclude over network via different interfaces.
Besides OWLlink, the new version of Konclude (v0.7.0) also supports parts of SPARQL
for querying and updating the knowledge bases. The command line interface of Konclude
also supports both protocols (by reading the requests/queries from a file), but also
provides direct commands to get the results of several standard reasoning tasks.

Konclude has various manager components that communicate with each other via
events (cf. Figure 1). After parsing commands from the input, every command is delegated
to a corresponding manager (e.g., Classification Manager, Answering Manager), which
ensures the completion of it and may delegate sub-commands to other components.
For example, if the consistency checking of an ontology is requested via command line,
then commands are created for (i) parsing and loading the ontology into a temporal
knowledge base, (ii) preprocessing the knowledge base, and (iii) check the consistency
of it (via the Precomputing Manager). The commands can have dependencies to other
commands such that they are processed in the correct order. For instance, the ontology
must be loaded/updated before consistency is to be checked. Components for higher-level
reasoning tasks (such as classification, realization, query answering) typically use the
results of more basic services, either by requiring them beforehand or requesting them
dynamically. For example, query answering is only started if classification is done, but it
may dynamically request the realization of certain classes and/or properties.

Computationally intensive work (such as model construction) is outsourced to the Ker-
nel, which manages a fixed number of worker threads such that the manager components
remain responsive and can focus on creating several work packages to enable paralleliza-
tion. Caches (for intermediate results) are also realised in form of such components and

Parsing
Stage

Loading
Stage

Reasoning
Stage

Kernel

Model
Building

Stage

Interfaces

Query Parser

Ontology Parser

Ontology Repository

Reasoning Manager

Preprocessing Manager

Build ManagerBuilder

Saturaton Classifer
Deterministc Classifer

K/P Set Classifer

Al
go

rit
hm

 H
an

dl
er

Tableau Saturaton Algorithm

Tableau Algorithm

OWLlink Interface Command Line Interface

Command Parser

Command Processor

Task Calculaton Unit 1

Task Calculaton Unit 2

...

Task Calculaton Unit N Ta
sk

 C
al

cu
la

to
n

Sc
he

du
le

r

...

SPARQL Interface

Answering
Stage

Individual
Derivatons

Cache
Algebraic/Compositonal

Query Answering Manager

BGP/Expression Query
Answering Manager

Preprocessor 1 - N

Answering Manager

Task Calculaton Manager

Absorpton Handler

Precomputng Manager

Ca
ch

e
H

an
dl

erSaturaton Cache

Completon Graph Cache

Satsfability Cache

Unsatsfability Cache

Redland Rasqal

Realisaton Manager

Redland Raptor

Classifcaton Manager

C
o

m
m

a
n

d
 M

a
n

a
g

e
r/

B
u

s

K/P Set Realiser

Precomputer

Figure 1: System architecture of the reasoning system Konclude

usually have a separate manager to which events are sent for integrating updates. The
data structures of the caches are organized such that they can be read in parallel without
blocking. The new individual derivations cache is also accessed by different manager
components in order to be able to create and schedule corresponding reasoning tasks. For
example, the realization process retrieves for which individuals classes are only possibly
derived and creates model construction tasks that check whether one of these individual
is actually an instance of such a class. Also see Konclude’s system description for a more
detailed overview of the architecture [1].

3. Improvements and Enhancements
Several aspects have been updated in Konclude to improve the performance and to
extend the functionality. This includes smaller improvements such as a more efficient
representation of facts, but also some bigger changes as well as new optimizations, as
sketched in the following.

3.1. Optimization Adaptations
The realization reasoning process has been improved significantly in several ways. First,
the data structures for managing possible and known class instantiations are optimized
such that they require less memory and can be created concurrently and more quickly.
Moreover, the realization process does not even require separate data structures for
simpler ontologies (which are mainly deterministic) and simply reads the instantiations
from cached model abstractions. Last but not least, if several individuals have to be
checked whether they are instances of a certain class, then Konclude is able to merge more
and more of these individuals into the same model abstraction to quickly determine non-
instantiations. The latter is similarly to bulk processing and binary retrieval optimizations
[5], but without introducing a significant overhead.

Tableau-based systems, such as Konclude, apply the tableau expansion rules to all
(possibly anonymous) individuals, which typically results in tree-based structures that
reflect the restrictions of the axioms. In order to avoid that an enormous number of
these tree-based model abstractions must be built for ontologies with many assertions
and individuals, we developed a new optimization for consistency checking, which allows
for processing small parts of the individuals stepwise by using a so-called individual
derivations cache to store, retrieve, and align the consequences of the separately created
partial models [6]. To be more precise, for constructing the model abstraction for
a small part of the assertions, we retrieve already derived consequences for occurring
individuals from the cache and reuse them. If there is some incompatibility with the cache
(e.g., due to non-deterministically derived/possible consequences), then we expand the
model construction to neighbors until compatibility is achieved. We limit the expansion
by marking the remaining individuals in the cache such that they are processed later
separately.

3.2. Parallelization Enhancements
Konclude has a range of different parallelization techniques that improve certain reasoning
aspects on multi-core systems. To further improve the parallelization, we extended the
previously sketched caching technique appropriately. In fact, different assertions can be
processed in parallel by different worker threads, i.e., each worker thread constructs a par-
tial model abstraction for a small part of the assertions and extracts relevant information
that is sent to the cache, which then integrates the new information asynchronously. If
some threads derive some conflicting/incompatible consequences such that an alignment
with other parts is not directly possible, then the corresponding parts are reprocessed
later (potentially repeatedly). For most ontologies, this is, however, hardly required,
i.e., this new parallelization technique significantly speeds up consistency checking for
ontologies with many assertions as long as these ontologies are not too constrained. To
be more precise, if the reasoner has to make many non-deterministic decisions and only
few branches can be expanded to abstractions of models, then dependency directed
backtracking has to be performed over the cache, which is usually not very efficient.

We further improved the parallel processing of other tasks. In fact, large triple files

can be parsed and indexed in parallel. Moreover, several query answering steps are
parallelized (e.g., joining of different intermediate results of different sub-queries) and
even the serialization of answer results can now be performed in parallel.

3.3. Functional Extensions
There are several new major features in Konclude: Most notably, Konclude has now
support for conjunctive query answering. This is realized in form of an absorption-based
query answering approach [7], where the queries are rewritten into simple DL-axioms by
using so-called binder concepts. These binder concepts “remember” the element for which
they occur by encoding a binding for a specified variable. By propagating these bindings
according to the absorption, it is possible to detect when queries are possibly satisfied
in the model abstraction. This works as long as the reasoning procedure only has to
consider a limited number of so-called new nominals, which is the case for most real-world
ontologies. To make the absorption-based query answering approach more efficient, we
also integrate results from other reasoning tasks such as realization. Last but not least,
we integrated many minor query answering optimizations, such as query evaluation
planning, query materialization, etc. By using the optional integrable Redland RDF
Library, Konclude can even process more complex SPARQL queries. In fact, Konclude
itself only processes the SPARQL basic graph patterns (BGPs) and then returns the
result to the Redland query engine (Rasqal), which then evaluates the SPARQL algebraic
operator (such as UNION, OPTIONAL, etc.). The Redland RDF Libraries also give
Konclude the ability to parse and interpret RDF triple files with encoded OWL axioms.

4. Experiments and Evaluation
Several new aspects of Konclude have already been evaluated intensively. In fact,
evaluations have shown that the absorption-based query answering technique works very
well for many real-world ontologies even if they use expressive language features [7].
Moreover, there are basically no real-world ontologies for which the new nominals are
threatening termination of the approach.

Evaluations for the new stepwise consistency checking technique showed that they
enable the handling of very large and expressive ontologies [6]. The evaluations further
showed that the parallelization techniques utilizing this stepwise handling lead to a
significant speed up on multi-core systems.

In the following, we give a brief overview of how the update impacted the performance
of Konclude, i.e., we compare the new version of Konclude (v0.7.0-1138) with the one from
the ORE 2015 competition (v0.6.1-527) on the ontologies of the classification task/files
of ORE 2015 [8].1 We run the evaluation within a Ubuntu Docker container on an Intel
i7-6900K CPU @ 3.20 GHz with Windows 10 as host operating system. The reasoners
were restricted to 10 GB RAM. With a timeout of 150 seconds, the old Konclude version

1See https://gitlab.com/koncludeeval/semrec21 for the script/docker image to reproduce the evalua-
tion. Binaries and source code of Konclude are available at https://github.com/konclude/Konclude.

https://gitlab.com/koncludeeval/semrec21
https://github.com/konclude/Konclude

Table 1
Classification results for OWL2Bench ontologies in seconds (T/O stands for timeout)

Konclude QL EL RL DL
version 1 10 1 10 1 10 1 10
v0.6.1-527 2.5 32.1 2.9 40.3 2.5 37.6 T/O T/O
v0.7.0-1138 1.9 18.9 2.0 16.1 2.1 20.7 T/O T/O

(v0.6.1-527) classified all 200 ontologies within 1836 seconds, whereas the new Konclude
version (v0.7.0-1138) required 1389 seconds. The new version had 2 timeouts, whereas
the previous one reached the time limit for 4 ontologies.

We further evaluated some of the smaller versions of the OWL2Bench ontologies [9].
Table 1 shows the classification times for the different profile variants for the sizes 1 and
10. It is observable that the new version is faster for these ontologies, but both versions
fail for the OWL 2 DL variant. Although the new version of Konclude is able to test the
consistency of these OWL 2 DL variants by using the new stepwise handling with the
cache for synchronization/alignment, it still struggles with higher level reasoning tasks.
This could be due to some subsumption tests that affect large parts of the model.

5. Conclusions
We presented an overview over the changes as well as new features of Konclude and showed
the results of a comparison with a previous version from the ORE 2015 competition.
Although the new version performs generally better, there still seems to be room for
improvements.

References
[1] A. Steigmiller, T. Liebig, B. Glimm, Konclude: system description, J. of Web

Semantics 27 (2014).
[2] I. Horrocks, O. Kutz, U. Sattler, The even more irresistible 𝒮ℛ𝒪ℐ𝒬, in: Proc. 10th

Int. Conf. on Principles of Knowledge Representation and Reasoning (KR’06), AAAI
Press, 2006, pp. 57–67.

[3] S. Bail, B. Glimm, E. Jiménez-Ruiz, N. Matentzoglu, B. Parsia, A. Steigmiller,
Summary ORE 2014 competition, in: Proc. 2nd Int. Workshop on OWL Reasoner
Evaluation (ORE’13), volume 1207, CEUR, 2014.

[4] B. Parsia, N. Matentzoglu, R. S. Gonçalves, B. Glimm, A. Steigmiller, The OWL
reasoner evaluation (ORE) 2015 competition report, in: Proc. 11th Int. Workshop on
Scalable Semantic Web Knowledge Base Systems (SSWS’15), 2015, pp. 2–15.

[5] V. Haarslev, R. Möller, On the scalability of description logic instance retrieval, J. of
Automated Reasoning 41 (2008) 99–142.

[6] A. Steigmiller, B. Glimm, Parallelised abox reasoning and query answering with
expressive description logics (2021).

[7] A. Steigmiller, B. Glimm, Absorption-based query answering for expressive description
logics, in: Proc. 18th Int. Semantic Web Conf. (ISWC’19), LNCS, Springer, 2019, pp.
593–611.

[8] B. Parsia, N. Matentzoglu, R. S. Gonçalves, B. Glimm, A. Steigmiller, The OWL
reasoner evaluation (ORE) 2015 competition report, J. of Automated Reasoning 59
(2017) 455–482.

[9] G. Singh, R. Mutharaju, P. Kapanipathi, Owl2bench dataset, 2021. URL: https:
//doi.org/10.5281/zenodo.4764368. doi:10.5281/zenodo.4764368.

https://doi.org/10.5281/zenodo.4764368
https://doi.org/10.5281/zenodo.4764368
http://dx.doi.org/10.5281/zenodo.4764368

	1 Introduction
	2 System Architecture
	3 Improvements and Enhancements
	3.1 Optimization Adaptations
	3.2 Parallelization Enhancements
	3.3 Functional Extensions

	4 Experiments and Evaluation
	5 Conclusions

