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Abstract

This paper summarises our work on Ontology embeddings for the SemRec Workshop at ISWC 2021.
Recent work on Knowledge Graph (KG) embeddings provide a low-dimensional representation of entities
and relations of a Knowledge Graph and are used successfully for various applications such as question
answering and search, reasoning, inference, and missing link prediction. However, most of the existing
KG embeddings only consider the network structure of the graph and ignore the semantics and the
characteristics of the underlying ontology that provides crucial information about relationships between
entities in the KG. Recent efforts in this direction involve learning embeddings for a Description Logic
(logical underpinning for ontologies) named & Z**. However, such methods consider all the relations
defined in the ontology to be one-to-one which severely limits their performance and applications.
We provide a simple and effective solution to overcome this shortcoming that allows such methods to
consider many-to-many relationships while learning embedding representations. Our proposed solution
also paves the way for learning embedding representations for even more expressive description logics
such as SZ0.7 Q.
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1. Introduction

Knowledge Graph (KG) embeddings are an effort to combine the knowledge present in the
Knowledge Graphs with the generalisation capability of the neural networks [1]. KG embeddings
learn embedding functions that map the entities of Knowledge Graphs to vector space. Different
Learning methods for such embeddings have been proposed [2, 3, 4, 5, 6, 7] that try to preserve
various properties of these knowledge bases. In case of ontologies, they help create approximate
reasoners which could reason over complex ontologies while having low time complexity.
Most of the KG embeddings fail to consider the underlying constraints and characteristics of
the ontologies. Hence, reasoning tasks do not perform well on such embeddings of ontologies. In
order to tackle this issue, Kulmanov et al. [8] proposed EL Embeddings (EmEI) that incorporate
the geometric structure of &% ** description logic ontologies into the embeddings. Mondal et
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al. [9] later added role oriented &% ** constructs into the embeddings through their proposed
EmEI** method. While these methods have provided a new technique to perform reasoning
tasks on the ontologies, they have a fundamental issue that restricts their performance on
&' ontologies and restricts them from being used in more complex description logic based
ontologies such as § % 0.7 @, which is the basis for OWL 2 DL, a fragment of OWL 2. We
provide a simple and effective way to convert the embedding functions such that the roles
(relation equivalent in ontologies) can be considered as many-to-many instead of one-to-one
functions as is in the case of EmEL This is significant as most of the roles in ontologies connect
a class to multiple classes. For example, the fatherOf role can connect an individual to multiple
individuals if he is the father of all of them. This issue becomes more important when we try
to move to complex description logics like &% 0.7 @ which has properties such as cardinality
that depend on such many-to-many roles.
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Figure 1: Geometric representation of classes and relations. (a) shows the representation of subclass
relation where D C C and thus the n-ball of D lies inside n-ball of C. (b) shows class C getting translated
to D using relation R for a tuple (C,R,D) in the ontology. (c) In case of EmEl(var), the variance o lets the
the entity C relate to multiple entities with the relation R. Any entity which falls within o distance of
C+R are also related to C through R. E and F are the boundary entities for C and R.

Contributions: (1) We provide a simple method to incorporate many-to-many roles in
translation based embeddings like TransE [3]. (2) We show how the method could be used
to modify the ontological embedding EmFI [8]. (3) We demonstrate the effectiveness of the
method on the dataset provided by SemRec. (4) Our work provides a foundation for work on
complex DL reasoners.

2. Related Work

Existing works on ontology embedding such as Onto2vec [10] focuses on using word2vec as
an underlying model. While the work focuses on encoding the entities and relations, it is
unable to handle complex relations in an ontology. [11] provide neuro-symbolic deep deductive
reasoners for &% ** DL and first-order logic. [12] pointed out that geometric models are a
better way to learn embeddings for ontologies. The simplicity of the translation based models
for KG embeddings [3, 2, 4] to measure the correctness of a fact as a distance between entities
after being translated by the relation made them popular. EmEI [8] and EmEI** [9] used this



translation technique to create embeddings for ontologies which preserve their underlying
structures and characteristics. In order to accomplish it, the models use geometric models to
learn embeddings. The classes are considered to be n-balls in an n-dimensional space which
are translated by the relation vectors to the n-ball of the corresponding class of the fact. This
geometric structure provides a way to incorporate various structural properties of an ontology
eg. subclass properties. However, like TransE, these models too restrict their triplets to a
one-to-one mapping. Not only do these restrictions affect the performance of these models on
&<+ ontologies but also restrict them from being used in more complex description logics

suchas SZ0.7 Q.

3. Background on Ontology Embeddings

Kulmanov et al. [8] introduced the concept of incorporating geometric structure of ontologies
into the embeddings. They proposed embeddings for the &% * description logic (EmEL) that
captures the underlying structures and characteristics of the ontology by treating ontology
classes as n-balls in n-dimensional space. These n-balls are represented by a center which is a
n-dimensional vector and a radius which is a scalar. The relations in the ontology are considered
as n-dimensional vectors which are used to translate the class from one point in the space
to another. The center and the radius of each class (n-ball), along with the relations can be
learnt over multiple iterations. They make up the embeddings for the ontology. Figure 1(a) and
Figure 1(b) show the geometric representation of classes and relations in 2-dimensional space.

Hence, they define a geometric ontology embedding 7 as a pair (fy, r,,) of functions that map
classes and relations in ontology O into R". Thus f,: CuR+— R"andr, : C — R. Here Cis
a class and R is a relation and O is defined as (C,R’, I; ax) where I are individual symbols, C
is set of class symbols, R’ is set of relation symbols and ax are axioms (facts). Basically, f,(c)
represents center of C, r;/(c) represents radius of C and f,(r) represents vector of R.

Each axiom, ax, is transformed into its equivalent normal form using a set of conversion rules
from [13]. These rules help transform the set of axioms in the ontology into one of four forms
without any loss of information. These are (1) Subclass axiom: C C D (2) Intersection axiom:
C 1 D C E (3) Existential restriction (right-hand side): C C 3R.D and (4) Existential restriction
(left-hand side): 3R.C C D where C,D,E€ Cand R € R.

EmEI formulates a loss function for each of the four normal forms in order to preserve the
semantics of %" in the embeddings. The loss functions are as follows.

losscep(e, d) = max(0, | fy(c) = fy(d) | +r(c) = ry(d) —y)
+ 1 ) =1+ 11 fy(d) [ 1]

In Eqn 1, we try to preserve the subclass property of the entities. Here the Euclidean distance
between the centers of C and D should be less than the difference between the radius of D
and C. Once this is achieved, we ensure that the n-ball representing D is bigger than that
of C and that n-ball of C lies completely inside D. Here y is a hyperparameter called margin.
[ £y [ =11+ || £;(d) || —1| ensures that the n-balls lie in the unity sphere.

(1)



losscrpei(e, de) = max(0, || fy(c) = fy(d) || =ry(c) —ry(d) = y)
+max(0, | f,(c) = fy(e) [ —r(c) —¥)
+max(0, | f,(d) — fy(e) [ —ry(d) —y)
+ @ I =1+ fy(@) | =1 ] fyle) [ -1

In Eqn 2, we incorporate the intersection property. The first term ensures that C and D are
not disjoint sets. While second and third terms force the center of E to lie in the intersection of
D.

(2)

IOSSCEEIR.D(C: d, r) = maX(O’ “ fq(()) + fq(r) - f}](d) ”
+1y(c) —ry(d) = y) 3)
+ 1 fp I =1+ fy(d) | -1

lossg ccple, d,r) = max(0, | f;(c) — f,(r) — f(d) |
- r)](c) - rn(d) - Y) (4)
+ 1y =1+ 11 £ | 1]

Eqn 3 and Eqn 4 describe the loss function for the third and fourth normal forms respectively.
Every point that lies within an n-ball representing a class is a potential instance of that class.
The loss functions capture this by applying relations as translations on these points (following
the TransE [3] relation model). The relation vector f;(r) when added to the center of class C
should be at a maximum distance of the sum of radii of C and D from the center of D. Eqn 4
reverses the direction of translation from Eqn 3.

losscrpe (¢, d) = max(0,r,(c) + ry(d)— || fy(c) = fy(D) || +y)
+ fpl =1+ 11 fyld) | -1

Eqn 5 describes the loss function for disjoint classes C and D while Eqn 6 refers to the specific
loss function for bottom class whose radius must be equal to zero.

®)

losscc (c) = ry(c) (6)

EmEl++ [9] added role constructors to EmEL The translation approach of EmEI and EmEl++
is not suitable for more expressive description logics such as SROIQ because the translation
operator on relations makes them one-to-one. This limits the capabilities of the model as most of
the relations are many-to-many. We propose a modification to their approach, named EmEl(var),
to overcome the issue.

4. Proposed Approach

In order to address the one-to-one relation restriction, we used a simple yet powerful technique
that provides a foundation for further work in embeddings based description logic reasoning.
We consider the relations to have a variance (uncertainty) leading to the translation having



various possible regions in the vector space. This lets us model one-to-many and many-to-many
relations in the ontology. As a result, we can model complex properties such as cardinality.

We consider the variance to be a hard bound. The translation of n-ball C on relation vector
R could now be within o distance of n-ball D in a tuple (C, R, D) where C,D € C and R € R’.
Hence all the points within o distance from the translated space are related to C through R. This
removes the one-to-one limitation of previous methods. We call this model EmEl(var).

Every relation has its own o which is learnt during training. In order to avoid o from becoming
infinite, we keep the absolute value of ¢ as a loss component for regularisation. Figure 1(c)
shows a visual representation of EmFl(var).

Hence, the definition of the geometric ontology embedding n now becomes a tuple (f;, 1), o)
of functions that map classes and relations in ontology O into R", where f;,: CuR— R", 1, : C
+ R and g, : R~ R. The modified loss functions are provided in Eqn 7 and Eqn 8. Note that
the loss function for other normal forms remain the same as in EmEl++.

losscear ple, d,r) = max(0, || fy(c) + f,(r) — £,(d) |
+1y(e) = r(d) — oy(r) —y) (7)
+ 1 fy© I =1+ 1 £y @ | =1] + oy(r)

lossg ccp(e, d,r) = max(0, | f(c) — f,(r) — fy(d) |
—1y(e) = r(d) — oy(r) —y) (8)
+ 1 fl) | =1+ 1 fy(@d) | =11 + 03(r)

5. Experiments

In order to demonstrate our work and take part in the SemRec challenge, we also train our
model with the data provided for the challenge. The code for our work could be found here.
Hence in order to test our model on the final data, follow the instructions in the ReadMe. We
use the dataset provided for the challenge in order to train our models.

5.1. Model Training

In order to train the embeddings, we use Pytorch [14] and its embedding layers. Pykeen
framework [15] was used for implementing TransE, TransH, and DistMult embedding models.
For EmFE] embeddings, source code provided by the authors was used. In order to learn the
embeddings for different models, we first normalize the ontologies, i.e., convert the axioms
into one of the four normal forms discussed in Section 3. All individuals in the ontology are
considered as nominal classes (containing one instance) and the embeddings learn to make their
radii zero resulting in a point in the vector space.

5.2. Evaluation Metrics

Subsumption is one of the reasoning tasks and it checks whether the subclass relation exists
between two classes. We chose subsumption to evaluate the effectiveness of the proposed
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Table 1
Performance of our model on provided dataset

Model Top1 | Top10 | Top100 | Median | 90th Percentile
OWL2EL2 | 0 0 0 25769 66577
OWL2EL3 | 0.08 0.14 0.15 50145 247962
OWL2EL4 | 0 0 0.2 124.6 248.3
OWL2ELS5 | 0 0 0.1 139.6 241.7

embeddings rather than link prediction because this task makes use of the normalized axioms to
infer the subclass relation. The task of subsumption is reduced as a distance-based operation in
the embedding vector space. Given a test instance of the form C T D, we use D as source class
and rank all other classes in the given ontology in an increasing order of their distance from D
in the vector space. Based on the rank at which C is present in the ranked list, we evaluate our
model. We hypothesise that an embedding model that successfully captures the ontological
information should be able to assign very close vector representations to the two classes in a
subclass relation, hence, producing a lower rank for C.

In order to evaluate the performance of different models, we use Hits at ranks 1, 10 and 100
which report the fraction of the test cases where the given class C falls under top 1, 10 and 100
in rank list respectively. Median rank and 90" percentile rank were also considered to compare
the overall performance of the models. A median rank of m indicates that for 50% of test cases,
the correct answer was found below rank m. Similarly 90" percentile rank indicates the rank
below which the correct class was found for 90% of the test cases.

6. Results

The final result on the provided test data for our model is provided in Table 1. Unfortunately,
the dataset OWL2EL1 didn’t have sub class relations for the subsumption task.

7. Conclusion

The existing Knowledge Graph and ontology embedding approaches assume that relations
are one-to-one. This limits the possibility of using these embeddings for more expressive
ontologies and for complex reasoning tasks. We have provided a simple yet effective method
that overcomes this obstacle and helps embeddings to capture many-to-many relations. The
flexibility to model many-to-many relations also opens up the possibility of extending this work
for more expressive description logics such as SROIQ.
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