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Abstract
Domain Generation Algorithms (DGA) are typically used by recent botnets to communicate with their
command-and-control server, thus exacerbating the complexity of detecting them compared to older
botnets using static IP addresses. As such, recent studies have been experimenting with different
approaches to detect algorithmically generated domains using a variety of methods, including Deep
Learning. This paper presents a Deep Learning approach based on autoencoders as a semi-supervised
method requiring only legitimate domains for training. Semi-supervised methods have an advantage
over supervised methods in that they require no labelled DGA data. The proposed autoencoder structure
is based on a Neural Network (NN) processing the frequency of 2-grams in domain names. The method
has been compared with supervised machine learning methods and cross-validated on a second unseen
dataset to evaluate the generalization of results. Results confirmed an F-score of 73% on DGA detection
outperforming a NN based on letter frequencies and a Random Forest approach based on 𝑛-grams scoring
71% and 65% respectively.
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1. Introduction

In our increasingly connected world, cyber-security has become a fundamental field. Moreover,
the rapid acceleration and growth of the Internet of Things (IoT) has led to a dramatically
increased attack surface, making our networks more vulnerable to malicious attacks. The conse-
quences of undetected attacks can be severe, now that our computer networks are responsible
for hosting significant amounts of mission critical infrastructure. These consequences can range
from partial reduction of service, all the way to complete system failure. As such, there is a
critical need to develop systems and techniques to detect network intrusions before negative
consequences occur. One such malicious attack, particularly pervasive in IoT environments
due to its host of constrained devices, is a Botnet attack. A Botnet attack involves a machine
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infected with malware seeking to establish communication with a Command and Control (C&C)
server. This C&C machine will then deliver instructions to the infected host in order to carry
out actions such as retrieving unauthorized information from the victim’s target network. In
more extreme circumstances, Botnet attacks can even be used to infect large numbers of victim
machines in order to instigate Distributed Denial of Service (DDoS) attacks. These DDoS attacks
can bring down significant pieces of infrastructure, such as was the case when the Mirai Botnet
attack brought down the internet connectivity for most of the East coast of the United States in
2016 [1]. Often, these botnet attacks use a Domain Generation Algorithm (DGA) to establish
the communication between the victim machine and the C&C [2, 3]. Therefore, early detection
of DGA activity in computer networks is a vital step in ensuring that our networks are safe
from such attacks. A DGA is capable of generating a list of domains, using an algorithm which
often uses a public seed, such as the weather forecast or the current date. This list of domains
can then be registered by an attacker, allowing the infected machines to successfully resolve
the Domain Name System (DNS) query on the target network. Through the resolution of this
domain, the C&C machine is able to establish communication with the victim host, which is
inside the target network. As such, preventing this domain registration from taking place, is a
crucial area of interest for cyber security engineers. Naturally, the consequences of missing the
detection of an Algorithmically Generated Domain (AGD) in a large network could be quite
severe. Therefore, for any designed classification mechanism having a high recall on the AGDs
is of great importance.

This research presents a Deep Learning (DL) approach to detect AGDs using Autoencoders
(AEs). The contributions of this research are as follows; firstly, we propose a semi-supervised
approach based on AEs for the design of a DGA detection system. Secondly, we propose the
use of a thresholding method on the reconstruction error of the AE in order to trigger alerts
while providing information on the confidence interval of the detection. Finally, our proposed
model achieves a higher recall statistic than the baseline approach. The remainder of this
paper is structured as follows. Section 2 provides a concise overview of related work. Section 3
provides details on the proposed method. The evaluation methodology is described in Section 4.
Results and discussion are reported in sections 5 and 6, respectively. Finally, Section 7 draws
the conclusion of the experiment while introducing future work.

2. Related Work

In recent years, an increasing number of studies have been undertaken to detect domain
names produced by DGAs via different approaches. Authors in [4] proposed an algorithm
resilient to feature change that used 16 bit representation of domain names and used an AE
to classify the domain using a Neural Network (NN) and Support Vector Machine (SVM). A
work from [5] focused on the detection and generation of DGA leveraging the concept of
Generative Adversarial Networks (GANs). They used GANs to build a DL based DGA designed
to intentionally bypass a DL based detector. Their results show that domains generated from
GANs to bypass the GANs detector, also bypassed a Random Forest (RF) classifier. Another
approach used to detect AGDs is through the use of 𝑛-grams, i.e. contiguous sequences of
a 𝑛 symbols from a given text. In the case of detecting AGDs, 𝑛-grams are typically used



to compare their frequency of occurrence with their normal distribution in known domains.
Wang et al. in [6] proposed a method to detect the use of AGDs based on visualization and
𝑛-grams methods. Xu et al. [7] proposed a novel combined 𝑛-grams and Convolutional Neural
Network (CNN) approach to DGA detection, 𝑛-gram Combined Character Based Domain
Classification (n-CBDC). Results show an accuracy of 98.69% for detection of AGDs. Authors in
[8] used a supervised Machine Learning (ML) approach to detect DGA domain names. Their
approach focuses on features which state the similarity between the 2-grams and 3-grams
in a single unclassified domain name. Results show a good accuracy was achieved which
outperformed some of the state-of-the-art featureless classification methods based on DL. In
[9], a RF approach and a combination of statistical features and 𝑛-gram based features were
used for AGD for detection. Authors in [10] proposed a ML model to detect the output of DGA.
measuring the randomness in the characters of a domain name from the DNS request packet only.
Results show their approach can effectively detect AGDs domain names by several malware
types with an accuracy of 98%. Authors in [11] propose a ML approach using clusters, to
detect AGDs. A two-step approach is introduced, where the first step queries the automatically
generated domains to detect a bot looking for the C&C Centre. The second step involves
analysis of DNS requests resolved in the same time interval. This approach was evaluated in an
experiment with an ad-hoc network with injected DGA, and later a Local Area Network (LAN)
of a company. This approach successfully detected AGDs within the first experiment, and
discovered an infected host within the network in the second experiment.

DL is a popular approach used to detect AGDs with a number of DL approaches described in
the literature. A work by [12] proposed a DL framework using Long Short-Term Memory (LSTM)
to detect domain names generated using DGA. Binary classification was performed on benign
and DGA names using two datasets, where the LSTM model results in 98.7% and 71.3%. The
multiclass classification was performed using 20 DGA names and resulted in an accuracy of
68.3% and 67% on the same datasets. Authors in [13] proposed two novel models based on
CNN to detect real-time DGA use. They compared results against several Recurrent Neural
Network (RNN) and CNN. Their comparison shows one of the proposed models performed
as well as other established DL models in the literature. Amara et al. [14] propose a CNN
based architecture using a character level domain name encoding approach for detecting DGA
generated domain names. Results show the approach successfully detected DGA generated
domain names with an accuracy of 99.7% and 97.1% across two datasets and performed well
when compared against other state of the art DL approaches. Based on the literature, lab
based experiments that detect AGD achieve better results than that of real world experiments.
Within real world DGA detection, the challenge of model generalization with real-world data
still remains. As such, our experiments aimed at evaluating the generalization abilities of the
proposed model with unseen data.

3. Implementation

The proposed solution is based on a deep AE [15]. As mentioned in Section 2, AEs are a particular
type of NN having the output layer of the same size of the input layer and two symmetric sets
of hidden layers: (i) an encoder connected to the input, followed by (ii) a decoder part preceding



the output layer. Originally introduced as a DL approach for dimensionality reduction [15],
the use of AEs has rapidly found an increasing number of applications, including machine
translation [16], and anomaly detection [17]. In our implementation, a NN AE was used in a
similar fashion of the anomaly detection application. In such a case, the AE is trained to try and
reconstruct a replica of the input data in the output layer, i.e. the AE is trained to implement a
mapping function 𝑓 : 𝑋 → 𝑋 generating a replica �̂� of 𝑥 with 𝑥, �̂� ∈ 𝑋 :

�̂� = 𝑓(𝑥) = 𝑑𝑒𝑐𝑜𝑑𝑒𝑟(𝑒𝑛𝑐𝑜𝑑𝑒𝑟(𝑥))

where 𝑋 is the domain in which a domain name is represented. The training process of an AE
therefore can be seen as an optimization problem having the goal of minimizing the difference
between the input and its reconstructed replica [18] as in Equation 1.

min
𝑓

||𝑥− 𝑓(𝑥)|| (1)

As in the anomaly detection case, an AE trained on legitimate domain names can be expected
to produce a higher reconstruction error 𝑥− �̂� for domains presenting different characteristics
from the ones used in the training data. The Domain Alphabet 𝐷𝐴, defined as the set of
admissible characters in a domain name, includes all alphabet letters, numerical digits and a
limited number of extra characters:

𝐷𝐴 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, . . . 𝑦, 𝑧, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ., _,−}

where letters are case insensitive (𝑎 == 𝐴). The set of symbols composing the 𝐷𝐴 were used
to define to different representation of domain names based on letter frequency and 𝑛-grams.

3.1. Letter frequency

Using the cardinality of the set of legitimate characters |𝐷𝐴| = 39, one of the simplest repre-
sentations of a domain name is its representation in terms of the frequency of appearance of
each symbol. In our implementation each domain name can be represented as a vector 𝑥 ∈ R𝑁 ,
with 𝑁 being 𝑁 = |𝐷𝐴|

𝑥 =
[𝑥1 𝑥2 . . . 𝑥𝑁 ]

|𝐷|
where 𝑥𝑖 is the number of occurrences of the 𝑖− 𝑡ℎ character in 𝐷𝐴 normalized using the total
number of characters |𝐷| in a domain name 𝐷. In this simple representation, each domain
name is mapped into a vector of 39 scalar values in [0, 1). This approach, however, by only
taking into account the number of occurrences of each character, can only learn the distribution
of frequency of characters and does not maintain any notion related to the sequence of letters
by their order of appearance. Such a feature space is therefore invariant to all the possible
string permutations obtainable using the same set of characters, regardless of their order. This
limitation, as briefly mentioned in Section 2, has been addressed by using different approaches:
one attempting to learn legitimate sequences of characters as in the case of LSTM, or by using
𝑛-grams. In our implementation, the use of AEs applied to the frequency of 𝑛-grams was
considered.



Figure 1: Example of reconstruction of 2-grams sequence in a domain name.

Figure 2: MLP AE structure.

3.2. Implementation based on 2-grams

Trying to cope with the limitations of the letter frequency method an 𝑛-grams implementation
has also been evaluated. In our experiment, the case of using 2-grams was considered, thus
building an input domain in 𝑋 = R𝑁2

. As illustrated in Fig. 1, the occurrence of 2-grams in the
domain name is obtained with a sliding window approach reading the string from left to right
with 50% overlap. As in the generic case of 𝑛-grams, even if not aiming at learning sequences
of legitimate characters, the method preserves part of the order information in the sequence of
obtained 2-grams, thus creating a different representation for strings containing the same set of
symbols in different orders.

Other approaches, such as [9], exclude the top level domain and any subdomains starting
from the third level domain. In our implementation, for the pre-processing of domain names
into vectors 𝑥 ∈ R𝑁2

the top three domain levels were considered.

3.3. The Autoencoder model

The AE model was implemented using Keras [19]. The model consists of an encoder and a
decoder block having 4 hidden layers each and an output layer having the same size as the
input layer 𝑁𝑥𝑁 = 1521.

The model was trained on the Majestic Million dataset with the goal of training the network to
reconstruct most common characteristics on the 2-grams feature space for the top 1M legitimate
domains. The training process was performed for 100 epochs using 20% domains as validation
and with an update criterion saving models performing minimum loss on the validation set.



Table 1
Evaluation Dataset

Class Bot Domain

DGA gozi mortiscontrastatim.com
DGA corebot cvyh1po636avyrsxebwbkn7.ddns.net

Legit Alexa plasticbags.sa.com
Legit Alexa mzltrack.com
. . . . . . . . .

The threshold value for detecting a suspected AGD was set as 𝜇+ 𝜎 with 𝜇 and 𝜎 being the
mean and the standard deviation of the loss on the training set calculated as L = ||𝑥− �̂�||.

4. Evaluation Methodology

The experiment explored the use of an Multilayer perceptron (MLP) AE for DGA detection,
comparing the proposed approach with a RF approach [9], and the same AE structure using the
simplified input feature space built using letter frequency. In [9], the length of the domain being
examined and its entropy were used as statistical features together with two sets of 𝑛-grams
features, the first being based on similarity between the distribution of 𝑛-grams in the Alexa
top 1 million websites, and the second based on occurrence of 𝑛-grams in a list of common
words. All methods were compared using an unseen dataset [8] including legit domains and
AGDs generated by 25 DGA families. An illustratory fragment of the evaluation dataset [20] is
reported in Table 1.

The evaluation dataset contains more than 600.000 domains, with approximately 50% of
those being legitimate domains and the other 50% consisting in DGA generated by 25 bots for
approximately 13.000 samples each. Cross-validation on the same unseen dataset allows the
generalization abilities of the models to be assessed in working-like conditions, simulating their
use on real-world data.

5. Results

Table 2 reports results obtained using the RF approach [9], exhibiting a high recall for legitimate
domains and high precision for DGA 93%, for which, however, the recall was observed to be
50%. Table 3 reports results obtained using the proposed AE on the simple representation based
on letter frequency. This model showed significantly higher recall on DGA (80%), however, at
the expense of lower recall (56%) on legitimate domains. The use of 2-grams in the proposed
model has been observed to further improve results using the AE approach, with the highest
recall on DGA obtained with the highest precision on legitimate domains (75%), as reported in
Table 4.



Table 2
Classification Report 3-grams RF

Precision Recall F1-score Support

Legit 0.66 0.96 0.78 337398
DGA 0.93 0.50 0.65 337500

Macro-average 0.80 0.73 0.72 674898

Table 3
Classification Report letter frequency MLP-AE

Precision Recall F1-score Support

Legit 0.74 0.56 0.64 337398
DGA 0.65 0.80 0.71 337500

Macro-average 0.69 0.68 0.68 674898

Table 4
Classification Report 2-grams MLP-AE

Precision Recall F1-score Support

Legit 0.75 0.61 0.68 337398
DGA 0.67 0.80 0.73 337500

Macro-average 0.71 0.71 0.70 674898

6. Discussion

The results obtained confirmed the detection of AGDs is a challenging task due to the great
variety of characteristics of an increasing number of bot families. Among them, surely, dictionary
based DGAs, whose output inherently presents similar characteristics to the legitimate ones,
pose the greatest obstacle. This overlap in the feature space between certain DGAs and legitimate
ones affects generalization abilities of models when dealing with real-world data. This is
particularly relevant when looking at the comparison of recall values of the legitimate and the
DGA class. In particular, the RF based model [9], despite having a high precision in detecting
DGA (96%) produced a 50% recall, in contrast with a 96% recall on the legitimate class at the
expense of a significantly lower precision on the legitimate class. The approach in [9], therefore,
was found to detect DGA with high precision but with most of dictionary-DGA being mislabeled
as legitimate. The two AE-based approaches, on the other hand, outperformed the RF based
model in detecting DGA, but at the expense of a higher number of false positives. The process
of model selection, in this regard, depends on the goal of the final application that can change
the perspective on the interpretation of obtained results. For our purposes, we prioritized the
detection of a possible situation of risk over the generation of a false positive. As mentioned in
Section 3.3, the proposed threshold was defined considering mean and standard deviation of
the reconstruction error on the training dataset. Such an approach, by definition, will generate
false positive detection of a DGA for legitimate domains in the tails of the distribution. Such an



approach also allows to define a scoring mechanism evaluating an increasing risk of based on
confidence intervals, e.g. 95.45% when L ≤ 𝜇+ 2𝜎 and 99.73% with L > 𝜇+ 3𝜎.

7. Conclusion

This paper reported on an experiment evaluating the generalization abilities of AEs for DGA de-
tection based on 𝑛-grams. The proposed method was cross-evaluated under realistic conditions
and compared with a RF-based model and an AE with the same characteristics of the proposed
model based on letter frequency. On the one hand, the experiment provided encouraging results
highlighting the potentials of the proposed method. On the other hand, however, one of the
limitations of the evaluation was that due to time-constraints a proper optimization of the AE
model was not performed. Future work will involve further experiments in order to optimize the
topology of the NN structure (number of layers and neurons), as well as other hyperparameters
such as the number of epochs for training, the learning rate (which was left at default 0.01
for the experiment). Despite the lack of optimization in this regard, the proposed method was
proven to generalize well on unseen data while preserving a trade-off between detection of
AGDs and the precision in detecting legitimate domains. The experiment demonstrated that
semi-supervised approaches can challenge supervised approaches and without the need of any
labeled AGDs for training. This is a characteristic of major relevance considering the fact that
new DGAs are always emerging, and fully supervised approach may struggle to detect new
DGA types for which they have not been trained. Thus, an optimized semi-supervised approach
has the potential of providing better generalization results when dealing with real-world unseen
AGDs compared to a supervised approach relying on detecting learned features of a set of DGA
families. Finally, the proposed method can be used not only to detect AGDs, however, also to
provide a metric for assessing the confidence interval of detection with respect with the normal
distribution of legitimate domains.
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