
Implementation of Shor's Algorithm in a Digital Quantum
Coprocessor

Valeriy Hlukhov
1

1 Lviv Polytechnic National University, 12 Bandera str., Lviv, 29013, Ukraine

Abstract
The advantages of digital quantum coprocessors include a larger quantum volume, normal

operating conditions, the presence of memory, the presence of a tested and reliable element

base on which they can be implemented, and the availability of technology for using this

element base. The element base refers to field programmable gate arrays (FPGAs). The paper

presents the principles of building digital quantum gates, digital qubits and both homogeneous

and heterogeneous digital quantum coprocessors. The capabilities of real quantum computers

are usually illustrated by performing factorization of the number 15 using Shor's algorithm.

This paper describes the implementation of quantum Shor's algorithm for factorizing the

number 15 in a digital quantum coprocessor, which is implemented in FPGA. The difference

between a real quantum coprocessor and a digital one is shown. A technique for determining

the characteristics of a digital quantum coprocessor is described. Its probabilistic

characteristics are also given.

Keywords
Digital qubit, digital quantum coprocessor, heterogeneous coprocessor, homogeneous

coprocessor, Shor's algorithm, FPGA

1. Introduction1

A quantum computer is a heterogeneous

device [1] that consists of a classical control

computer and its quantum accelerator [2] - a

quantum coprocessor. Real quantum

coprocessors are analog and probabilistic

devices. They consist of qubits, quantum gates

provide a change in their states. A classical

computer controls the operation of a quantum

coprocessor, checks the correctness of the results

of its work, and in case of an incorrect result, it

restarts the coprocessor to work.

The possibility of creating logical (digital)

probabilistic devices that can work according to

the same formulas as real quantum coprocessors

and can implement quantum algorithms is shown

in previous works [3], [4]. The possibility of

creating digital quantum gates, digital qubits and,

based on them, digital quantum coprocessors is

ISIT 2021: II International Scientific and Practical Conference
«Intellectual Systems and Information Technologies», September

13–19, 2021, Odesa, Ukraine

EMAIL: Glukhov@polynet.lviv.ua (A. 1)
ORCID: 0000-0002-0542-7447 (A. 1)

©️ 2021 Copyright for this paper by its authors. Use permitted under Creative

Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

shown. The hardware base for digital quantum

coprocessors is FPGA. Unlike real quantum

coprocessors, digital ones operate at normal

temperatures (like classical computers) and have

a larger quantum volume. This makes the

development of such coprocessors actual and

important.

Quantum computers possible field use is large

numbers factorization [5], [6]. This operation is

used to hack information security systems that

use public key algorithms, such as RSA [7].

Shor's algorithm [8] is used for this. The main

elements of the quantum coprocessor that

implements Shor's algorithm are Hadamard

elements, quantum Fourier transform, modular

exponentiation [9], and qubit state meters. In real

quantum coprocessors, these elements (except

for meters) consist of qubits; changes in their

states are provided by quantum gates.

In previous works, the implementation of

digital Hadamard elements and digital quantum

Fourier transform on FPGAs was shown [3], [4].

In one FPGA, it is possible to create a quantum

Fourier transform from thousands of digital

qubits. The internal state of a digital qubit can be

represented by binary code θ in the range from

0.00...0 to 1.00...0. Also, options for encoding

the states of digital qubits with binary codes of

various lengths - from 3 to 32 bits were

considered [3], [4].

Simulation of individual quantum gates is

used to simulate quantum algorithms. To

simulate the reversibility of a qubit, models of

reversible logic architecture [10] and gates [11]

have been developed. In this work, more

complex logic circuits are simulated to ensure

reversibility of quantum circuits.

2. Purpose of work

The aim of the work is to show the possibility

of performing quantum algorithms (using the

example of factoring the number 15 by Shor's

factorization algorithm) in a digital quantum

coprocessor implemented on the FPGA. For this,

the possibility of implementing modular

exponentiation on the FPGA and the possibility

of the effect of the results of this operation on the

states of digital qubits is shown, which allows us

to determine the period of y = axmodM function

(determining the period of a function is the main

task of a quantum coprocessor in the

implementation of Shor's algorithm).

3. Qubit

Qubit quantum state  can be represented

(Figure 2) as a simple displacement of end point

of unit radius [12]. The probability pj of

obtaining state j as a result of quantum state

 measurement is equal to
2

jjp  . In this

case, the sum of all probabilities 1P
1N

0j

2

i 




 .

In unit circle (Figure 2) which is used in [4]

2

0 cosp  and 2

1 sinp  respectively.

4. Digital gates, qubits and quantum
coprocessors

A digital quantum gate that is used to change

the state of a digital qubit can be represented as a

logic circuit Figure 1.

The digital quantum gate includes an ALU, a

comparator, and a pipelined register.

ALU transforms the code of the previous state

DataIn of the qubit under the influence of the

Instruction with the possible use of the measured

state IQ of the neighboring qubit (or states of

qubits). The new DataO status code is compared

in a comparator with the random variable Asin_f

to obtain the measured state of the qubit 'QO .

The output of the gate is the qubit state code

DataOut and the measured state OQ of the

qubit, which are taken from the output of the

pipeline register.

AAsin_f

RGALU

DataIn

Instruction

B

DateO

Comparator

DateOut

'QO OQIQ

Figure 1: A digital quantum gate QGate [1]

Figure 2: Bloch sphere for qubit complex
amplitudes (left) and a unit circle for real ones
(right)

In a heterogeneous digital quantum

coprocessor, a random variable at the input of

each digital quantum gate is generated by a

separate pseudo-random code generator (PRNG)

and a Read-Only-Memory (ROM) based

functional converter. The converter changes the

random variable A according to the formula

AarcsinDfsin_A  (Figure 3).

QGate

Asin_f

DataIn

Instruction

D
ROM

A
Asin_f

Random

Number

AarcsinD 

2n+1

PRNG

OQIQ

IQ
DataIn

Instruction

OQ

DataOut
DataOut

Figure 3: A digital quantum cell DQCell for
heterogonous digital quantum coprocessor [3]

Digital qubit circuit for a heterogeneous

coprocessor Figure 4 will represent a series

connection of several digital quantum cells

Figure 3.

Instructions
Instruction1 Instructionj

Data1 Dataj-1DataIn

StateOut

1OQ
OjQ

1IQ IjQ

DataIn

DQCell

DataOut

1OQ

1IQ

DataIn

DQCell

DataOut

1OQ

1IQ

Figure 4: A digital quantum qubit as line (QLine)
of DQCells for heterogonous digital quantum
coprocessor

Digital qubit circuit for a homogeneous

coprocessor Figure 5 has only one difference in

comparison with the circuit in Figure 4: all

random variables Asin_f for each digital

quantum gate are generated using one pseudo-

random code generator and one functional

converter.

A schematic diagram of a digital quantum

coprocessor is shown in Figure 6. In

heterogeneous coprocessor, the number of

pseudo-random code generators and functional

transformers coincides with the number of digital

quantum gates. Both oscillators and transformers

are located near the digital quantum gates

(Figure 3) inside the digital qubits of the Qline

circuit in Figure 6.

Asin_f

Instruction1 Instructionj

Data1 Dataj-1DataIn

1OQ
OjQ

1IQ IjQ

DataIn

QGate

DataOut

1OQ

1IQ

DataIn DataOut

1OQ

1IQ

DataOut

QGate

Figure 5: A digital quantum qubit as line (QLine)
of DQGates for homogenous digital quantum
coprocessor

Asin_f

. . .

QBim-1

DataOut1

QLine0

QLinem-1

DataIn

DataIn

DataOut

DataOut
DataOutm

Switch MatrixQO0

QOm-1

QBi0

j.1m2.1m1.1m QO,...,QO,QO 

j.02.01.0 QO,...,QO,QO

j.1mj.1j.0 QO,...,QO,QO 

QI0

QIm-1

QBo

j.1m2.1m1.1m QI,...,QI,QI 

j.02.01.0 QI,...,QI,QI

D
ROM

A
Asin_f

AarcsinD 

2n+1

PRNG

Asin_f

Asin_f

Asin_f

Figure 6: A generalized functional diagram of a
digital quantum coprocessor

5. Shor’s algorithm

In Shor's algorithm [8], the problem of

factorizing the number M is reduced to the

problem of determining the period r of the

function y = axmodM, which is calculated by the

controlled units CU (Figure 7), where a is an

arbitrary integer. This is precisely the problem

that a quantum computer solves. It is shown that

the greatest common divisor GCD(ar/2+1, M) can

be a divisor of the number M. The subsequent

finding of the greatest common divisor is

performed by a classical computer.

H0

1

H0

H0

02a
CU

0
0

12a
CU

1n22a
CU 

QFT

U
p

p
er

 R
eg

is
te

r
L

o
w

er
 R

eg
is

te
r

M
ea

su
re

m
en

t

Figure 7: Shor’s algorithm implementation in
real quantum computer

If  Nlogn 2 is the required number of

bits to represent the number N to be factored than

the upper quantum register in Figure 7 requires at

least 2n qubits, because Shor’s algorithm

requires x to take values between 0 and at least

N2 and the modular exponentiation function can

be written [9] as
1n2

1n2
1

1
0

0 x2x2x2x)Mmoda()Mmoda()Mmoda(Mmoda 



(1)

Figure 7 of Shor's algorithm implementation

illustrates quantum superiority very well. If we

take only the upper part (Figure 8) of Figure 7

diagram, then the quantum Fourier transform

will determine the frequency of the white noise

that the Hadamard elements create. After the

initial reset, each Hadamard element transfers the

qubit to the neutral position, when the angle

θ = π/4 and the state of each qubit with the same

probability p0 =p1 = 0,5 can be measured both as

0 and as 1. And the measured state of the upper

register in Figure 8 can take any value from 0 to

22n-1. The state spectrum of the upper register

will include all 22n states.

H0

H0

H0

QFT

U
p
p
e
r

R
e
g
is

te
r

M
e
a
s
u
re

m
e
n
tX

Figure 8: White noise X generated by a

quantum circuit

Let's conduct a thought experiment - imagine

that in some way with a period t we find out the

state of the upper register without changing

states of its qubits. Each time we will receive a

new state code, the possible codes will be in the

range from 0 to 22n-1. Now imagine that t runs to

0. Then at each moment of time the state of the

upper register will contain all codes in the range

from 0 to 22n-1.

If, on the other hand, modular exponentiation

is performed over the outputs of the upper

register (CU in Figure 7), then at each "moment"

only states that give the same result of modular

exponentiation at the output of the CU be in the

spectrum of upper register states. That is, at each

"moment" of time, the spectrum of states will be

different. For example, for the function

y = 2xmod15 spectrum is presented in Figure 9.

At some "moment" at the output of CU there

will be a result y = 1, then in the spectrum of

upper register states there will be 0, 4, 8, 12, …

codes (Figure 10). The distance between the

same codes, that is, the period of y = 2xmod15

function will be equal to r = 4. This period will

be determined using the quantum Fourier

transform (as the reciprocal of the repetition rate

F of the extracted codes r = 1/F). At another

"moment", the CU output will have the result y =

4, then in the spectrum of upper register states

there will be 2, 6, 10, 14, ... codes (Figure 11).

y=2
x
mod15

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 x

y

Figure 9: Modular exponentiation

y=(2
x
)mod15=1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 x

Figure 10: X codes for which y = 2xmod15 =1

y=(2
x
)mod15=4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 x

Figure 11: X codes for which y = 2xmod15 =4

But the period of y = 2xmod15 function will

still be r = 4. And it will again be determined

using the quantum Fourier transform. Whatever

the result at the CU output, in the corresponding

spectrum of states there will be only codes that

allow determining the period of the function

y = 2xmod15 in one measurement and this period

will be r = 4. Determining the period of a

function in one measurement illustrates quantum

superiority. This does not take into account the

time to create a quantum circuit Figure 7.

The period of the y = axmodM function can be

determined not only by quantum, but also by

logical (digital) methods in several clock cycles.

For example, in [5], [6] it is proposed to

approach the solution of the problem from the

other side: fix r = 2, and determine the random

variable a from the given r = 2. With this

approach, a quantum computer is no longer

needed. But Shor's algorithm is convenient for

demonstrating quantum superiority using

separate examples - for determining the result in

one measurement.

Also, one of the limitations of Shor's

algorithm is the requirement for the parity of the

period r. It was shown in [5], [6] that this

condition is optional. The period r can be odd if

a is a square.

Once again, we recall that all the "moments"

in a quantum computer are one and the same

moment in time (Figure 10, Figure 11).

Attaching (Figure 7) an additional circuit to

the upper register changes the state spectrum at

any given "moment" in time. This is similar to a

high-pass filter in analog technology -

connecting a capacitor removes high frequencies

from the spectrum, removes interference.

Convenient examples are used to illustrate the

quantum superiority in determining the period of

y = axmodM function. In the example considered

earlier, when M = 15 = 3 * 5, period r is power

of 2: r = 4 = 22 and both factors are Fourier

primes, they can be represented as 12
m2  :

123
02  , 125

12  . With such factors,

formula (1) will have the form (2):

1n2
1n2

1
1

0
0 x2x2x2x)Mmoda()Mmoda()Mmoda(Mmoda 



 =

= 1n2
1n2

1
1

0
0 x2x2x2x)15mod2()15mod2()15mod2(15mod2 



 =

= 1n2110 xxxx
)15mod1()15mod1()15mod4()15mod2( =

=
1010 xxxx

42)15mod4()15mod2(

(2)

Formula (2) makes it possible to find the

period using a digital quantum coprocessor.

The height of the bars in Figure 10, Figure 11

illustrates the probability of receiving the code x

as a result of mentally measuring the upper

register state of the circuit Figure 7. Thus,

Figure 10 corresponds to the upper register in

Figure 7 measured 00x...xx state, and

Figure 11 corresponds to its 10x...xx state.

The implementation of Shor's algorithm in a

digital quantum coprocessor is shown in

Figure 12.

The lower register in Figure 12 is a classic

digital logic circuit, signals at its outputs

formation (for the considered example of finding

the period of y = axmodM function with a = 2,

M = 15) is shown by Table 1 and Table 2.

Measuring the states of the developed digital

quantum qubits does not change the code of this

state, which is indicated by the letter D on the

meter symbol in the circuit Figure 12.

The calculated values of y = axmodM function

transform the state X into a state CX

correlated with the function values. For the

considered example, this transformation is

described in Table 3.

H0

H0

H0

02a
CU

0

12a
CU 1n22a

CU 

QFT

U
p

p
e
r

R
e
g

is
te

r
L

o
w

e
r

R
e
g

is
te

r

M
e
a
su

re
m

e
n

t

Quantum

State

Transformer

0

1

D D D

D

D

D

0x
1x 1n2x 

Quantum part
Classical part

X CXIX

y = axmodM

Figure 12: Shor’s algorithm implementation in
digital quantum coprocessor

Table 1

Controlled Unit 2
a

CUCU 02
 , 2a,2a

02 

Control
signal

x0=0
(multiplication
by 1)

x0=1
(multiplication
by 2)

Input 0001 0001

Output
binary

0001 0010

Output
logical

0x000

0x00 0

Output,
formula

00 xx00

6. Discussions

Further, Figure 13 - Figure 20 show the

results of the quantum part of Shor's algorithm

(determining the period of the function

y = axmodM (a = 2, M = 15) in the digital

quantum coprocessor Figure 7 with 8 digital

qubits in the upper register, the width of each

qubit is 8 bits. The research was carried out on

two types of coprocessors - homogeneous and

heterogeneous. For statistic, each study was

repeated 4096 times with the same input data. In

this case, the frequency of occurrence of each

result (the probability of the result) was recorded.

Since the upper register with 2n = 8 qubits

was used, the number of different measured

codes at the output of the Fourier quantum

transform is N = 22n = 256.

In Figure 13 - Figure 20, these 256 codes are

plotted along the horizontal axis, from 0 to 255.

The figures show the codes that, as a result of the

study, were found most often (high probability

states – State_HP). The vertical axis shows the

probability (Probability) of the occurrence of the

indicated codes, the value of the probability

(Value) is indicated in percent.

First of all figures show the results of white

noise states generator Figure 8 study, the state of

the qubits at the output of the upper register is

xxxxxxxxX  . Figure 13 and Figure 14

show how such white noise is perceived by

quantum Fourier transformer in homogeneous

(Figure 13) and heterogeneous (Figure 14) digital

quantum coprocessors. Measurement of such

quantum state can give any code in the range 0-

255 with equal probability. A heterogeneous

coprocessor perceives white noise more

correctly.

Table 2

Controlled Unit 4
a

CUCU 12
 , 4a,2a

12 

Control
signal

x1=0
(multiplication
 by 1)

x1=1
(multiplication
 by 4)

Input
00 xx00

 00 xx00

Output
logical

)xx)(xx(00 0101
00)xx)(xx(0101

Output,
formula)xx)(xx)(xx)(xx(01010101

Table 3

Controlled Unit 4
a

CUCU 12
 , 4a,2a

12 

xxxxxxxxX  .

(measured x1x0)

y = axmodM
CX

00 1 00x...xx

01 2 01x...xx

10 4 10x...xx

11 8 11x...xx

After the quantum Fourier transform,

determining the number of repetitions of the

measured codes gives the following results: both

homogeneous and heterogeneous quantum

coprocessors correctly determine that there are

no repetitions of codes when carrying out a large

number of measurements (the number of

repetitions is F = 0). A homogeneous

coprocessor generates such result with

probability of 84.195% (Figure 15), and

heterogeneous - with probability 32.805 %

(Figure 16).

After confirming correct operation of both

digital quantum elements of Hadamard and

quantum Fourier transformer, which is also built

from digital qubits, studies of Shor's algorithm

implementation (Figure 7) were continued.

Figure 17 and Figure 18 show how the quantum

Fourier transform perceives correlated with

y = axmodM function upper register state CX

in homogeneous (Figure 17) and heterogeneous

(Figure 18) digital quantum coprocessors.

And in this case, the heterogeneous

coprocessor perceives correlated states more

correctly.

y = 2xmod15 function has period T = 4. The

discrete Fourier transform should most often

form the result F = N/T = 256/4 = 64. Despite the

difference in the perception of correlated upper

register states, both homogeneous and

heterogeneous quantum coprocessors correctly

determine the repetition rate of codes when

carrying out a large number of measurements,

they correctly determine the number of

repetitions F = 64. A homogeneous coprocessor

generates such a result with probability 21.439 %

(Figure 19), and heterogeneous - with probability

15.341 % (Figure 20).

Figure 13: Number of perceived white noise states at QFT input, homogeneous quantum
coprocessor

Figure 14: Number of perceived white noise states at QFT input, heterogeneous quantum
coprocessor

Figure 15: Number of repetitions of white noise states, homogeneous quantum coprocessor

Figure 16: Number of repetitions of white noise states, heterogeneous quantum coprocessor

Figure 17: Upper register states that are perceived at the input of QFT and correlated with the
function y = axmodM, homogeneous quantum coprocessor

Figure 18: Upper register states that are perceived at the input of QFT and correlated with the
function y = axmodM, heterogeneous quantum coprocessor

Figure 19: The number of states repetitions when determining the period of a function,
homogeneous quantum coprocessor

Figure 20: The number of states repetitions when determining the period of a function,
heterogeneous quantum coprocessor

The results of Shor's algorithm execution are

summarized in the Table 4.

7. Implementation

In this example, adding a lower register and

an upper register state converter (Figure 12) adds

practically nothing to the hardware costs of a

discrete Fourier transform implementation

(Figure 8). These costs were determined in

previous works [3], [4]. It was shown that on one

FPGA it is possible to implement the discrete

Fourier transform with the number of digital

qubits up to 1024.

8. Conclusions

The article shows the possibility of

determining the period of the y = axmodM

function in a digital quantum coprocessor.

Determination of the period is necessary for the

execution of Shor's factorization algorithm.

Table 4
Probability of correct results, %

Qubits number 8

Qubits width, bit 8

Homogenous coprocessor 21.439

Heterogeneous coprocessor 15.341

The possibility of implementing Shor's

factorization algorithm using two types of

implemented on FPGA digital quantum

coprocessors - homogeneous and heterogeneous

- is shown. For the research, the factorization of

the number 15 was chosen (a = 2, M = 15).

Determining the period of the y = axmodM

function is a task of a quantum coprocessor.

The studies were carried out on coprocessors

with 8 digital qubits, the state of each qubit was

encoded using 8 bits.

A homogeneous digital quantum coprocessor

has the best performance: the probability of

obtaining a correct result is 21.439%, and that of

a heterogeneous one is 15.341%.

The coprocessor is focused on

implementation in FPGA. The presented results

were obtained after simulating VHDL-

descriptions of coprocessors.

The digital quantum coprocessor outputs each

subsequent result at the system frequency of the

FPGA. In the simulation, this frequency was 1

GHz (period was 1 ns).

9. References

[1] X. Fu et al., “A heterogeneous quantum

computer architecture,” in 2016 ACM

International Conference on Computing

Frontiers (CF'16), 323–330, 2016,

doi: http://dx.doi.org/10.1145/2903150.2906

827.

[2] L. Riesebos et al., "Quantum Accelerated

Computer Architectures," 2019 IEEE

International Symposium on Circuits and

Systems (ISCAS), 2019, pp. 1-4, doi:

10.1109/ISCAS.2019.8702488.

[3] V. Hlukhov. “FPGA-Based Digital

Quantum Computer Verification”. The 11th

IEEE International Conference on

Dependable Systems, Services and

Technologies, DESSERT’2020. 14-18 May,

2020, Kyiv, Ukraine. In press.

[4] V. Hlukhov, “FPGA-Based Homogeneous

and Heterogeneous Digital Quantum

Coprocessors”, Advances in Science,

Technology and Engineering Systems

Journal (ASTESJ), 2020, 5(6), 1643-1650,

DOI: 10.25046/aj0506195.

[5] J. A. Smolin, G. Smith, A. Vargo,

Pretending to factor large numbers on a

quantum computer, arXiv: 1301.7007v 1

[quant-ph] (2013).

http://arxiv.org/abs/1301.7007.

[6] J. A. Smolin, G. Smith, A. Vargo,

Oversimplifying quantum factoring. Nature

499, 163-165 (11 July 2013).

[7] Y. Wang, H. Zhang and H. Wang,

"Quantum polynomial-time fixed-point

attack for RSA," in China Communications,

vol. 15, no. 2, pp. 25-32, Feb. 2018, doi:

10.1109/CC.2018.8300269.

[8] P. Shor, “Polynomial-Time Algorithms for

Prime Factorization and Discrete

Logarithms on a Quantum Computer,” in

35th Annual Symposium on Foundations of

Computer Science, 124–134, 1994,

available at:

https://www.jstor.org/stable/2653075?seq=1

, accessed 25 Nov. 2020.
[9] A. Pavlidis, D. Gizopoulos. Fast Quantum

Modular Exponentiation Architecture for

Shor's Factorization Algorithm. July 2014.

Quantum Information &

Computation 14(7&8):0649-0682.

[10] B. Dey, K. Khalil, A. Kumar and M.

Bayoumi, "A Reversible-Logic based

Architecture for Artificial Neural Network,"

2020 IEEE 63rd International Midwest

Symposium on Circuits and Systems

(MWSCAS), 2020, pp. 505-508, doi:

10.1109/MWSCAS48704.2020.9184662.

[11] Quantum-computing.ibm.com. Shor’s

algorithm. Reversible classical circuits,

2020. URL: https://quantum-

computing.ibm.com/composer/docs/iqx/gui

de/shors-algorithm.

[12] E. Grumbling, M. Horowitz (eds.).

“Quantum computing: progress and

prospects”. The National Academies of

Sciences, Engineering, and Medicine.

Washington, DC: National Academies

Press. 2019.

