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Abstract  
The advantages of digital quantum coprocessors include a larger quantum volume, normal 

operating conditions, the presence of memory, the presence of a tested and reliable element 

base on which they can be implemented, and the availability of technology for using this 

element base. The element base refers to field programmable gate arrays (FPGAs). The paper 

presents the principles of building digital quantum gates, digital qubits and both homogeneous 

and heterogeneous digital quantum coprocessors. The capabilities of real quantum computers 

are usually illustrated by performing factorization of the number 15 using Shor's algorithm. 

This paper describes the implementation of quantum Shor's algorithm for factorizing the 

number 15 in a digital quantum coprocessor, which is implemented in FPGA. The difference 

between a real quantum coprocessor and a digital one is shown. A technique for determining 

the characteristics of a digital quantum coprocessor is described. Its probabilistic 

characteristics are also given. 
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1. Introduction1 

A quantum computer is a heterogeneous 

device [1] that consists of a classical control 

computer and its quantum accelerator [2] - a 

quantum coprocessor. Real quantum 

coprocessors are analog and probabilistic 

devices. They consist of qubits, quantum gates 

provide a change in their states. A classical 

computer controls the operation of a quantum 

coprocessor, checks the correctness of the results 

of its work, and in case of an incorrect result, it 

restarts the coprocessor to work. 

The possibility of creating logical (digital) 

probabilistic devices that can work according to 

the same formulas as real quantum coprocessors 

and can implement quantum algorithms is shown 

in previous works [3], [4]. The possibility of 

creating digital quantum gates, digital qubits and, 

based on them, digital quantum coprocessors is 
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shown. The hardware base for digital quantum 

coprocessors is FPGA. Unlike real quantum 

coprocessors, digital ones operate at normal 

temperatures (like classical computers) and have 

a larger quantum volume. This makes the 

development of such coprocessors actual and 

important. 

Quantum computers possible field use is large 

numbers factorization [5], [6]. This operation is 

used to hack information security systems that 

use public key algorithms, such as RSA [7]. 

Shor's algorithm [8] is used for this. The main 

elements of the quantum coprocessor that 

implements Shor's algorithm are Hadamard 

elements, quantum Fourier transform, modular 

exponentiation [9], and qubit state meters. In real 

quantum coprocessors, these elements (except 

for meters) consist of qubits; changes in their 

states are provided by quantum gates. 

In previous works, the implementation of 

digital Hadamard elements and digital quantum 

Fourier transform on FPGAs was shown [3], [4]. 

In one FPGA, it is possible to create a quantum 

Fourier transform from thousands of digital 

qubits. The internal state of a digital qubit can be 

represented by binary code θ in the range from 

0.00...0 to 1.00...0. Also, options for encoding 

the states of digital qubits with binary codes of 



various lengths - from 3 to 32 bits were 

considered [3], [4]. 

Simulation of individual quantum gates is 

used to simulate quantum algorithms. To 

simulate the reversibility of a qubit, models of 

reversible logic architecture [10] and gates [11] 

have been developed. In this work, more 

complex logic circuits are simulated to ensure 

reversibility of quantum circuits. 

2. Purpose of work 

The aim of the work is to show the possibility 

of performing quantum algorithms (using the 

example of factoring the number 15 by Shor's 

factorization algorithm) in a digital quantum 

coprocessor implemented on the FPGA. For this, 

the possibility of implementing modular 

exponentiation on the FPGA and the possibility 

of the effect of the results of this operation on the 

states of digital qubits is shown, which allows us 

to determine the period of y = axmodM function 

(determining the period of a function is the main 

task of a quantum coprocessor in the 

implementation of Shor's algorithm). 

3. Qubit 

Qubit quantum state   can be represented 

(Figure 2) as a simple displacement of end point 

of unit radius [12]. The probability pj of 

obtaining state j  as a result of quantum state 

  measurement is equal to 
2

jjp  . In this 

case, the sum of all probabilities 1P
1N

0j

2

i 




 . 

In unit circle (Figure 2) which is used in [4] 

2

0 cosp   and 2

1 sinp   respectively. 

4. Digital gates, qubits and quantum 
coprocessors 

A digital quantum gate that is used to change 

the state of a digital qubit can be represented as a 

logic circuit Figure 1.  

The digital quantum gate includes an ALU, a 

comparator, and a pipelined register. 

ALU transforms the code of the previous state 

DataIn of the qubit under the influence of the 

Instruction with the possible use of the measured 

state IQ  of the neighboring qubit (or states of 

qubits). The new DataO status code is compared 

in a comparator with the random variable Asin_f 

to obtain the measured state of the qubit 'QO . 

The output of the gate is the qubit state code 

DataOut and the measured state OQ  of the 

qubit, which are taken from the output of the 

pipeline register. 

AAsin_f

RGALU

DataIn

Instruction

B

DateO

Comparator 

DateOut

'QO OQIQ

 
Figure 1: A digital quantum gate QGate [1] 

 

 

 
Figure 2: Bloch sphere for qubit complex 
amplitudes (left) and a unit circle for real ones 
(right) 

 

In a heterogeneous digital quantum 

coprocessor, a random variable at the input of 

each digital quantum gate is generated by a 

separate pseudo-random code generator (PRNG) 

and a Read-Only-Memory (ROM) based 

functional converter. The converter changes the 

random variable A according to the formula 

AarcsinDfsin_A   (Figure 3). 
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Figure 3: A digital quantum cell DQCell for 
heterogonous digital quantum coprocessor [3] 

 

Digital qubit circuit for a heterogeneous 

coprocessor Figure 4 will represent a series 

connection of several digital quantum cells 

Figure 3. 
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Figure 4: A digital quantum qubit as line (QLine) 
of DQCells for heterogonous digital quantum 
coprocessor 

 

Digital qubit circuit for a homogeneous 

coprocessor Figure 5 has only one difference in 

comparison with the circuit in Figure 4: all 

random variables Asin_f for each digital 

quantum gate are generated using one pseudo-

random code generator and one functional 

converter. 

A schematic diagram of a digital quantum 

coprocessor is shown in Figure 6. In 

heterogeneous coprocessor, the number of 

pseudo-random code generators and functional 

transformers coincides with the number of digital 

quantum gates. Both oscillators and transformers 

are located near the digital quantum gates 

(Figure 3) inside the digital qubits of the Qline 

circuit in Figure 6. 
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Figure 5: A digital quantum qubit as line (QLine) 
of DQGates for homogenous digital quantum 
coprocessor 
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Figure 6: A generalized functional diagram of a 
digital quantum coprocessor 

5. Shor’s algorithm 

In Shor's algorithm [8], the problem of 

factorizing the number M is reduced to the 

problem of determining the period r of the 

function y = axmodM, which is calculated by the 

controlled units CU (Figure 7), where a is an 

arbitrary integer. This is precisely the problem 

that a quantum computer solves. It is shown that 

the greatest common divisor GCD(ar/2+1, M) can 

be a divisor of the number M. The subsequent 

finding of the greatest common divisor is 

performed by a classical computer. 
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Figure 7: Shor’s algorithm implementation in 
real quantum computer  
 

If  Nlogn 2  is the required number of 

bits to represent the number N to be factored than 

the upper quantum register in Figure 7 requires at 

least 2n qubits, because Shor’s algorithm 

requires x to take values between 0 and at least 

N2 and the modular exponentiation function can 

be written [9] as 
1n2

1n2
1

1
0

0 x2x2x2x )Mmoda()Mmoda()Mmoda(Mmoda 


  
(1) 

Figure 7 of Shor's algorithm implementation 

illustrates quantum superiority very well. If we 

take only the upper part (Figure 8) of Figure 7 

diagram, then the quantum Fourier transform 

will determine the frequency of the white noise 

that the Hadamard elements create. After the 

initial reset, each Hadamard element transfers the 

qubit to the neutral position, when the angle 

θ = π/4 and the state of each qubit with the same 

probability p0 =p1 = 0,5 can be measured both as 

0 and as 1. And the measured state of the upper 

register in Figure 8 can take any value from 0 to 

22n-1. The state spectrum of the upper register 

will include all 22n states. 
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Figure 8: White noise X  generated by a 

quantum circuit 
 

Let's conduct a thought experiment - imagine 

that in some way with a period t we find out the 

state of the upper register without changing 

states of its qubits. Each time we will receive a 

new state code, the possible codes will be in the 

range from 0 to 22n-1. Now imagine that t runs to 

0. Then at each moment of time the state of the 

upper register will contain all codes in the range 

from 0 to 22n-1. 

If, on the other hand, modular exponentiation 

is performed over the outputs of the upper 

register (CU in Figure 7), then at each "moment" 

only states that give the same result of modular 

exponentiation at the output of the CU be in the 

spectrum of upper register states. That is, at each 

"moment" of time, the spectrum of states will be 

different. For example, for the function 

y = 2xmod15 spectrum is presented in Figure 9. 

At some "moment" at the output of CU there 

will be a result y = 1, then in the spectrum of 

upper register states there will be 0, 4, 8, 12, … 

codes (Figure 10). The distance between the 

same codes, that is, the period of y = 2xmod15 

function will be equal to r = 4. This period will 

be determined using the quantum Fourier 

transform (as the reciprocal of the repetition rate 

F of the extracted codes r = 1/F). At another 

"moment", the CU output will have the result y = 

4, then in the spectrum of upper register states 

there will be 2, 6, 10, 14, ... codes (Figure 11). 
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Figure 9: Modular exponentiation 
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Figure 10: X codes for which y = 2xmod15 =1 
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Figure 11: X codes for which y = 2xmod15 =4 
 

But the period of y = 2xmod15 function will 

still be r = 4. And it will again be determined 

using the quantum Fourier transform. Whatever 

the result at the CU output, in the corresponding 

spectrum of states there will be only codes that 

allow determining the period of the function 

y = 2xmod15 in one measurement and this period 

will be r = 4. Determining the period of a 

function in one measurement illustrates quantum 

superiority. This does not take into account the 

time to create a quantum circuit Figure 7. 

The period of the y = axmodM function can be 

determined not only by quantum, but also by 

logical (digital) methods in several clock cycles. 

For example, in [5], [6] it is proposed to 

approach the solution of the problem from the 

other side: fix r = 2, and determine the random 

variable a from the given r = 2. With this 

approach, a quantum computer is no longer 

needed. But Shor's algorithm is convenient for 

demonstrating quantum superiority using 

separate examples - for determining the result in 

one measurement. 

Also, one of the limitations of Shor's 

algorithm is the requirement for the parity of the 

period r. It was shown in [5], [6] that this 

condition is optional. The period r can be odd if 

a is a square. 

Once again, we recall that all the "moments" 

in a quantum computer are one and the same 

moment in time (Figure 10, Figure 11).  

Attaching (Figure 7) an additional circuit to 

the upper register changes the state spectrum at 

any given "moment" in time. This is similar to a 

high-pass filter in analog technology - 

connecting a capacitor removes high frequencies 

from the spectrum, removes interference. 

Convenient examples are used to illustrate the 

quantum superiority in determining the period of 



y = axmodM function. In the example considered 

earlier, when M = 15 = 3 * 5, period r is power 

of 2: r = 4 = 22 and both factors are Fourier 

primes, they can be represented as 12
m2  : 

123
02  , 125

12  . With such factors, 

formula (1) will have the form (2): 

1n2
1n2

1
1

0
0 x2x2x2x )Mmoda()Mmoda()Mmoda(Mmoda 



 = 

= 1n2
1n2

1
1

0
0 x2x2x2x )15mod2()15mod2()15mod2(15mod2 



 = 

= 1n2110 xxxx
)15mod1()15mod1()15mod4()15mod2(  = 

=
1010 xxxx

42)15mod4()15mod2(   

(2) 

Formula (2) makes it possible to find the 

period using a digital quantum coprocessor. 

The height of the bars in Figure 10, Figure 11 

illustrates the probability of receiving the code x 

as a result of mentally measuring the upper 

register state of the circuit Figure 7. Thus, 

Figure 10 corresponds to the upper register in 

Figure 7 measured 00x...xx  state, and 

Figure 11 corresponds to its 10x...xx  state. 

The implementation of Shor's algorithm in a 

digital quantum coprocessor is shown in 

Figure 12. 

The lower register in Figure 12 is a classic 

digital logic circuit, signals at its outputs 

formation (for the considered example of finding 

the period of y = axmodM function with a = 2, 

M = 15) is shown by Table 1 and Table 2. 

Measuring the states of the developed digital 

quantum qubits does not change the code of this 

state, which is indicated by the letter D on the 

meter symbol in the circuit Figure 12. 

The calculated values of y = axmodM function 

transform the state X  into a state CX  

correlated with the function values. For the 

considered example, this transformation is 

described in Table 3. 
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Figure 12: Shor’s algorithm implementation in 
digital quantum coprocessor 

 

Table 1 

Controlled Unit 2
a

CUCU 02
 , 2a,2a

02   

Control 
signal 

x0=0 
(multiplication 
by 1) 

x0=1 
(multiplication 
by 2) 

Input 0001 0001 

Output 
binary 

0001 0010 

Output 
logical 

0x000
 

0x00 0  

Output, 
formula 

00 xx00
 

6. Discussions 

Further, Figure 13 - Figure 20 show the 

results of the quantum part of Shor's algorithm 

(determining the period of the function 

y = axmodM (a = 2, M = 15) in the digital 

quantum coprocessor Figure 7 with 8 digital 

qubits in the upper register, the width of each 

qubit is 8 bits. The research was carried out on 

two types of coprocessors - homogeneous and 

heterogeneous. For statistic, each study was 

repeated 4096 times with the same input data. In 

this case, the frequency of occurrence of each 

result (the probability of the result) was recorded. 

Since the upper register with 2n = 8 qubits 

was used, the number of different measured 

codes at the output of the Fourier quantum 

transform is N = 22n = 256. 

In Figure 13 - Figure 20, these 256 codes are 

plotted along the horizontal axis, from 0 to 255. 

The figures show the codes that, as a result of the 

study, were found most often (high probability 

states – State_HP). The vertical axis shows the 

probability (Probability) of the occurrence of the 

indicated codes, the value of the probability 

(Value) is indicated in percent. 

First of all figures show the results of white 

noise states generator Figure 8 study, the state of 

the qubits at the output of the upper register is 

xxxxxxxxX  . Figure 13 and Figure 14 

show how such white noise is perceived by 

quantum Fourier transformer in homogeneous 

(Figure 13) and heterogeneous (Figure 14) digital 

quantum coprocessors. Measurement of such 

quantum state can give any code in the range 0-

255 with equal probability. A heterogeneous 

coprocessor perceives white noise more 

correctly. 



Table 2 

Controlled Unit 4
a

CUCU 12
 , 4a,2a

12   

Control 
signal 

x1=0 
(multiplication 
 by 1) 

x1=1 
(multiplication 
 by 4) 

Input 
00 xx00

 00 xx00
 

Output 
logical 

)xx)(xx(00 0101  
00)xx)(xx( 0101  

Output, 
formula )xx)(xx)(xx)(xx( 01010101  

 
Table 3 

Controlled Unit 4
a

CUCU 12
 , 4a,2a

12   

xxxxxxxxX  . 

(measured x1x0) 

y = axmodM 
CX

 

00 1 00x...xx
 

01 2 01x...xx
 

10 4 10x...xx
 

11 8 11x...xx
 

 

After the quantum Fourier transform, 

determining the number of repetitions of the 

measured codes gives the following results: both 

homogeneous and heterogeneous quantum 

coprocessors correctly determine that there are 

no repetitions of codes when carrying out a large 

number of measurements (the number of 

repetitions is F = 0). A homogeneous 

coprocessor generates such result with 

probability of 84.195% (Figure 15), and 

heterogeneous - with probability 32.805 % 

(Figure 16). 

After confirming correct operation of both 

digital quantum elements of Hadamard and 

quantum Fourier transformer, which is also built 

from digital qubits, studies of Shor's algorithm 

implementation (Figure 7) were continued. 

Figure 17 and Figure 18 show how the quantum 

Fourier transform perceives correlated with 

y = axmodM function upper register state CX  

in homogeneous (Figure 17) and heterogeneous 

(Figure 18) digital quantum coprocessors. 

And in this case, the heterogeneous 

coprocessor perceives correlated states more 

correctly. 

y = 2xmod15 function has period T = 4. The 

discrete Fourier transform should most often 

form the result F = N/T = 256/4 = 64. Despite the 

difference in the perception of correlated upper 

register states, both homogeneous and 

heterogeneous quantum coprocessors correctly 

determine the repetition rate of codes when 

carrying out a large number of measurements, 

they correctly determine the number of 

repetitions F = 64. A homogeneous coprocessor 

generates such a result with probability 21.439 % 

(Figure 19), and heterogeneous - with probability 

15.341 % (Figure 20). 

 

 

 
Figure 13: Number of perceived white noise states at QFT input, homogeneous quantum 
coprocessor 



 
Figure 14: Number of perceived white noise states at QFT input, heterogeneous quantum 
coprocessor 

 

 
Figure 15: Number of repetitions of white noise states, homogeneous quantum coprocessor 

 

 
Figure 16: Number of repetitions of white noise states, heterogeneous quantum coprocessor 

 

 
Figure 17: Upper register states that are perceived at the input of QFT and correlated with the 
function y = axmodM, homogeneous quantum coprocessor 

 



 
Figure 18: Upper register states that are perceived at the input of QFT and correlated with the 
function y = axmodM, heterogeneous quantum coprocessor 

 

 
Figure 19: The number of states repetitions when determining the period of a function, 
homogeneous quantum coprocessor 

 

 
Figure 20: The number of states repetitions when determining the period of a function, 
heterogeneous quantum coprocessor 

 

The results of Shor's algorithm execution are 

summarized in the Table 4. 

7. Implementation 

In this example, adding a lower register and 

an upper register state converter (Figure 12) adds 

practically nothing to the hardware costs of a 

discrete Fourier transform implementation 

(Figure 8). These costs were determined in 

previous works [3], [4]. It was shown that on one 

FPGA it is possible to implement the discrete 

Fourier transform with the number of digital 

qubits up to 1024. 

8. Conclusions 

The article shows the possibility of 

determining the period of the y = axmodM 

function in a digital quantum coprocessor. 

Determination of the period is necessary for the 

execution of Shor's factorization algorithm. 

 



Table 4 
Probability of correct results, % 

Qubits number 8 

Qubits width, bit 8 

Homogenous coprocessor 21.439 

Heterogeneous coprocessor 15.341 

 

The possibility of implementing Shor's 

factorization algorithm using two types of 

implemented on FPGA digital quantum 

coprocessors - homogeneous and heterogeneous 

- is shown. For the research, the factorization of 

the number 15 was chosen (a = 2, M = 15). 

Determining the period of the y = axmodM 

function is a task of a quantum coprocessor. 

The studies were carried out on coprocessors 

with 8 digital qubits, the state of each qubit was 

encoded using 8 bits. 

A homogeneous digital quantum coprocessor 

has the best performance: the probability of 

obtaining a correct result is 21.439%, and that of 

a heterogeneous one is 15.341%. 

The coprocessor is focused on 

implementation in FPGA. The presented results 

were obtained after simulating VHDL-

descriptions of coprocessors. 

The digital quantum coprocessor outputs each 

subsequent result at the system frequency of the 

FPGA. In the simulation, this frequency was 1 

GHz (period was 1 ns). 
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