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Abstract. We have developed the PhenomeBrowser knowledge base to
integrate phenotype associations from a variety of sources into a single
knowledge base. We use SPARQL as a unifying query language to ac-
cess RDF data, perform Description Logic queries over ontologies, and
compute the semantic similarity between entities in the knowledge base.
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1 Introduction

The similarity between phenotypes associated with entities studied in the life
sciences can be used to reveal interactions between biomedical entities at a
molecular level [12]. Entities that are similar phenotypically are often related
to each other on a molecular level as well [15], and this principle can be used
to suggest or discover novel relations between these entities. There are several
databases that have been developed for integrating phenotypes and exploring
relations between them such as Online Mendelian Inheritance in Men (OMIM)
[5] and ClinVar [9], as well as integrated databases such as Monarch [10]. Key
challenges in integrating and exploring phenotype data is the use of integrated
phenotype vocabularies or ontologies that can systematically relate phenotype
classes between different contexts such as the entity studied or the species in
which phenotypes are observed (human, model organism, or non-model organ-
ism) [4]; the computation of semantic (phenotypic) similarity or relatedness [11];
and the ability to query phenotype-related information using a uniform and
(ideally) standardized query language.

We developed the PhenomeBrowser knowledgebase as a semantic framework
that combines an RDF-based knowledge base of phenotype associations col-
lected from community resources and from in-house curation with the ability
to perform Description Logic queries over phenotype (and other) ontologies as
well as to perform some basic operations on a type of machine learning model.
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The framework used to develop PhenomeBrowser is based on using SPARQL as
query language for any structured data and Apache Lucene indices and queries
(implemented in the form of ElasticSearch) for natural language information.

PhenomeBrowser currently contains over four million phenotype associations
for genes, diseases, drugs, pathogens and chemical entities (metabolites). We in-
corporate the Vec2SPARQL method [8] over the Bio2Vec knowledge graph em-
bedding repository (https://bio2vec.cbrc.kaust.edu.sa) to perform queries
incorporating semantic similarity and machine learning, and we rely on the
AberOWL services [7] to perform Description Logic Queries within SPARQL
queries. The interface for PhenomeBrowser is based on these SPARQL queries
and we provide access to PhenomeBrowser through SPARQL. The Phenome-
browser web portal further implements queries for specific tasks such as finding
gene–disease associaitons, host–pathogen or drug–target interactions, all based
on phenotypic similarity. The PhenomeBrowser software and underlying compo-
nents are available as Free Software (phenomebrowser.net) and can serve as an
initial model on how to combine graph databases, Description Logic queries, and
machine learning within a single framework unified through SPARQL as query
language.

2 Design and Implementation

Fig. 1: Core Components of the PhenomeBrowser framework.

Core components of the PhenomeBrowser architecture are shown in Figure
1. Phenotype annotations data from community resources and in-house curation
is transformed into RDF format. The transformed data is subsequently stored
in an RDF store. We implemented a data intake workflow using snakemake [1]
to achieve reproducible and robust automation. As data model for phenotype
associations, we rely on community standards for phenotypes developed by the
OBO Foundry initiative [14] and the Monarch project [10]. We use the Dublin
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Core vocabularies [2] to encode provenance information, and the OBO Relation
Ontology [13] to encode relations. We use the integrated phenotype ontology
PhenomeNet [6] to integrate phenotypes across different contexts. The data in-
take workflows also generate text indices for entity as well as classes and relations
from the PhenomeNet ontology. Text indices are Apache Lucene indices imple-
mented in ElasticSearch, and we make search of text indices available through a
REST API that is complementary to the SPARQL endpoint for querying struc-
tured data.

Data that is ingested from public sources is passed to the ontology-based ma-
chine learning method DL2Vec [3] to generate embeddings for entities (and ontol-
ogy classes) that can be used to compute similarity. The embeddings are added
to the Bio2Vec repository which stores the embeddings and makes them avail-
able for similarity-based queries through a REST API and a special SPARQL
endpoint implementing the Vec2SPARQL extensions [8].

When querying data, we use the AberOWL [7] SPARQL endpoint to exe-
cute queries that incorporate deductive inference over Semantic Web ontologies.
AberOWL is an ontology repository that provides reasoning over ontologies as
a service. The queries further federate to the Vec2SPARQL endpoints provided
by Bio2Vec, and therefore combine querying RDF phenotype data, phenotype
ontologies (through AberOWL), and semantic similarity (through Bio2Vec).

3 Querying using SPARQL

One application of computing phenotype similarity is ranking candidate genes
for a disease [15]. Using PhenomeBrowser’s integrated SPARQL endpoint, we
can perform this operation through SPARQL and therefore suggest gene–disease
associations. Figure 2 shows a query for finding genes that are phenotypically
similar to ventricular septal defect (HP:0011623). In the first section of the query,
the content of the FILTER block performs a Description Logic Query to retrieve
all classes that are equivalent to or subclasses of the ventricular septal defect
phenotype from the HPO; the query is performed using the AberOWL ontology
repository and reasoning service which expands the query and replaces it with
the URIs of the classes resulting from the query. Subclasses of ventricular septal
defect in the HPO include Tetralogy of Fallot as well as several more specific
forms of Tetralogy of Fallot, and also includes ventricular septal defect itself (as
the query is reflexive).

The second section of the query contains a federated query to the Bio2Vec
SPARQL endpoint and uses the mostSimilar function; the mostSimilar func-
tion is implemented by the Vec2SPARQL method and executes the phenotypic
similarity search for the diseases selected in the first section of the query on the
Bio2Vec SPARQL endpoint. The mostSimilar function is a custom SPARQL
function that takes as arguments the dataset identify in Bio2Vec, the identifier
for the entity within the dataset, the number of entities to retrieve (in our case,
we retrieve the three most similar entities to our query), and the type (using
rdf:type) of the entity (in our case, the entity type is gene). In the third sec-
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PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX pb: <http://phenomebrowser.net/>

PREFIX b2v: <http://bio2vec.net/function#>

PREFIX b2vd: <http://bio2vec.net/dataset#>>

SELECT ?simGene ?simGeneLabel ?genePhenotype ?genePhenotypeLabel

WHERE {

{

SELECT ?disease

FROM <http://phenomebrowser.net>

WHERE {

?association rdf:type rdf:Statement .

?association rdf:object ?phenotype .

FILTER ( ?phenotype in (

OWL subeq <http://phenomebrowser.net/sparql> <HP> {

’ventricular septal defect’

}

) ) .

?association rdf:subject ?disease .

?disease rdf:type pb:Disease .

} LIMIT 20

} .

SERVICE <https://bio2vec.cbrc.kaust.edu.sa/ds/query> {

(?simGene ?val ?x ?y) b2v:mostSimilar(b2vd:dataset_4 ?disease 3 pb:Gene) .

}

GRAPH <http://phenomebrowser.net> {

?simGene rdfs:label ?simGeneLabel .

?geneAssociation rdf:subject ?simGene .

?geneAssociation rdf:object ?genePhenotype .

?genePhenotype rdfs:label ?genePhenotypeLabel .

}

} ORDER BY asc(?simGeneLabel)

Fig. 2: SPARQL query finding genes that are phenotypically similar to ventric-
ular septal defect.
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tion of the query, we add labels to genes found in the second section of the query
and their associated phenotypes.

4 Conclusion

We developed the PhenomeBrowser knowledgebase as a semantic framework
that integrates querying over graph databases, ontologies, and knowledge graph
embeddings, using SPARQL as a unifying and standardized query language.
PhenomeBrowser is accessible at http://phenomebrowser.net.
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11. Catia Pesquita, Daniel Faria, André O. Falcão, Phillip Lord, and Francisco M.
Couto. Semantic similarity in biomedical ontologies. PLoS Computational Biology,
5(7):e1000443, July 2009.
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