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ABSTRACT
Variety and variability are an inherent source of information
wealth in schemaless sources, and executing OLAP sessions on
multidimensional data in their presence has recently become
an object of research. However, all models devised so far pro-
pose a “rigid” view of the multidimensional content, without
taking into account variety and variability. To fill this gap, in
this paper we propose V-ICSOLAP, an extension of the ICSOLAP
UML profile that supports extensibility and type/name variabil-
ity for each multidimensional element, as well as complex data
types for measures and levels. The real case study we use to
motivate and illustrate our approach is that of trajectory analysis
for agricultural robots. As a proof-of-concept for V-ICSOLAP,
we propose an implementation that relies on the PostgreSQL
multi-model DBMS and we evaluate its performances. We also
provide a validation of our UML profile by ranking it against
other meta-models based on a set of quality metrics.
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1 INTRODUCTION
Big Data have now pervaded most applications domains (mar-
keting, industry, agriculture, health, etc.) thanks to the enhanced
analysis capabilities enabled by the 6Vs feature [15], namely,
Volume, Velocity, Variety, Value, Veracity, and Variability. In par-
ticular, variety refers to the possibility of having data of differ-
ent kinds coexist: highly structured (e.g., relational databases),
semi-structured (coming from sensors, social networks, etc.) or
unstructured (such as photos and videos). Conversely, variability
refers to the increase in the range of the values and the continu-
ous data changing in terms of structure and meaning. In order to
store, manage, and analyze these data, NoSQL DBMSs have been
created; they overcome the rigid structure of relational DBMSs to
natively support models —such as document-based, graph-based,
key/value— that better comply with the complex nature of Big
Data. These new models are characterized by a high degree of
flexibility; the structure of data is not fixed, it can be modified and
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extended in each single piece of data to grant a comprehensive
support to variability and evolution. For this reason, such models
are often called schemaless.

Big Data analysis rests on several methods lent from OnLine
Analytical Processing (OLAP), as well as from Artificial Intelli-
gence, Data Mining, and Statistics. In particular, OLAP enables
the interactive exploration of data represented according to the
multidimensional model, which relies on the concepts of analysis
subjects (facts), analysis coordinates (dimensions), and numerical
indicators (measures). Dimensions are organized into hierarchies
of levels, which allow measures to be aggregated at different
granularities. Multidimensional design has been extensively in-
vestigated for almost three decades, at both the logical and the
conceptual levels. At the logical level, the most remarkable re-
sult lies in the definition of star and snowflake schemata as best
practices for implementing multidimensional data on relational
databases [20]. At the conceptual level, several models have been
proposed to represent multidimensional content independently
of its implementation, either by extending the Entity/Relationship
model, or UML, or introducing ad-hoc graphical formalisms (e.g.,
[20, 28]).

Carrying out multidimensional modeling at the conceptual
level has several advantages; for instance, it streamlines design
because accurate conceptual schemata can be quickly derived
using a data-driven approach [20]. However, to the best of our
knowledge, all conceptual models devised so far propose a “rigid”
view of themultidimensional content, in that they do not take into
account the flexibility that is intrinsic in schemaless data. On the
other hand, variety and variability have been recognized to be an
inherent source of information wealth in schemaless sources, and
executing OLAP sessions in their presence has recently become
an object of research [12, 16]. Besides, very fewworks are focused
on multidimensional conceptual models for complex data, such
as streams, spatial networks, fuzzy and social networks [5, 8, 24].

To fill this gap, in this work we propose V-ICSOLAP, an ex-
tension of the ICSOLAP UML profile [9] that explicitly supports
variety (in terms of complex data types) and variability (in terms
of both extensibility and type/name variability) at the concep-
tual level. We chose to extend ICSOLAP because (i) it has been
successfully applied in real case studies in different domains [9],
and (ii) UML profiles offer a formal, non-ambiguous, and read-
able graphical notation, which is highly beneficial in the context



of a complex design activity such as variety/variability-aware
multidimensional modeling.

one of themost remarkable advantages of conceptual schemata
is that they allow designers to focus on the information content by
abstracting all implementation details away. Indeed, V-ICSOLAP
could be adopted to accurately set a multidimensional view of
data in different architectural scenarios:

• Data warehouses. A data warehouse (DW) is a database
aimed at supporting decision-makers in analyzing useful
data from heterogeneous sources [23]. The approach fol-
lowed in DW systems is called schema-on-write, because
multidimensional schemata are decided at design time
and forced onto data (typically, in relational form) at the
time of writing them in the DW, so as to enable efficient
querying via OLAP tools; thus, conceptual modeling is
a crucial phase of DW design because it determines the
information content of the DW and, as a consequence, the
possible queries that end-users can formulate.

• Data lakes. Data lakes have been emerging as repository
systems for storage, processing, and analysis of schema-
less (typically, NoSQL) data, in which data are kept in
their original format and are processed to be queried only
when needed [13]. Due to the evolving nature of schema-
less data, adopting a schema-on-write approach could be
complex, so a schema-on-read approach, which leaves data
unchanged in their structure until they are accessed by
the end-user, is normally preferred. Though here the mul-
tidimensional schemata are not decided at design time
but at query time, conceptual modeling is necessary to let
end-users choose a useful perspective for analyzing data
through the OLAP paradigm [16].

• Self-service business intelligence. Schema-on-write ap-
proaches fall short also when data sources are external
to the company, unreliable, have a short lifespan, and
are required for analyses related to situational needs of
advanced users such as data scientists [26]. Even here a
schema-on-read approach is necessary, and conceptual
modeling is the first step to enable OLAP querying [17].

• Lakehouses. The most recent architectural pattern de-
vised in this context is the lakehouse, which aims at unify-
ing warehouses and lakes to support both efficient OLAP
querying and state-of-the-art analytics [35]. From a tech-
nical point of view, this is achieved by combining low-cost
storage in an open format accessible by a variety of sys-
tems with powerful management and optimization fea-
tures. OLAP querying requires a multidimensional view
of data, so even in this case conceptual modeling is manda-
tory.

• Multi-model data warehouses. A multi-model DBMS
(MMDBMS) is a data processing platform that natively
supports different data models with a fully integrated back-
end, thus providing unified data governance, management,
and access via a single query language while still granting
performance, scalability, and fault tolerance [27]. It has
been recently shown that storing multidimensional data
on an MMDBMS brings further advantages over classical
relational DWs, namely, reducing the cost for ETL proce-
dures and ensuring better extensibility and evolvability
thanks to the use of schemaless models [7]. Remarkably,
a multi-model data warehouse can store data according
to the multidimensional model and, at the same time, let

each of its elements be natively represented through the
most appropriate model; thus, it can be seen as another
way to bridge the architectural gap between data lakes
and DWs.

Importantly, whichever the architectural scenario adopted, V-
ICSOLAP should be considered as the first step of a process
aimed at enabling decision makers to query multidimensional
content. Although automating this process is out of the scope
of this paper, we provide a proof-of-concept for V-ICSOLAP by
introducing a case study concerning the analysis of the activities
of agricultural robots and showing how it can be implemented in
a multi-model DW so as to take full advantage of the flexibility
introduced by this new profile. Specifically, we rely on the Post-
greSQL MMDBMS and we evaluate its performances for a set of
representative OLAP queries. Besides, to prove the effectiveness
of the proposed profile, we provide a metrics-based validation
based on the quality framework proposed by [3, 30].

The paper is organized as follows. Section 2 discusses the
related work; Section 3 presents the motivation and the require-
ments by means of a real case study; Section 4 presents the
V-ICSOLAP profile; Section 5 provides a metrics-based assess-
ment of V-ICSOLAP; Section 6 describes our proof-of-concept for
V-ICSOLAP. Finally, Section 7 draws the conclusion and outlines
our future work.

2 RELATEDWORK
Introducing complex data inmultidimensional conceptual models
has received a lot of attention in the spatio-temporal context.
Many proposals extend the Entity/Relationship model and UML
to take into account spatial, temporal, and spatio-temporal data
in DWs [19, 32]. Other kinds of complex data, such as topological
spatial networks [8], stream data [5], and social network data
[24] have also been studied, proposing extensions to the concepts
of levels, measures, and fact and support new OLAP operators.
Table 1 summarizes the main features of the main conceptual
multidimensional models devised. In particular, these models are
classified according to the following properties: (i) the support
for complex data, (ii) the support for variability (name and type),
(iii) the support for extensibility, (iv) the formalism used, (v) the
implementation in a CASE tool, (vi) the presence of a formal meta-
model, and (vii) the proposal for an implementation (automatic
or set of manual guidelines) in a DBMS.

Table 1 shows that spatio-temporal complex types received an
important attention, but no work has focused on generic complex
data and graph data. Moreover, extensibility is not supported by
any work, while variability is only (partially) supported by a
specific work on multi-representation of spatial DWs. Indeed, to
the best of our knowledge, no approach gives explicit support
to variability. The closest we could find are some works about
multi-resolution in the context of spatial DWs, which support
multi-valued attribute values according to some semantics (such
as scale and usage) [4, 29].

In the context of transactional databases, some works propose
conceptual models for graph data [18] that are very similar to our
approach, as well as for JSON documents [10, 11]. In particular,
JSON-related approaches provide a graphical formalism to rep-
resent the complexity of documents, but they do not represent
variability and extensibility. Other works start from an E/R dia-
gram or a UML class diagram modeling an (either transactional
or multidimensional) database and provide its implementation



Table 1: Conceptual multidimensional models and their features

Paper Complex data types Variability Extensibility Formalism Case tool implementation Meta-model DBMS implementation
[9] Spatial and temporal types No No UML profile MagicDraw Yes Oracle
[8] Spatial topological graph No No UML profile MagicDraw Yes Oracle
[6] Stream No No UML profile MagicDraw Yes Esper
[24] Tweets No No Ad-hoc No No Oracle
[1] No No No UML - Yes No
[19] Spatial types No No UML Profile Eclipse Yes No
[28] No No No UML Profile Rational Rose Yes Oracle
[20] No No No Ad-hoc Indyco Yes No
[36] Spatial and temporal data types No Yes Ad-hoc No Yes Oracle
[25] Trajectory No No UML Profile No Yes No
[4] Spatial types Type No UML Perceptory No No
[29] Spatial types Type No Ad-hoc No Yes Oracle

on NoSQL DBMSs [2, 14, 21, 31, 33]. Even in this case, variability
and extensibility are not considered.

Finally, as already mentioned, some recent papers have pro-
posed approaches to enable OLAP queries on schemaless data in
presence of variety [12, 16]. In those papers, the focus is on how
to enrich and query schemaless data, but conceptual modeling is
not addressed.

To conclude, how to take into account variety at a conceptual
level has not been investigated yet [22]. Indeed, to the best of
our knowledge, only [34] proposed a conceptual model to design
databases comprising complex data represented as graph and col-
lections data, but variability and extensibility are not considered;
besides, most importantly, that approach refers to transactional
databases, whose features are very different from those of multi-
dimensional data. On the other hand, multidimensional modeling
in presence of variability and extensibility is becoming more and
more important due to the increasing availability of schemaless
data and to their relevance for the decision-making process.

3 MOTIVATING CASE STUDY:
AGRICULTURAL ROBOTS MONITORING
FOR AGRO-ECOLOGY FARMING

Variety and variability are among the main features of Big Data.
Commonly, variety refers to non-relational data (semi-structured
and unstructured data such as graph, images, etc.), while vari-
ability refers to the coexistence different representations of the
same data entity in terms of name and type within the same data
set [15].

To motivate the need for a conceptual multidimensional model
that supports variety and variability, in this section we present
a case study concerning the analysis the data produced by au-
tonomous agricultural robots in smart farming.

Autonomous agricultural robots are unmanned ground vehi-
cles equipped with sensors and actuators and capable of safely
and autonomously performing one or more tasks while moving
in a plot following a predefined trajectory. A trajectory is an
ordered list of triples, each consisting of GPS coordinates, times-
tamp, and speed. Analyzing the actual trajectories followed by
robots is very useful to adjust the reference trajectory, avoid re-
current problems caused by persistent obstacles in the fields, etc.
Robot are powered by electronic engines. The cost for recharging
robot batteries, called trajectory cost, is directly proportional to
the working time of the robot. An analysis of the trajectory cost
and its comparison with the performed work, also considering
the total distance covered, are crucial for the farmer. Note that a
farmer can either have a monthly subscription with an energy
operator or use an on-demand energy recharge.

Usually, robots embed ROS (Robot Operating System), a soft-
ware platform used to program the main functionalities of the

robots. ROS uses a topic message system to exchange information
among the physical components of each robot. The exchange
of these messages is represented as a graph, whose analysis is
useful to reveal recurrent problems. Noticeably, robots rely on
different implementations to sense odometry values, thus the
data they produce have different types and names. For example,
the total distance can be represented using either an integer or
a double, and the corresponding attribute name can be either
total distance or distance. Besides, the ROS functions that collect
odometry data are periodically updated, so it is realistic to think
that additional measures will be made available for analyses in
the future.

Finally, farmers currently ask to analyze the trajectories and
the related costs by robot type and farm (a farm is a set of plots).
However, new requirements may easily emerge in the future. For
instance, farmers might find out that analyzing data by robot
engine power is interesting. Also, should farms be grouped into
cooperatives, analyzing data by cooperative will become relevant.

Fromwhat said abovewe can conclude that a variety/variability-
aware multidimensional model should support:

(1) complex multidimensional elements, i.e., measures
that are not simple numerical values and levels that are
not simple categorical attributes;

(2) variability ofmultidimensional elements, in terms of
both names and types;

(3) extensible multidimensional elements, i.e., elements
whose structure can evolve in the future.

4 THE V-ICSOLAP UML PROFILE
A UML profile provides a generic extension mechanism for cus-
tomizing UML models for particular domains and platforms.
It is defined using stereotypes, tagged values definitions, and
constraints applied to specific model elements, like Classes, At-
tributes, and Operations. Note that in, UML 2.0, tagged values are
namedmeta-class properties. In this work, to avoid confusion with
classical properties we will use the old terminology of tagged
values.

Some UML profiles for DWs have been proposed in litera-
ture, as mentioned in the previous section ([1, 9, 28]). They are
all based on the standard formalism represented by UML and
therefore they come with the extensibility property offered by
the UML profile mechanisms. The profile we have chosen to ex-
tend in this work is ICSOLAP, which already supports advanced
multidimensional structures and has been successfully employed
in several agro-environmental OLAP projects [9]. Remarkably,
other UML profiles for DWs could be extended in quite a similar
way.

ICSOLAP represents dimensions and hierarchies with pack-
age stereotypes. Levels are represented with the AggLevel



class stereotype. A level is composed of descriptive attributes
(DescriptiveAttribute property stereotype). A fact is mod-
eled using the Fact class stereotype and it contains measures
(NumericalMeasure). Dimensions, hierarchies, and levels are
specialized according to the types of the data they represent.
ICSOLAP also defines the concept of BasicIndicator, which
represents how measures are aggregated along dimensions.

V-ICSOLAP is the extension to ICSOLAP we propose to cope
with variety and variability. It enables a formal and non-ambiguous
conceptual design of facts characterized by variable and com-
plex elements, and supports their extensibility. Noticeably, our
extension adds few new elements to ICSOLAP, so as to let its
readability intact. We do not present the entire meta-model, but
only focus on the multidimensional elements of ICSOLAP that
we have specialized. The new elements are shown in Figure 1.
We recall that, in the UML notation, boxes represent classes (ab-
stract classes in italics), solid lines are associations, solid lines
with white triangular arrow are specializations, and solid lines
with black diamonds are compositions. Finally, each stereotype
is connected to the classifier it enhances using an extension (solid
line with black arrow).

As a working example, in the remainder of the paper we will
rely on the Trajectories fact, at the core of the case study pre-
sented in Section 3. Its measures are: Trajectory (the trajectory
of the robot as composed of a set of GPS/timestamp/speed tu-
ples; Trajectory cost (the cost for the battery energy used by
the robot), Total duration (the time duration of the trajectory
covered by the robot), Total distance (the total length of the robot
trajectory), andMessage (the graph of ROS topics). These mea-
sures are analyzed according to three main dimensions: Robot
(the robot used for the work; robots are grouped by their type),
Location (the plots and the farms), Time (a temporal dimension
with day and year granularities). The instance of V-ICSOLAP
representing the Trajectories fact is shown in Figure 2; in red, the
multidimensional elements that rely on extensions to ICSOLAP.

The main new elements of V-ICSOLAP are
DocumentFact, DocumentDimension, DocumentHierarchy,
and DocumentAggLevel. These elements specialize, respectively,
the Fact, Dimension, Hierarchy, and AggLevel ICSOLAP
elements by introducing a tagged value that represents the
possibility of extending the corresponding multidimensional
element with additional components.

First of all, variability in schemaless data implies exten-
sibility. DocumentFact includes two Boolean tagged values
(DimensionExtensibility and MeasureExtensibility) that
state whether a fact can be extended with new dimensions
and measures, respectively. For example, fact Trajectories has
DimensionExtensibility and MeasureExtensibility set to
true.

A DocumentDimension can be extended by including ad-
ditional hierarchies (tagged value HiearchyExtensibility),
while a DocumentHierarchy can be extended by includ-
ing new levels (tagged value LevelExtensibility). Finally,
the possible presence of additional DescriptiveAttributes
of a DocumentLevel is represented via the tagged value
DescriptiveAttributeExtensibility. For example, the pack-
age hierarchy RobotH has HiearchyExtensibility set to true,
meaning that new levels can be added to aggregate the Robot
level.

Variability also occurs in terms of types and
names of multidimensional elements. In particular,

VariableTypeDescriptiveAttribute is a specialized stereo-
type of a DescriptiveAttribute that is characterized by several
possible types. In the same way, the Measure property stereotype
is extended (VariableTypeMeasure). Note that, since any data
type may be chosen to be used in OLAP queries, it is important
to specify type conversion methods (ConversionMethods
operation stereotype). Indeed, conversion methods for complex
data (one for each ordered couple of different types allowed) must
be defined during design by decision makers, who are expert of
the application domain. VariableTypeDescriptiveAttribute
and VariableTypeMeasure present then an “Undefined type” 1.
An example of VariableTypeMeasure is Total distance, which
comes with two conversions methods CastDistanceIntToDouble
and CastDistanceDoubleToInt.

Finally, name variability is supported by V-
ICSOLAP extension with new stereotypes for mea-
sures and level attributes: VariableNameMeasure and
VariableNameDescriptiveAttribute, respectively. For
example, Total duration has two names in the tagged value
Names: Total duration and Duration. Figure 3 shows an OCL
constraint defined in the context of the VariableNameMeasure
stereotype to check that Names contains at least two items.

Note that variability in the structure of documents in terms of
missing levels is already supported by ICSOLAP.

As to complex data modeling implied by variety, ICSOLAP
already handles alphanumeric, spatial, and temporal types for
measures and levels. However, in the context of Big Data new
complex types can appear, therefore, in V-ICSOLAP we introduce
some new complex types, namely, Graph and ComplexObject.
A Graph class is a composition of Vertex and Arc (i.e. edge)
classes stereotypes. These classes may have some fixed proper-
ties, but they can also be extended with additional ones; this is
represented with the VertexExtensibility tagged value. An
example of Graph is the Ros Graph Topic class. ComplexObject
is a class extension meant to be used by ComplexMeasure and
ComplexDescriptiveAttribute, which represent measures and
levels whose type is not atomic but class. Two examples of
ComplexObject are the Odometry and EnergyCost classes. En-
ergyCost is abstract and is specialized in two classes, namely,
Subscription and CostUnit.

Our UML profile implemented with Papyrus is available as
open-source project. 2

5 ASSESSMENT OF V-ICSOLAP
In this sectionwe provide ametrics-based validation of the quality
of our UML profile based on the framework proposed in [3, 30]3.
This framework proposes to evaluate some quality metrics exclu-
sively using the UML meta-models:

• Reusability: it measures to what extent themeta-model can
be reused to create other meta-models for other usages.

• Understandability: it represents how well the meta-model
is understood (i.e., readable) and instanced by end-users.

• Functionality: it is the overall capacity of a meta-model to
support complete and diverse models.

1In order to keep themeta-model as light as possible, in this work we used a standard
“Undefined type”; however, a new, specific abstract type (e.g., “VariableType” ) could
easily be added to the profile.
2https://www6.inrae.fr/tools4bi/Design/A-UML-Profile-for-Variety-Aware-Data-
Warehouse-with-Papyrus
3An empirical validation is out of scope for this paper; indeed, it would require a
set of real case studies, which are not available to us at this time.



Figure 1: The V-ICSOLAP meta-model (only the elements that are not present in ICSOLAP are shown)

• Well-structuredness: it measures how well the meta-model
supports the underlying architecture.

• Extendibility: it is the degree of ease in adding new mod-
eling elements to the meta-model.

Our goal is to rank V-ICSOLAP and ICSOLAP, in terms of quality,
against other meta-models in the literature. Thus, we proceed by
first computing these metrics for both ICSOLAP and V-ICSOLAP
based on the numbers of elements of the meta-model (such as
meta-classes, properties, associations, etc.). Then, we evaluate IC-
SOLAP and V-ICSOLAP against the 2500 meta-models considered
in [3, 30].

The results are shown in Figures 4 and 5. Figure 4 shows
that V-ICSOLAP performs better than ICSOLAP as to reusability,
extensibility, and functionality; it is roughly as well-structured
as ICSOLAP, while it is worst for understandability —which is

not surprising, considering that the domain it models is more
complex than the one modeled by ICSOLAP. On the other hand,
Figure 5 positions V-ICSOLAP and ICSOLAPwith their percentile
values amongst the 2500 meta-models considered in [3]. Both V-
ICSOLAP and ICSOLAP appear to have a good ranking, especially
in terms of understandability and well-structuredness, which
provides a successful validation.

Finally, since V-ICSOLAP is very close to ICSOLAP and IC-
SOLAP has been effectively used in several real projects, we can
argue that also V-ICSOLAP could be successfully applied in real
complex situations.

6 PROOF-OF-CONCEPT
Wehave implemented V-ICSOLAP using Papyrus, an open-source
UML tool based on Eclipse. Papyrus allows for defining UML



Figure 2: V-ICSOLAP class diagram modeling the case study DW

Figure 3: Constraint on VariableNameMeasure

profiles by means of stereotypes and OCL constraints. Figure 6
shows how constraints work on Papyrus. The example refers to
measure Total durationwith VariableNamesMeasure stereotype;
the number of defined Names is only one, hence, the constraint
in Figure 3 is violated.

In this section we provide a proof-of-concept for V-ICSOLAP
by showing how the class diagram for the trajectory case study
can be faithfully translated into a logical schema on the Post-
greSQL DBMS and efficiently queried.

6.1 Logical design
In this section we explain how the class diagram for the Trajecto-
ries fact, shown in Figure 2, can be implemented in a database. As
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explained in the following, the translation of the class diagram
into a logical schema has been carried out manually; although
partially automating this translation towards some target logical
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model is clearly possible given a set of design best practices, it is
out of scope for this paper and is left for future work. We also
show some OLAP queries on this database that address variability
issues on the one hand, deal with complex data on the other.

A classical implementation relying on the relational model
would not properly cope with the peculiar features of this fact,
thus, we opted for the multi-model paradigm, which has been
recently introduced for DBMSs to take advantage of different
models. Specifically, we chose the PostgreSQL MMDBMS (plus
the AgensGraph extension, bitnine.net/agensgraph/) since it han-
dles relational, graph, and JSON data, which are the types of data
used in our case study. Indeed, source data for the Trajectories
fact come in different formats: (i) graph for ROS topic messages
data, (ii) JSON for odometry data, and (iii) CSV with diverse
structures for the remaining data.

Starting from the class diagram of Figure 2 and following
the design guidelines defined in [7], we have obtained the multi-
model logical schema shown in Figure 7. The core is a star schema
[20] including one fact table and three dimension tables. The
fact table (Fact_Trajectories) contains, besides the foreign keys
referring the dimensions tables, four attributes of type JSON for
the total duration, total distance, trajectory, and cost measures.
All these measures are transformed from CSV into JSON to cope
with their variability and complexity. The fact table also contains
an attribute node_id which references the main node in the topic
messages graph (measure message). The trajectory measure is
represented as a JSON document with a vector of three required
attributes.

JSON allows to handle the name and type variability of mea-
sures, levels, and descriptive attributes by means the oneOf JSON
keyword, which forces each document to have only one of the
listed attributes. An example of use of the oneOf keyword is mea-
sure total_distance for both name and type variability, since it
can have either number or integer type.

To model extensibility, the idea is to add a JSON attribute to
the table representing the fact or the dimension. An example is
the JSON attribute measures_extens, added to the fact table to
cope with the fact extensibility.

6.2 Query formulation
In this section we show some OLAP queries over this logical
schema, and we highlight how the particular JSON keywords
used to handle complex types, variability, and extensibility also

influence the query definition. The goal is to show that querying
a multi-model database created starting from a V-ICSOLAP class
diagram is feasible with limited effort, and that an analyst can
uniformly query all the data despite their variability. Clearly, this
requires that the analyst knows the naming conventions in the
different source documents; making this transparent to the user
would require offering a layer of generic names that cover all
variability, and is outside the scope of this paper.

Measure name and type variability are solved using in the
select statement the concat operator and the cast operator, re-
spectively. For instance, Figure 8 shows the SQL statement that
returns the average duration per robot. When name variability
concerns a level in an aggregated query, formulation becomes
more complex. For example, assuming that the robot level is af-
fected by name variability, a subquery solving name variability
on the robot_name/robot level should be defined to be then used
for the group by.

The concat and cast operators provide general solutions to
name and type variability, respectively, for JSON data. In presence
of complex measures, this is not enough and ad-hoc statements
must be used to cope with the particularities of measure struc-
tures. As a first example, Figure 9.a shows the statement that
computes the energy cost per day. We recall from Section 3 that
farmers can either have a monthly subscription with an energy
operator or use an on-demand energy recharge; the subscription
price is not defined at the day, robot, and plot level. Following
our multi-model approach, data can be loaded from sources into
the fact table in their native format, so there is no need to apply
a transformation to trajectory_cost measure to artificially dis-
aggregate subscription costs. As a result, decision makers can
choose at query time the transformation they prefer; in Figure
9.a, subscription costs per day are assumed to be 0.

Another example is the trajectory complex measure, for which
we have implemented a query that finds the odometry data with
maximum speed value per robot, farm and year, thus allowing
farmers to understand the mechanical behaviour of their robots
(Figure 9.b). This query is implemented with the concat opera-
tors previously mentioned. Moreover, this query uses the JSON
operator jsonarrayelementstext that transforms the JSON ar-
ray into a set of tuples, in order be able to use the max aggregation
operator.

For the graph complex measure, we have implemented the
graph intersection as shown in Figure 9.c. This query uses the
Cypher language of AgensGraph combined to classical SQL oper-
ators. Interestingly, the join between the fact table and the graph
nodes is obtained with the Cypher match operator.

6.3 Querying performance
In this section we provide some tests to assess the efficiency of
OLAP queries over the logical schema of Figure 7. In particular, as
shown in Table 2, we defined a set of OLAP queries that involve
name and type variability for measures and levels, as well as
complex measures. Some of these queries are the ones described
in the previous section. Table 2 shows the variety/variability
features involved in the query, the attributes used for grouping
data (i.e., the GROUP BY clause), and the attributes used for
selection (WHERE clause). In particular, 𝑞1 (Figure 8), 𝑞2, and 𝑞3
involve name and type variability for numerical measures, while
𝑞4 groups data by robot name—which presents a name variability.
Queries 𝑞5, 𝑞6, and 𝑞7 use the 𝐶𝑜𝑠𝑡 complex measure (we recall
that 𝐶𝑜𝑠𝑡 can be an on-demand cost, which is daily measured,

bitnine.net/agensgraph/


Figure 6: Example of constraint violation in Papyrus

Dim_Date

<pk> date_id : Integer
day : Date
year : Date

Dim_Plot

<pk> plot_id : Integer
plot_name : String
farm_name : String
geo : Geometry
extensibility : JSONFact_Trajectories

<pk,fk> date_id : Integer
<pk,fk> plot_id : Integer
<pk,fk> robot_id : Integer

node_id : Integer
total_duration : JSON
total_distance : JSON
trajectory : JSON
trajectory_cost : JSON
dimension_extens : JSON
measure_extens : JSON

Dim_Robot

<pk> robot_id : Integer
robot_name : String
type_name : String
engine : JSON
extensibility : JSON

:rosNode
node_id : Integer
value : String

:RosTopic
frequency : Double
message_age : Double
value : String

trajectory
{ "$schema": "http://json-schema.org/draft-04/schema#",

"type": "object",
"properties": 
{ "trajectory": 

{ "type": "array",
"items":
[ { "type": "object",

"properties": 
{ "gps": { "type": "string" },

"timestamp": { "type": "string" },
"speed": { "type": "number" } },

"required": [ "gps", "timestamp", "speed" ] }
]

} } } }

engine
{ "$schema": "http://json-schema.org/draft-04/schema#",

"type": "object",
"properties": 
{ "engine": 

{ "type": [ "integer", "number" ], "minimum" : 0 } },
"required": [ "engine" ]

}

trajectory_cost
{ "$schema": "http://json-schema.org/draft-04/schema#",

"type": "object",
"oneOf":
[ { "properties": 

{ "subscription_price": { "type": "number", "minimum" : 0 } } },
{ "properties": 

{ "on_demand_price": { "type": "number", "minimum": 0 } } }
]

}

total_duration
{ "$schema": "http://json-schema.org/draft-04/schema#",

"type": "object",
"oneOf": 
[ { "properties": 

{ "total_duration": 
{ "type": "number","minimum": 0 } } },

{ "properties": 
{ "duration": 

{ "type": "number","minimum": 0 } } }
]

}

total_distance
{ "$schema": "http://json-schema.org/draft-04/schema#",

"type": "object",
"oneOf":
[ { "properties": 

{ "distance": { "type": [ "number", "integer" ], "minimum" : 0 } } },
{ "properties": 

{ "total_distance":  { "type": [ "number", "integer" ], "minimum" : 0 } } }
]

}

Figure 7: Multi-model logical schema for the Trajectories fact

Figure 8: OLAP query in presence of measure and level variability

and a monthly cost associated to a subscription by the farmer).
Specifically, 𝑞5 (Figure 9.a) uses only the on-demand cost without

taking into account the subscription price. Query 𝑞6 aggregates
data by day; then, a simple ratio by the number of days per month



Figure 9: OLAP queries in presence of complex measures: (a) cost, (b) trajectory, and (c) graph
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Figure 10: Execution time (in seconds) for the queries of
Table 2

is used to translate the monthly cost of subscription to a daily one.
Finally, 𝑞7 sums all (daily and monthly) costs per year. Query 𝑞8
(Figure 9.b) uses the complex measure representing the trajectory
(set of Odometry objects), and finally 𝑞9 (Figure 9.c) involves the
graph measure as previously described. Overall, these queries
represents a realistic workload covering all the features that can
be present in a variety/variability-aware DW.

Using the logical schema in Figure 7, we have simulated a
fact table with 1.57 million tuples. Each trajectory contains 1440
points. Figure 10 shows the execution time of the different queries
in the workload. The tests have been done using an i3 with
2CPU @ 2.20 GHz laptop with 8GB RAM and SSD running on
Windows10 version 10H2. Note that queries that involve classical
measures and levels with name and type variability have small
computation time. Queries 𝑞8 and 𝑞9 yield worse performances

since aggregation is more complex (𝑞8 aggregates 1440 points
and 𝑞9 1000 trajectories), nevertheless they are still in line with
the interactivity required by OLAP.

7 CONCLUSION AND FUTUREWORK
Big Data is characterized by the 6Vs, among which variety and
variability are very relevant. Taking into account them in DWand
OLAP systems is challenging, since multidimensional schemata
are typically characterized by a rigid schema and simple data
types. Shifting towards variety/variability-aware DWs is promis-
ing, as several recent works deal with new approaches for for-
mulating OLAP queries on schemaless datasets or multi-model
databases. In this paper, motivated by the need for a conceptual
design step before the implementation of these complex DW and
OLAP systems, we proposed a UML profile for multidimensional
schemata taking into account name and type variability, exten-
sibility, and complex data. We described our proposal using a
real-case study issued from a smart farming application. We also
showed a validation of the quality of the UML model, and we
perform some tests to assess the implementation of our meta-
model using a multi-model logical schema implemented with
PostgreSQL.

We are currently working to define a set of best practices for
the implementation of multi-model DWs taking time and space
performance into account. This work will then be used to set
up a complete design pipeline from our UML profile towards a
PostgreSQL implementation. Another interesting direction for
our future work consists in defining a classification of all possible
complex data that can be defined using V-ICSOLAP. This will
allow us to set a formal framework for an assessment of the
modeling capabilities associated to our UML profile.



Table 2: Variety/variability-aware workload

Query Description Variety/Variability Multidim. element Type Group By Where Measure
𝑞1 Average total duration per robot for a

given farm
Variability Measure Name and Type Robot name Farm Total duration

𝑞2 Minimum duration per robot for a
given year

Variability Measure Name Plot Year Total duration

𝑞3 Average distance per plot Variability Measure Name Plot – Total distance
𝑞4 Total number of trajectories per robot Variability Level Name Robot name – Robotid
𝑞5 Total cost (only on-demand) per day

for a given farm
Variety Measure Complex object Day Farm Trajectory_cost

𝑞6 Total cost per day for a given farm Variety Measure Complex object Day Farm Trajectory_cost
𝑞7 Total cost per year and farm Variety Measure Complex object Year and Farm Farm Trajectory_cost
𝑞8 Odometry with max speed per farm

and year for given robot
Variety Measure Complex object Year and Farm Robot Trajectory

𝑞9 ROS nodes common to all ROS topic
graphs for a given year

Variety Measure Graph – Year rosNode, node_id
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