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ABSTRACT
Data integration is a classical problem in databases, typically
decomposed into schema matching, entity matching and record
merging. To solve the latter, it is mostly assumed that ground
truth can be determined, either as master data or from user feed-
back. However, in many cases, this is not the case because firstly
the merging processes cannot be accurate enough, and also the
data gathering processes in the different sources are simply im-
perfect and cannot provide high quality data. Instead of enforcing
consistency, we propose to evaluate how concordant or discordant
sources are as a measure of trustworthiness (the more discordant
are the sources, the less we can trust their data).

Thus, we define the discord measurement problem in which
given a set of uncertain raw observations or aggregate results
(such as case/hospitalization/death data relevant to COVID-19)
and information on the alignment of different data (for example,
cases and deaths), we wish to assess whether the different sources
are concordant, or if not, measure how discordant they are.

1 INTRODUCTION
Scientists often analyse data by placing different indicators (e.g.,
number of patients or number of deaths) in a multidimensional
space (e.g., geography and time). The multidimensional model
and OLAP tools [2] have been used in the last 30 years with
this purpose, as a more powerful and structured alternative to
spreadsheets. However, despite these being mature technologies,
problems like managing missing and contradictory information
are still not solved.

OLAP tools are typically used in data warehousing environ-
ments where consistent and well known data go through a well
structured cleaning and integration process merging different
sources. Nevertheless, in the wild, sources are typically incom-
plete and not well aligned, and such data cleaning and integration
processes are far from trivial, resulting in imperfect comparisons.
For example, different actors often report measures at different
granularities that can only be compared after aggregation or
cleaning. On doing this, even if the aggregation performed is
correct, due to reporting mistakes, mereological discrepancies, or
incompleteness, it could happen that the indicator of the whole
(e.g., cases at country level) is different from the aggregation of
indicators of its parts (e.g., states, districts), if these come from
a different source (or even from the same source). Like in the
parable of the blind men describing an elephant after touching
different parts of its body (i.e., touching the trunk, it is like a thick
snake; the leg, like a tree stump; the ear, like a sheath of leather;
the tail tip, like a furry mouse; etc.), in many areas like epidemi-
ology, different data sources reflect the same reality in slightly
different and partial ways. This challenge is well-illustrated by
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COVID-19 data where missing, incomplete, or inconsistent num-
bers have been blamed for bad decision making and unnecessary
suffering [22].

Thus, in such a complex context, it is necessary to have a
tool that precisely measures discrepancies for the available data.
Indeed, [6] and [16] measure the differences in the descriptive
multidimensional data and their structure. Instead, we aim at
evaluating the reliability of the numerical indicators, given some
required alignment declaration (e.g., aggregation or scale cor-
rection). At this point, it is important to highlight that, even if
some work like [24] proposes to treat textual data as indicators
(allowing to aggregate them too), we restrict ourselves to numer-
ical measures, whose discrepancies cannot be evaluated using
string similarity metrics like the ones surveyed in [27]. These
would rather be part of a preliminary step of entity matching
over dimensional descriptors.

Contributions. Incomplete information is typically handled
in relational databases by using NULL values. However, it is
well known that NULLs are overloaded with different meanings
such as nonexisting, unknown or no-information [3]. Thus, we
propose to use NULL only for nonexisting or no-information,
and enrich the data model with symbolic variables that allow to
represent the partial knowledge we might have about unknown
numerical values. While using symbolic variables for NULLs is
not a new idea, introduced for example in classical models for
incomplete information such as c-tables and v-tables [18] and
more recently in data cleaning systems such as LLUNATIC [15],
our approach generalizes unknowns to be arbitrary (linear) ex-
pressions that in the end define a setting for the evaluation of
the trustworthiness of different sources of multidimensional data
based on their concordancy/discordancy using standard linear or
quadratic programming solvers. More concretely, in this paper
we contribute by defining the problem of discord measurement of
databases under some merging processes.

Organization. Section 2 presents a motivational example that
helps to identify the problem defined in Section 3, whose solution
is then exemplified in Section 4. The paper concludes with the
related work and conclusions in Sections 5 and 6.

2 RUNNING EXAMPLE
A real application of our approach to COVID-19 is available in an
extended version of this paper [1], but for illustration purposes,
we provide here a fictitious running example of discordance
evaluation. Let’s consider a scenario where a network of actors
(i.e., governmental institutions) take primary measurements of
COVID-19 cases and derive some aggregates from those. We
illustrate how to model this scenario using database schemas and
views, and describe the different problems we need to solve.

Example 2.1. The statistical institute of Panem (a fictional
country) generates census reports on the weekly excess of deaths
(assumed attributable to COVID-19) in the country. Since we are
just considering Panem, we can model this information using a



Figure 1: Panem’s map with epidemiological information

table (primary key underlined) indicating the number declared
per week:
Census ( week , d e a th s )

We would have greater trust in multiple consistent reports
of the same quantity if they had been obtained independently;
if they all came from a single source, we would be more skep-
tical. Therefore, in an epidemiological verification process, we
gather different complementary sources of information providing
surrogates or approximations to the desired measurements.

Example 2.2. Suppose that Panem, as depicted in Fig. 1, com-
prises thirteen districts (𝐷𝐼 , . . . , 𝐷𝑋𝐼𝐼𝐼 ). In each district, there are
several hospitals and a person living in𝐷𝑖 is monitored by at most
one hospital. Hospitals report their number of cases of COVID-
19 to their district governments, and each district government
reports to the Ministry of Health (MoH).

Given their management autonomy, the different districts in
Panem use different and imperfect monitoring mechanisms and
report separately the COVID-19 cases they detect every week. De-
spite being gathered at health facilities, 𝑃𝑎𝑛𝑒𝑚 is only reporting
to the Centre for Disease Prevention and Control (CDC) partial
information at the district level and the overall information of
the country. We can model this using relational tables with the
weekly district and country information.
R e p o r t e dD i s t r i c t ( district, week , c a s e s )
Repor tedCountry (week , c a s e s )

In an idealized setting, we would expect to know all the rela-
tionships and have consistent measurements for each primary
attribute, and each derived result would be computed exactly
with no error. However, some relationships may be unknown
and both primary and derived attributes can be noisy, biased,
unknown or otherwise imperfect.

Example 2.3. The following view aggregates the district-level
for each week, which should coincide with the values per country:
CREATE VIEW AggReported AS
SELECT week , SUM( c a s e s ) AS c a s e s
FROM R e p o r t e dD i s t r i c t GROUP BY week ;

Moreover, it is already known that COVID-19 mortality de-
pends on the age distribution and vaccination status of the pop-
ulation, but let us assume an average Case-Fatality Ratio (CFR)
of 1.5% which is reasonable for an unvaccinated population. In
terms of SQL, we would have the following view which estimates

the number of deaths based on the number of reported cases in
the country.
CREATE VIEW I n f e r r e d AS
SELECT week , 0 . 0 1 5 ∗ c a s e s AS dea th s
FROM Repor tedCountry ;

Example 2.4. Ideally, if all COVID-19 cases were detected, and
we knew the exact CFR as well as the effects of the pandemic in
other causes of death, the week should unambiguously determine
the number of cases and deaths (i.e., information derived from
reported cases, both at district and country levels, and mortality
in the census must coincide). In terms of SQL, these constraints
could be checked using assertions like the following.
CREATE ASSERTION SumOfCases CHECK (NOT EXISTS
(SELECT ∗ FROM Repor tedCountry r JOIN AggReported a
ON r . week=a . week WHERE r . c a se s <>a . c a s e s ) ) ;
CREATE ASSERTION NumberOfDeaths CHECK (NOT EXISTS
(SELECT ∗ FROM Census c JOIN I n f e r r e d i
ON c . week= i . week WHERE c . dea ths <> i . d e a th s ) ) ;

Thus, we see that SQL already provides the required mecha-
nisms to freely align the different sources and impose the coin-
cidence of values. Nevertheless, as explained above, achieving
exact consistency seems unlikely in any real setting. Indeed, us-
ing existing techniques it is possible to check consistency among
data sources when there is no uncertainty, but it is not straight-
forward, in the presence of unknown NULL values or suspected
error in reported values, to determine whether the various data
sources are consistent with the expected relationships.

Example 2.5. It is easy to see that the following database is not
consistent with our view specification, in part because the cases
of a district (i.e., 𝐷𝑋𝐼𝐼𝐼 ) are not reported, but also the second
assertion is violated (i.e., too many people died—20—compared
to the inferred number based on the cases reported and the CFR—
only 15).
R e p o r t e dD i s t r i c t ( " I " , " 2110W25" , 7 5 )
. . .

R e p o r t e dD i s t r i c t ( " X I I " , " 2110W25" , 7 5 )
AggReported ( " 2110W25" , 9 0 0 )
Repor tedCountry ( " 2110W25" , 1 0 0 0 )
I n f e r r e d ( " 2110W25" , 1 5 )
Census ( " 2110W25" , 2 0 )

Indeed, using existing mechanisms, we can easily detect the
problem (i.e., assertion violations). However, we cannot measure
how far are the data from really being consistent. For example,
the country reporting a thousand cases would violate as many as-
sertions as if reporting onemillion, but its degree of inconsistency
with the other sources is absolutely different.

3 PROBLEM FORMULATION
We aim at extending DBMS functionalities for accurate concor-
dancy evaluation in the presence of overlapping sources for
the same numerical data. Given on the one hand the queries
and views specifying the expected behavior (a.k.a. alignment of
sources), and on the other the data corresponding to observa-
tions of some of the inputs, intermediate results, or (expected)
outputs, is the observed numeric data complete and concordant
considering the alignment specification? If there is missing data,
can the existing datasets be extended to some complete instance
that is concordant? Finally, how far from being fully consistent
are the numerical data?



Given such an idealized scenario (specified by its schema and
views) and a collection of actual observations (both primary and
derived), we can still consider two different problems:

(A) Value estimation: estimate the values of numerical attributes
of interest (e.g., the number of cases and deaths across
Panem) that make the system consistent.

(B) Discord evaluation: Evaluate how far is the actual, discor-
dant dataset from an idealized concordant one.

Problem (A) is the well-studied statistical estimation prob-
lem. However, many sources behave as black boxes, and it can
be very difficult to precisely quantify the uncertainty and un-
derlying assumptions in many situations, especially where the
interrelationships among different data sources are complex. In-
stead, we consider problem (B). Given a (probably incomplete but
overlapping) set of instances, we assume only a merging process
specification in the form of expectations about their alignment, ex-
pressed using database queries and views. Our goal in this paper
is not to find a realistic estimate of the true values of unknown
or uncertain data, but instead to quantify how close the data are
to our expectations under the given alignment. It is important
to clarify that while the approach we will adopt does produce
estimates for the uncertain values as a side-effect, they are not
guaranteed to have any statistical validity unless additional work
is done to characterize the sources of uncertainty, which we see
as a separate problem.

Therefore, the key contribution of this paper is that both check-
ing concordance and measuring discord can be done by augment-
ing the data model with symbolic expressions, and this in turn can
be done consistently and efficiently in a RDBMS with the right
set of algebraic operations. Indeed, we define and measure the
degree of discordance of different data sources with complemen-
tary multidimensional information, where uncertainty may arise
from NULLs standing for unknown values, or reported measure-
ments that have some unknown error. To do so, we need to (1)
define a variant of relational algebra for queries over (sets of)
finite maps represented as symbolic tables, (2) formally define the
concordance and discordance problems, and (3) show that they
can be solved by reduction to linear or quadratic programming,
respectively.

4 PROPOSED SOLUTION BY EXAMPLE
The basic idea in this paper is to represent unknown real values
with variables, which can occur multiple times in a table, or
in different tables, representing the same unknown value, and
more generally unknown values can be represented by symbolic
(linear) expressions in R[𝑋 ]. However, key values used in key-
fields are required to be known. This reflects the assumption that
the source database is partially closed [14], that is, we assume the
existence of master data for the keys (i.e., all potential keys are
coincident and known).

Definition 4.1. A symbolic table, or s-table 𝑅 : 𝐾 ⊲𝑉 is a table
(with the name prepended with Ⓢ) in which key attributes 𝐾 are
mapped to discrete non-null values and value attributes 𝑉 are
mapped to symbolic expressions in R[𝑋 ].

Suppose we are given an ordinary database instance, which
may have missing values (i.e., NULLs) and uncertain values (i.e.,
reported values which we do not believe to be exactly correct).
To allow such situation, we replace values with symbolic expres-
sions containing variables. This can be done in many ways, with

different justifications based on the application domain. For ex-
ample, we can replace uncertain values 𝑣 with “𝑣 · (1 + 𝑥)” (or
simply 𝑥 if 𝑣 = 0) where 𝑥 is an error variable. On the other hand,
to handle NULLs in s-tables we simply replaced each NULL with
a distinct variable.

Example 4.2. It is easy to see that there are many possibilities
of assigning cases of COVID-19 to the different districts of 𝑃𝑎𝑛𝑒𝑚
that add up to 1,000 per week, and consequently improve the
consistency of our database, which may be easily represented by
replacing constants by symbolic expressions “75(1 + 𝑥𝑖 )”, where
𝑥𝑖 is an error parameter representing that cases may be missed
or overreported in every district. The cases for district 𝐷𝑋𝐼𝐼𝐼 ,
that were not reported at all, could then be simply represented
by a variable 𝑥𝑋𝐼𝐼𝐼 . On the other hand, we also know that at-
tributing all the excess deaths to COVID-19 involves some im-
precision, so we should apply some error term “(1 + 𝑧)” to the
numbers coming from the census, too. Nevertheless, this may
not completely explain the mismatch between cases reported
at the country level and deaths, and there might also be some
doubly-counted or hidden cases in 𝑃𝑎𝑛𝑒𝑚 (for example in the
Capitol which is assumed not to have any cases), which we repre-
sent by variable “(1+𝑦)”. Therefore, s-tablesⓈ𝑅𝑒𝑝𝑜𝑟𝑡𝑒𝑑𝐷𝑖𝑠𝑡𝑟𝑖𝑐𝑡 :
{𝑑𝑖𝑠𝑡𝑟𝑖𝑐𝑡,𝑤𝑒𝑒𝑘}⊲{𝑐𝑎𝑠𝑒𝑠},Ⓢ𝑅𝑒𝑝𝑜𝑟𝑡𝑒𝑑𝐶𝑜𝑢𝑛𝑡𝑟𝑦 : {𝑤𝑒𝑒𝑘}⊲{𝑐𝑎𝑠𝑒𝑠}
and Ⓢ𝐶𝑒𝑛𝑠𝑢𝑠 : {𝑤𝑒𝑒𝑘} ⊲ {𝑑𝑒𝑎𝑡ℎ𝑠} would contain:
Ⓢ R e p o r t e dD i s t r i c t ( " I " , " 2110W25" , 75 ∗ (1 + 𝑥𝐼 ) )
. . .

Ⓢ R e p o r t e dD i s t r i c t ( " X I I " , " 2110W25" , 75 ∗ (1 + 𝑥𝑋𝐼𝐼 ) )
Ⓢ R e p o r t e dD i s t r i c t ( " X I I I " , " 2110W25" ,𝑥𝑋𝐼𝐼 𝐼 )
ⓈRepor tedCountry ( " 2110W25" , 1000 ∗ (1 + 𝑦) )
ⓈCensus ( " 2110W25" , 20 ∗ (1 + 𝑧 ) )

Example 4.3. Given the s-tables in Example 4.2, the SQL views
in Section 2 can be algebraically expressed as:

Ⓢ𝐴𝑔𝑔𝑅𝑒𝑝𝑜𝑟𝑡𝑒𝑑 := 𝛾{𝑤𝑒𝑒𝑘 };{𝑐𝑎𝑠𝑒𝑠 } (Ⓢ𝑅𝑒𝑝𝑜𝑟𝑡𝑒𝑑𝐷𝑖𝑠𝑡𝑟𝑖𝑐𝑡)
Ⓢ𝐼𝑛𝑓 𝑒𝑟𝑟𝑒𝑑 := 𝜀𝑑𝑒𝑎𝑡ℎ𝑠 :=0.015∗𝑐𝑎𝑠𝑒𝑠 (Ⓢ𝑅𝑒𝑝𝑜𝑟𝑡𝑒𝑑𝐶𝑜𝑢𝑛𝑡𝑟𝑦)

Where 𝛾𝐾 ;𝑉 is an aggregation operation that sums𝑉 grouping by
𝐾 ; and 𝜀𝑉𝑛𝑒𝑤 :=𝑓 (𝑉𝑜𝑙𝑑 ) derives a new value attribute as a (linear)
function of the pre-existing ones.

We represent the expected relationships between source and
derived data using a generalization of view specification called
alignment specifications. Alignment specifications may define
derived s-tables as the fusion of multiple views, writtenⓈ𝑅⊔Ⓢ𝑇 .
The fusion operator combines the information from two s-tables,
resulting in an s-table with constraints that ensure that the values
reported for common keys in Ⓢ𝑅 and Ⓢ𝑇 are equal.

Example 4.4. Given the s-tables in Example 4.2 and queries in
Example 4.3, the SQL assertions in Example 2.4 can be specified
as:

Ⓢ𝑆𝑢𝑚𝑂𝑓𝐶𝑎𝑠𝑒𝑠 := Ⓢ𝑅𝑒𝑝𝑜𝑟𝑡𝑒𝑑𝐶𝑜𝑢𝑛𝑡𝑟𝑦 ⊔Ⓢ𝐴𝑔𝑔𝑅𝑒𝑝𝑜𝑟𝑡𝑒𝑑
Ⓢ𝑁𝑢𝑚𝑏𝑒𝑟𝑂 𝑓 𝐷𝑒𝑎𝑡ℎ𝑠 := Ⓢ𝐶𝑒𝑛𝑠𝑢𝑠 ⊔Ⓢ𝐼𝑛𝑓 𝑒𝑟𝑟𝑒𝑑

The discord is, intuitively, the shortest distance between the
actual observed, uncertain data and a hypothetical concordant
database instance that is consistent given the constraints intro-
duced by the alignment specification. The more distant from any
such concordant instance, the more discordant our data are. Then,
the degree of discordance of our database given an alignment
and according to a distance metric (a.k.a., cost function) equals
the solution to the quadratic programming problem formed by



minimizing the metric subject to the constraints introduced by
coincident instances in different sources found on fusing them
with ⊔ operation.

Example 4.5. From the specification in Example 4.4, we get the
constraints represented by the following system of equations:

1000(1 + 𝑦) = 75(1 + 𝑥1) + · · · + 75(1 + 𝑥12) + 𝑥13
0.015 ∗ 1000(1 + 𝑦) = 20 ∗ (1 + 𝑧)
Obviously, even considering only positive values for the dif-

ferent variables, that system has many solutions. One solution
𝑆1 consists of taking all 𝑥𝑖 to be zero, 𝑦 = −0.1 and 𝑧 = −0.325.
This corresponds to assuming there is no error in the twelve
districts’ reports and there are no cases in District XIII. Another
solution 𝑆2 sets 𝑥𝐼 = ... = 𝑥𝑋𝐼𝐼 = 0 and 𝑥𝑋𝐼𝐼𝐼 = 100, then 𝑦 = 0
and 𝑧 = −0.25 which corresponds to assuming 𝐷𝑋𝐼𝐼𝐼 has all of
the missing cases. Of course, whether 𝑆1 or 𝑆2 (or some other
solution) is more plausible depends strongly on domain-specific
knowledge. Nevertheless, given a cost function assigning a cost
to each solution, we can compare different solutions in terms of
how much correction is needed (or discord exists). For example,
we might consider a cost function that simply takes the sum of
the squares of the variables:

𝑐1 ( ®𝑥,𝑦, 𝑧) = (
∑︁

𝑖∈{𝐼 ,...,𝑋 𝐼𝐼 𝐼 }
𝑥2𝑖 ) + 𝑦

2 + 𝑧2

Using this cost function, 𝑆1 has cost ≈ 0.116 while 𝑆2 has cost
10000.0625, the first solution is much closer to being concordant,
because a large change to 𝑥𝑋𝐼𝐼𝐼 is not needed. Alternatively, we
might give the unknown number of cases in 𝐷𝑋𝐼𝐼𝐼 no weight,
reflecting that we have no knowledge about what it might be,
corresponding to the cost function

𝑐2 ( ®𝑥,𝑦, 𝑧) = (
∑︁

𝑖∈{𝐼 ,...,𝑋 𝐼𝐼 }
𝑥2𝑖 ) + 𝑦

2 + 𝑧2

that assigns the same cost to 𝑆1 but assigns cost 0.0625 to 𝑆2,
indicating that if we are free to assign all unaccounted cases to
𝑥𝑋𝐼𝐼𝐼 then the second solution is closer to concordance.

Besides alternatives in the cost function, we could weight
variables considering the reliability of the different districts as
well as the central government, and the historical information of
the census. However, these values depend on knowledge of the
domain and we will leave exploration of more sophisticated cost
functions to future work.

5 RELATEDWORK
The problems described above are related to Consistent Query
Answering (CQA) [12], which tries to identify the subset of a
database that fulfills some integrity constraints, and corresponds
to the problem of identifying certain answers under open world
assumption [5]. In CQA, distance between two database instances
is captured by symmetric difference of tuples. However, in our
case, the effects of an alignment are not only reflected in the
presence/absence of a tuple, but also in the values it contains.
This leads to the much closer Database Fix Problem (DFP) [7, 9],
which aims at determining the existence of a fix at a bounded
distance measuring variations in the numerical values.

Both DFP as well as CQA become undecidable in the pres-
ence of aggregation constraints. Nonetheless, these have been
used to drive deduplication [11]. However, our case is different
since we are not questioning correspondences between entities
to create aggregation groups, but instead trying to quantify their
(in)consistency in the presence of complex transformations.

Another known result in the area of DFP is that prioritizing
the repairs by considering preferences or priorities (like the data
sources in our case) just increases complexity. An already ex-
plored idea is the use of where-provenance in the justification
of the new value [15], but with pure direct value imputation
(without any data transformation). In contrast, we consider that
there is not any master data, but multiple contradictory sources,
and we allow aggregates, while [15] only uses pure equalities
(neither aggregation nor any real arithmetic) between master
and target DBs.

From another perspective, our work is related to incomplete-
ness in multidimensional databases, which has been typically
focused on the problems generated by imprecision in hierarchi-
cal information [13], [6] and [16]. Only more recently, attention
has shifted to missing values in the measures. Bimonte et al. [8]
presents a linear programming-based framework that imputes
missing values under some constraints generated by sibling data
at the same aggregation level, as well as parent data in higher
levels. We could consider this a special case of our approach,
where there is a single data source and alignment is predefined.

The setting we have described shares many motivations in
common with previous work on provenance. The semiring prove-
nance model [17] is particularly related, explaining why why-
provenance [10] is not enough (e.g., in the case of alternative
sources for the same data) and we need how-provenance to really
understand how different inputs contribute to the result. They
propose the use of polynomials to capture such kind of prove-
nance. Further, Amsterdamer et al. [4] extended the semiring
provenance model to aggregations by mixing together annota-
tions and values, but the fine-grained provenance information
may become prohibitively large. However, to the best of our
knowledge no practical implementations exist. As noted earlier,
our s-tables are similar in some respects to c-tables studied in in-
complete information databases [18]. Our data model and queries
is more restricted in some ways, due to the restriction to finite
maps, and the fact that we do not allow for conditions affecting
the presence of entire rows, but our approach supports aggrega-
tion, which is critical for our application area and which was not
handled in the original work on c-tables.

There have been implementations of semiring provenance or c-
tables in systems such asOrchestra [19], ProQL [20], ProvSQL [25],
and Mimir [23], respectively. In Orchestra provenance annota-
tions were used for update propagation in a distributed data
integration setting. ProQL and ProvSQL implement the semir-
ing model but do not allow for symbolic expressions in data or
support aggregation. Mimir is a system for querying uncertain
and probabilistic data based on c-tables; however, in Mimir sym-
bolic expressions and conditions are not actually materialized
as results, instead the system fills in their values with guesses
in order to make queries executable on standard RDBMSs. Thus,
Mimir’s approach to c-tables would not suffice for our needs since
we need to generate the symbolic constraints for the QP solver
to solve. On the other hand, our work shows how some of the
symbolic computation involved in c-tables can be implemented
in-database.

We have reduced the concordancy evaluation problem to
quadratic programming, a well-studied optimization problem.
Solvers such as OSQP [26] can handle systems of equations with
thousands of equations and variables. However, we have not
made full use of the power of linear/quadratic programming. For
example, we could impose additional linear inequalities on un-
knowns to constrain that certain error or null values have to be



positive or within some range. Likewise, we have defined the
cost function in one specific way but quadratic programming
permits many other cost functions to be defined, for example
with different weights for each variable or with additional linear
cost factors.

As noted in Section 2, we have focused on the problem of
evaluating concord/discord among data sources and not on using
the different data sources to estimate the actual values being
measured. It would be interesting to extend our framework by
augmenting symbolic tables and queries with a probabilistic in-
terpretation, so that the optimal solution found by quadratic
programming produces statistically meaningful consensus val-
ues (similarly to the work of Mayfield et al. [21]).

6 CONCLUSIONS
Inmany real settings, such as epidemiological surveillance, ground
truth is not known or knowable and we still need to integrate
discordant data sources with different levels of trustworthiness,
completeness and self-consistency. In this setting without any
master data, we still would like to be able to measure how close
the observed data is to our idealized expectations. Thus, we pro-
posed definitions of concordance and discordance capturing re-
spectively when data sources we wish to fuse are compatible
with one another, and measuring how far away the observed
data are from being concordant. Consequently, we can compare
discordance measurements over time to understand whether the
different sources are becoming more or less consistent with one
another.

Our approach to symbolic evaluation of multidimensional
queries appears to have further applications which we plan to
explore next, such supporting other forms of uncertainty express-
ible as linear constraints, and adapting our approach to produce
statistically meaningful estimates of the consensus values.
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