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ABSTRACT
Spreadsheets are widely used for data exploration. Since spread-
sheet systems have limited capabilities, users often need to load
spreadsheets to other data science environments to perform
advanced analytics. However, current approaches for spread-
sheet loading suffer from either high runtime or memory usage,
which hinders data exploration on commodity systems. To make
spreasheet loading practical on commodity systems, we intro-
duce a novel parser that minimizes memory usage by tightly
coupling decompression and parsing. Furthermore, to reduce the
runtime, we introduce optimized spreadsheet-specific parsing
routines and employ parallelism. To evaluate our approach, we
implement a prototype for loading Excel spreadsheets into R
environments. Our evaluation shows that our novel approach is
up to 3× faster while consuming up to 40× less memory than
state-of-the-art approaches.
Artifact Availability: The source code has been made available
at https://github.com/fhenz/SheetReader-r.
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1 INTRODUCTION
Due to their intuitive layout, spreadsheets are ubiquitous for data
exploration and analysis [23, 24]. While modern spreadsheet
systems provide some analysis tools, such as PivotTables and
aggregation formulas, they do not support more advanced tasks,
such as iterative analyses and model building. As a result, to per-
form their analyses, users turn to more specialized data science
environments, such as R and Python, that provide ecosystems
with a plethora of data science libraries.

Consider the following real-world example, which refers to
a common use-case in AccessHolding, a Germany-based microfi-
nance investment and holding company. A data scientist working
for a financial institution needs to determine factors indicative of
default risk from loan data. To that end, she wants to run a logis-
tic regression analysis. Before deploying the logistic regression
model in production, the data scientist validates it on her laptop
using R. Since the data is only available in spreadsheet files, the
first preprocessing step consists of loading the data into the R
runtime. To perform efficient analyses, users need tools that allow
them to quickly load their spreadsheet data without consuming
a large amount of resources. However, although spreadsheets are
widely used among data scientists, there has been little work on
interoperability with data science environments.

Typical spreadsheet applications, such as Microsoft Excel and
LibreOffice Calc, store data as a collection of individually com-
pressed XML structured files. Existing tools for converting these
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Figure 1: Performance of existing R packages for parsing
a real-world spreadsheet and the corresponding CSV file.

data collections into an appropriate data format for the target en-
vironment rely on general methods for decompression and XML
parsing (i.e., DOM and SAX) [13, 15]. Specifically, state-of-the-art
DOM-based parsers materialize the entire XML file in memory,
thereby suffering from high memory usage. In contrast, SAX-
based parsers expose a large number of parsing events through
their event-based API, suffering from bad runtime performance.

To show the inefficiency of existing solutions, we compare
two state-of-the-art Excel parsers for R (i.e., openxlsx and readxl)
with a highly optimized CSV parser (data.table) when loading
the same data. To that end, we use as input one real-world file
in the appropriate format. We provide the experimental setup
and configuration in Section 5. In Figure 1, we illustrate that the
fastest Excel parser takes around 30 seconds to load 172 MB of
data, while consuming up to 13 GB memory. Compared to the
CSV parser that only takes 4 seconds and consumes up to 1.1
GB memory, this is an overhead of 7.5× for runtime and almost
12× for memory usage. In contrast, the most memory-efficient
Excel parser consumes up to 5 GB memory, which represents
an overhead of 4.5×, but is 40× slower, taking 160 seconds to
parse the file. This gap in performance is due to the fact that
spreadsheet parsers are not specialized to exploit the spreadsheet
file structure. Consequently, and given that many users work on
commodity hardware (e.g., business laptops, desktops), loading
spreadsheets can easily become a significant bottleneck in data
science applications.

By leveraging the spreadsheet file structure and its unique
properties, we overcome the aforementioned bottlenecks and
enable high performance spreadsheet loading in data science
environments. We propose SheetReader, an efficient specialized
spreadsheet parser. Furthermore, we introduce two parsing ap-
proaches for SheetReader with trade-offs between runtime perfor-
mance and memory consumption. Our first approach, consecutive
parsing, achieves very fast loading times by heavily utilizing par-
allelization. The second approach, interleaved parsing, while also
employing parallelization, it primarily aims to minimize memory
consumption by tightly coupling decompression and parsing.
Contributions. Our contributions are summarized as follows:

• We introduce spreadsheet-specific optimizations and em-
ploy parallelism that requires minimal synchronization
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to reduce the runtime for spreadsheet parsing. Further-
more, we minimize memory utilization by tightly coupling
decompression and parsing.

• We introduce two parsing approaches that allow users to
choose between runtime and memory utilization based on
their needs. The consecutive approach achieves fast load-
ing times through massive parallelization, but its memory
utilization is data-dependent. In contrast, the interleaved
approach uses a configurable and constant amount ofmem-
ory while still achieving low runtime.

• We provide a general solution for different data science en-
vironments, by storing the parsed data in an environment-
agnostic intermediate data structure.

• We experimentally show that SheetReader outperforms
the existing solutions by up to 3× and 40× in terms of
runtime and memory utilization, respectively. We also
show that parallelizing the decompression further reduces
the runtime by around 35%.

Outline. Next, after introducing the necessary background in
Section 2, we describe SheetReader’s parsing approaches and
spreadsheet-specific parsing optimizations in Sections 3 and 4.
Then, Section 5 presents our experimental evaluation against
state-of-the-art solutions using real-world and synthetic datasets.
We discuss the related work in Section 6 and conclude in Section 7.

2 BACKGROUND
Spreadsheet Standards. We describe the structure of a spread-
sheet, focusing on the file format currently used by Excel, known
as Office Open XML (OOXML) and standardized as ECMA-376 [1].
Part 2 of ECMA-376 specifies the Open Packaging Conventions
(OPC) that describes the general structure of OOXML files. Ac-
cording to OPC, OOXML files are ZIP archives containing a
collection of XML files. OPC reserves some file names and exten-
sions for describing the types of files contained in the archive
and their relationships.

Figure 2 provides a simplified overview of the spreadsheet
structure. Excel documents consist of a workbook that can con-
tain several worksheets. The workbook determines the names,
IDs, and archive locations of all the spreadsheets. The worksheets,
e.g., sheet1.xml in the figure, store the actual data. Additionally,
Excel saves strings in a separate file from the actual worksheets,
sharedStrings.xml, where they are referenced by index. The
top level reserved files contain metadata that allows to identify
files relevant for further processing and serve as an entry point
for programs. Specifically, valid Excel files require the top level
relationship file /_rels/.rels that specifies the locations of the
workbook and the shared strings file inside the archive.

As stated in the OOXML specification, the XML files in the
ZIP archive can be either uncompressed or compressed using the
Deflate format. Deflate [5] is a block-based compression for-
mat with dynamic block sizes. It arranges the blocks in a stream
and compresses them individually. Although it is possible to com-
press an entire document into a single large block, using smaller
blocks typically improves the compression ratio. Within a block,
Deflate uses duplicate string elimination, a technique where
duplicate series of byte streams are replaced with back-references
to the previous identical byte stream, which can in turn also be a
back-reference. Back-references can point to previous blocks, as
long as the distance does not exceed a sliding window of the last
32 KB of decompressed data. As a result, Deflate documents are

SpreadSheet.xlsx
_rels/

.rels
…
xl/

workbook.xml
sharedStrings.xml
…
worksheets/

sheet1.xml
sheet2.xmlZIP

…
<sheets>

<sheet r:id=”rId1” sheetId=”1” name=”Sheet1”/>
<sheet r:id=”rId2” sheetId=”2” name=”Sheet2”/>

</sheets>
…

<sst uniqueCount=”4” count=”4” …>
<si>

<t>Example string</t>
</si>
…

</sst>

<worksheet …>
…
<sheetdata>                          

<row r="1">
<c r="A1" t="s">

<v>1</v>
</c>
…

</row>
…

Figure 2: Spreadsheet structure (simplified).

challenging to decompress in parallel, because to decompress a
given block, all previous blocks need to be decompressed first.
XML Parsing. There exist two dominant approaches for XML
parsing, DOM (Document Object Model) and SAX (Simple API for
XML) [13, 15]. The DOM approach maps the XML file contents
to an in-memory tree and provides an interface that allows to In
contrast, the SAX approach exposes an event handling interface.
While traversing the XML document, the SAX parser fires events
for the found XML entities (tags), which then trigger the previ-
ously registered handlers. DOM is well-suited for random access.
However, a major disadvantage regarding resource consumption
is that it needs to materialize the whole document in memory
before parsing it. SAX parsers do not experience this bottleneck.
However, the event handling interface makes it challenging to
keep track of the entire document while parsing it, and leads to
inefficient implementations.

Even though DOM and SAX approaches provide a solution for
parsing XML documents, they are both very generic, i.e., they are
designed to support arbitrary XML structures. We observe that for
parsing spreadsheets it is not necessary to employ such generic
approaches, as spreadsheet XML files have a very specific XML
file structure that is defined by their specification. We argue
that a specialized parser for spreadsheets can exploit their specific
structure and find the sweet spot between DOM and SAX ap-
proaches, thereby offering reasonable memory consumption and
fast runtime performance at the same time.

3 SHEETREADER
In the following, we give an overview of SheetReader’s architec-
ture (Section 3.1). Then, we describe in detail our two specialized
parsing approaches (Section 3.2).

3.1 SheetReader Overview
We show an overview of our approach in Figure 3. SheetReader
expects as input parameters related to a spreadsheet file, and
loads the worksheet contents into a data structure within the
target environment. Users and applications submit parsing re-
quests to SheetReader through its API, by providing I/O and
parser configuration parameters 1 . The Controller is the core
component responsible for coordinating the overall loading rou-
tine. At first, the Controller fetches worksheet metadata 2 , e.g.
file location and sheet names, through theMetadata Handler.
Then, the Controller initiates the loading routine by providing
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Figure 3: SheetReader’s Architecture.

the sheet names and parse mode to theContentHandler, a com-
ponent that decompresses input files and parses the spreadsheet
content into an intermediate data structure 3 . The Content
Handler has two modules, the Strings Parser, which is responsi-
ble for parsing the shared strings XML file, and the Worksheet
Parser, which is responsible for parsing the worksheets contain-
ing numeric data. These two parsers may operate in parallel, and
have two different parsing modes that we describe in Section 3.2.
To avoid costly reallocations for resizing the intermediate data
structure during parsing, the Controller pre-allocates memory by
relying on the available metadata, such as the file offset, archive
size, and total strings number in the shared strings file. Our
parsers assume valid spreadsheets as input, since spreadsheet
systems, e.g. Excel, are unlikely to produce corrupt files.

When parsing is completed, the Transformer executes the
final loading step, i.e., creating the target data structure 4 .
Contrary to the worksheet, SheetReader stores the cell data in
column-wise data layout. This allows to transform intermediate
data to column-based target data structures widely found in data
science environments, e.g., R and Python Pandas Dataframes,
without reconverting the layout. Additionally, SheetReader’s in-
ternal intermediate data structure enables to reuse its core parsing
routines in different runtimes by only implementing the Trans-
former interface and language bindings. This interface exposes
methods for transforming the intermediate data structure into a
target data structure. For example, our prototype Transformer im-
plementation in R converts intermediate data into a DataFrame.

3.2 Spreadsheet Parsing Approaches
We introduce two parsing approaches that both the Strings and
the Worksheet Parser components can use. These approaches
express a trade-off between runtime performance and memory
efficiency. The consecutive approach is optimized for runtime
performance and the interleaved one for minimal memory usage.
Users can choose their preferred approach based on their needs.

Both approaches rely on the same general parsing routine that
we outline here. As our parser targets specialized XML docu-
ments, it operates by finding the opening and closing tags for
specific XML elements. For example, as shown in Figure 2, in
Excel files, cell values <v>val</v> are enclosed in <c></c> tags,

Figure 4: Consecutive Parsing.

where the character sequence <c␣ indicates the opening tag for
a new cell. Inside this tag, there are attributes that contain cell
metadata. Attributes are name-value pairs that are linked through
the = character and are separated from other pairs by a white-
space. We parse this metadata as it defines the cell location and
type, which we use to determine where to store the cell data
in our intermediate data structure. The character > denotes the
end of the cell opening tag. Inside the c element, we look for the
<v> opening tag that contains the cell value. We parse the value
until we encounter the closing tag </v> and insert it into our
intermediate data structure.

3.2.1 Consecutive Parsing. We optimize consecutive parsing
for runtime performance. As shown in Figure 4, consecutive pars-
ing first decompresses the complete document into memory and
then parses the content with multiple parallel parsing threads.
Having the complete document in memory during parsing has
several advantages. First, we do not need to use intermediate
buffers to store values for later parsing because the document
itself serves as a buffer. This reduces costly memory operations
such as allocations and copies. Additionally, since decompression
is independent of parsing, the choice of decompression method
is flexible, and we can use libraries that are optimized for full-
buffer decompression. However, keeping the entire document in
memory during parsing leads to inflated memory usage. We note
that if the document cannot fit in memory, then SheetReader uses
interleaved parsing instead.

Once the entire document has been decompressed, we can
parallelize the parsing by simply splitting the document into
roughly equal-sized chunks and processing each chunk by a
separate thread. However, splitting XML documents into multi-
ple chunks that can be parsed in parallel is a challenging prob-
lem [17, 21, 22]. In particular, a parser that starts at an arbitrary
point in the document lacks the context to determine how to
process the encountered characters. To overcome this problem,
we leverage the fact that spreadsheets have a predefined XML
structure and determine the parsing state by identifying the type
of the first XML element that we encounter in the chunk. Specif-
ically, we scan the chunk for structural characters that denote
the start or end of an XML tag (e.g., <). We then build additional
context by determining the type of the corresponding XML el-
ement. For example, if we encounter the opening tag to a row
element, we know that we are at the beginning of a new row,
while if we encounter the closing tag to a cell element, we know
that afterwards there is either another cell or the end of the
row. The above approach is possible because the encoding of
structural characters is different when these characters are not
structurally significant, e.g., when they are part of an element or
an attribute value. For example, while < denotes a structural char-
acter, the same character is encoded as &lt; inside an element
or an attribute value.



Figure 5: Interleaved Parsing.

Our parallel parsing approach also assumes that each cell has
information about its location (i.e., the row and column num-
ber), so that individual threads can determine where to insert
the parsed values in SheetReader’s intermediate data structure.
Although this information is not part of the standard, the most
widely used tool, Microsoft Excel, provides it. If there is no loca-
tion information, we can employ an additional processing step,
either before or after the parallel parsing. Before parsing, we can
perform a reduced sequential scan over the document to count
the rows and cells and calculate the offset for each chunk. This
sequential scan can be implemented efficiently such that it does
not significantly affect the runtime. An alternative approach is
to let each thread insert the parsed values into its own separate
intermediate data structure. In the last step, i.e., when converting
to the target, we can then merge the partial data structures by
sequentially retrieving the values.

Additionally, we determine the size of the worksheet, i.e., the
number of rows and columns, from the dimension element in the
spreadsheet document metadata. If the dimension element does
not exist, and since we have the entire uncompressed document
in memory, we can also determine the size by examining the row
and column number of the last cell. Predetermining theworksheet
size allows to pre-allocate the intermediate data structure and
avoid costly resize operations. Furthermore, it enables multiple
threads to insert values in the data structure without any write
synchronization mechanism. Being unable to pre-allocate the
intermediate data structure adds only minor complexity. When a
column becomes full, we simply need to allocate a larger amount
of space and copy over the existing values. During the resizing
operation, we also need a synchronization mechanism (e.g., a
lock) that blocks the insertion of new values.

Overall, each parsing thread of the consecutive approach takes
as input the starting offset of its chunk and the end offset or the
total chunk length. Then, it locates the first cell in the chunk as
discussed previously and proceeds with parsing from there, skip-
ping over all content before the first cell. This skipped content is
actually relevant to the last cell of the previous chunk. Therefore,
to ensure that all elements will be parsed, each thread finishes
parsing the last cell of the chunk by extending its assigned pars-
ing area over the beginning of the following chunk.

3.2.2 Interleaved Parsing. This approach aims to minimize
memory usage. To that end, it continuously recycles a constant
amount of memory so that the memory usage is independent of
the input document, and interleaves decompression and parsing.
Specifically, as depicted in Figure 5, decompression and parsing
occur repeatedly one after the other. First, the decompression
stage decompresses part of the document. Then, the parsing stage

Figure 6: Concurrency Control.

processes this part and returns the control flow to the decompres-
sion stage, waiting for the next part to be decompressed. As a
result, it is impossible to access arbitrary parts of the document at
any time and the parser is unable to backtrack or look ahead very
far in the document. This means that the parser needs to process
any relevant content as soon as it encounters it, or store it im-
mediately for later processing. Consequently, interleaved parsing
imposes more restrictions on the employed decompression and
parsing techniques compared to consecutive parsing.

To implement a single-threaded version of the interleaved ap-
proach, we only need a single-element sharedmemory buffer. The
decompression stage fills the buffer with decompressed content,
and the parsing stage parses it. However, to enable parallelization,
we need a buffer with at least two elements. Using multiple ele-
ments allows to decouple the decompression and parsing stages
and execute them in parallel by separate threads. The decom-
pression thread writes the elements that are available for writing,
while the parsing thread reads from the written elements and
subsequently re-enables them for writing. Using a two element
buffer, the threads can switch their elements only when they both
finish processing. Since the decompression and parsing time are
data-dependent, the time that a thread has to wait for the other
thread to finish can fluctuate significantly. To reduce the total
wait time and mitigate the resulting unpredictable runtime, our
microbenchmarks showed that it is better to use a larger buffer.

Figure 6 (left) shows how the interleaved approach works with
a circular buffer using a single parsing thread. The decompression
and parsing threads iterate through the elements sequentially, i.e.,
the decompression thread writes its results into the first element,
then the second one, and so on (step 2), while the parsing thread
reads the elements in the same order (step 3). When a thread
reaches the last element, it loops back to the first one (step 4).

To prevent the threads from using an invalid element, i.e., the
decompression thread overwriting an element that is not parsed
yet or the parsing thread parsing an element that is not written
yet, we make the buffer thread-safe. Specifically, we use an index
that indicates the element that each thread is currently operating
on, and ensure that the parsing thread remains at least a single
element behind the decompression thread. That is, if the decom-
pression thread is currently writing into the element with index
𝑥 , the parsing thread can process all elements with up to and ex-
cluding index 𝑥 . If the parsing thread reaches this point, it simply
blocks until the decompression index advances. For simplicity,
the initial state satisfies this requirement by starting the decom-
pression thread one element ahead of the parsing thread (step



1). To ensure that the parsing thread processes the last element,
we increment the write index by one when the decompression
thread finishes the current round. The decompression thread de-
termines if it is allowed to write to an element by simply checking
if that element is currently being parsed by the parsing thread.
This can happen only when the decompression thread has filled
all available elements and the parsing thread has not freed any
element yet, as shown in step 4. We store the indexes as atomic
integers, so that all threads see the same value when they access
an index simultaneously.

In addition to parallelizing decompression and parsing, we
also parallelize the parsing stage, i.e., use multiple parsing threads
as shown in Figure 6 (right). We explore this avenue since our
preliminary benchmarks showed that decompression is typically
faster than parsing. The interleaved approach can be easily ex-
tended to support parallelism in the parsing stage. Contrary to
consecutive parsing, the parsing threads do not work with a large
buffer containing the entire document, but with small buffer
elements that contain only small parts of the document. As a
result, the mechanism for distributing the elements among the
parsing threads is slightly more complex. One solution would be
to introduce a flag for each element that indicates its state, i.e.,
if the element is ready to be parsed, ready to be written, or cur-
rently being processed. The threads would then pick an element
to process based on these flags. Instead, we decided to extend our
existing index-based synchronization mechanism. Specifically,
each individual parsing thread has a separate index and checks
up to which element it is allowed to parse. The decompression
thread simply checks if any of the parsing threads works on the
element where it wants to move next.

One remaining issue is preventing the parsing threads from
parsing an element multiple times, i.e., uniquely assigning ele-
ments to parsing threads. This is achieved by initializing their
indexes in a staggered manner and advancing them by the num-
ber of parsing threads rather than singular increments as shown
in Figure 6 (right). For example, with three parsing threads, the
first one starts at index 0, advancing to 3 and then 6. The second
thread starts at index 1 and advances to 4 and then 7. The third
one starts at index 2 and advances to 5 and then 8. This approach
guarantees that all elements are fully processed exactly once.

Since we process the elements in sequential order, we also pro-
cess the document sequentially, which enables using the parsing
"extension" mechanism described for the consecutive approach.
If a parsing thread reaches the end of its assigned element but
the last cell has not been fully parsed yet, it simply advances into
the next element to finish parsing. Afterwards, it readjusts its
index to prevent overlap with the other threads. This is possible
because the decompression thread only writes to elements up to
the last parsing thread, i.e., every element in front of a parsing
thread up to the decompression thread will always be valid.

Similarly to the consecutive approach, we exploit the prede-
fined XML structure to deduct the parse states. However, dealing
with the lack of location information is harder because the pars-
ing positions are constantly changing. Each time a parsing thread
advances, it skips over potentially multiple elements that con-
tain the logical continuation of its acquired parse state. As a
result, the parsing threads are repeatedly placed in unknown and
ambiguous parse states. We can adapt both solutions that we
discussed for the consecutive approach here. Before the actual
parsing, each parsing thread could perform a fast reduced scan
over its assigned element to count the number of contained rows
and cells, accounting also for the location information after blank

Figure 7: Excel worksheet XML extract. The highlighted
sections are scanned for the opening tag of a cell element.

cells. Then, all threads would need to share their results to deter-
mine the row and cell numbers at the beginning of all elements.
Afterwards, the parsing threads would proceed with the actual
processing. Alternatively, we could create an intermediate data
structure for each element rather than for each thread. Finally, if
we are unable to pre-allocate the intermediate data structure, we
can apply the same solution of simply synchronizing the write
and resize operations as in the consecutive approach.

4 OPTIMIZATIONS FOR SPREADSHEETS
Aside from parallelization, we employ some further spreadsheet-
specific optimizations to accelerate parsing, thereby further re-
ducing the runtime. These optimizations aim to reduce the amount
of work per input character. Ideally, when a character does not
provide any relevant information, we do not want to perform
any work for it. Additionally, we do not want to visit any given
character, including potential copies of it, more than once.

Our first optimization consists of parsing element names on-
the-fly rather than copying the encountered characters into a new
buffer and comparing against the complete string. We achieve
this by checking if the scanned input characters match any of the
predefined known element names. Taking the row element as an
example, we add an integer field to the parsing state that checks
if the current element name is row. At the start of parsing, we
initialize this field to 0. If the parser is in the appropriate state and
encounters an r character, we increment the field. If we encounter
an o right after, we increment the field once more. We apply the
same procedure for the w character. If at any point we encounter
a different character than expected, the field is reset to 0. Upon
encountering a whitespace character, we simply determine the
currently parsed element by checking the integer fields of the
relevant element names. If the field matches the length of the
checked element name (e.g., 9 for sheetData, 3 for row, 1 for c),
this means that we just encountered the corresponding element.

Our second optimization consists of skipping as much un-
needed content as possible while also determining when to skip
as quickly as possible. In other words, we aim to determine as
early as possible the amount of required work for a character
and then only perform this required work. We can identify op-
portunities to apply this optimization by examining the XML
schema that is given by the specification. Using the Excel format
as an example, we need to check for the opening tag of a cell
element (c) only when we have encountered a row (row) opening
tag previously and have not encountered a row closing tag since
then (cf. Figure 7). This also applies for values (v) inside cells
(c), rows (row) inside the sheet data (sheetData), and even for
locating the sheet data element itself.

Furthermore, we avoid parsing and deserializing attributes
that do not contain relevant data or metadata for creating the



target data structure. For example, all row elements in Excel
worksheets have an attribute that indicates the height of the row.
Such irrelevant tags and their values should be skipped as early
as possible. Given the XML format, we achieve this by skipping
all content between the opening and closing quotation marks of
the irrelevant attribute value. We note that we assume that the
input document is a valid XML conforming to the specification.
Otherwise, if the XML contains invalid values, e.g., if a quotation
mark is missing, the parser might skip some relevant data.

To avoid visiting characters more than once, we try to perform
parsing in-situ without using any intermediate copies. This is
particularly relevant for the interleaved parsing approach, where
there are no guarantees regarding which part of the document
is currently available in memory. For example, the value of the
row number attribute might be split between buffer elements.
Since it is impossible to access the first element once we advance
to the second one, a naive solution would copy the relevant
portion from each element into another intermediate buffer, so
that the two parts can be combined and the complete value can be
deserialized. We avoid such copies, and thus processing the same
character twice, by deserializing the characters as they arrive.

Deserializing integers in-situ is simple. We first initialize the
integer value to 0 and then for every read character, we multiply
the current value by 10 and add to it the deserialized character.We
can use this approach to deserialize most of the required attribute
and element values from the worksheet. We can, for example, use
a virtually identical mechanism for spreadsheet form numbers
where "A" corresponds to 1 and "AA" to 27. The only difference is
that we need to multiply by 26 and adjust the deserialization of
the characters to numbers. Other values such as booleans or cell
types are also trivial to deserialize without copying. However,
we cannot apply the above technique to deserialize floating point
values in-situ, as it can potentially introduce rounding errors and
thus produce erroneous results. Thus, for floating point values,
we cannot avoid copy buffers.

Overall, our spreadsheet-specific optimizations improve the
performance of the low-level parsing routine. As a result, in
single-threaded execution, the optimizations directly translate
into lower runtime. In the case of multiple threads, the optimiza-
tions accelerate the execution of each individual thread. Conse-
quently, we can use fewer threads, thereby potentially reducing
synchronization overheads.

5 EVALUATION
In this section, we first describe the experimental setup and
methodology and then present a thorough evaluation of Shee-
tReader in terms of runtime and memory usage. To demonstrate
SheetReader’s benefits, we first compare it with existing state-of-
the-art solutions for spreadsheet parsing and then perform an
in-depth analysis to study the trade-offs between our proposed
parsing approaches. Lastly, we evaluate parallel decompression
to determine its impact on the runtime.

5.1 Experimental Setup & Methodology
Hardware Configuration. The experiments were performed
on a machine equipped with an AMD EPYC 7702P 64-Core CPU,
512 GB RAM, and a 512GB SSD, running Ubuntu 20.04 (kernel
version 5.4.0-90).
Benchmarks.We use various benchmarks to measure the run-
time and memory usage of our approach and the competing

ones. Following our prototype, the benchmarks involve load-
ing an Excel spreadsheet file into R. As our prototype targets
the xlsx format introduced in 2007, it is impossible to execute
benchmarks designed for older format versions. We run every
benchmark on a new R instance to avoid potential residual ob-
jects in memory from influencing later measurements. While the
instance is running, we periodically measure its memory usage.
For the general comparison between the approaches, we use the
maximum measured memory usage and the total runtime. Addi-
tionally, we insert logging messages that indicate the beginning
and end of individual loading stages. This periodic data allows us
to examine individual benchmarks in detail. That is, we associate
the separate steps of each approach with particular messages
and determine the impact of each step on the overall memory
usage. We repeat each benchmark 5 times and report the average.
We assume cold system caches, i.e., we clear OS caches before
re-executing each benchmark.
Datasets.Most of our benchmarks use synthetically generated
Excel spreadsheets according to specific desired parameters such
as the percentage of numeric vs. text values or the percentage of
blank cells. We generate Excel spreadsheet files for various row
counts where larger spreadsheets are supersets of smaller ones.
The compressed sizes range from 13.6 MB (10,000 rows), to 413
MB (300,000 rows), up to 827MB (600,000 rows). Unless otherwise
specified, each spreadsheet has 100 columns and contains only
numeric values, without any blank cells. Furthermore, we use
two real-world financial spreadsheet files from AccessHolding
to study the performance of our parser in comparison with the
state-of-the-art in a real setting. For data protection reasons, we
anonymized the files before running our benchmarks. The first
file, loans, has 280, 973 rows, 110 columns, and a compressed size
of 172 MB. The second file, transactions, has 447, 241 rows, 84
columns, and a compressed size of 193MB. Both files contain a
mix of different data types, i.e., integers, dates, floats, booleans,
and text. While the first file has only a few empty cells, the second
one has significantly more (i.e. 20 columns are almost empty).
Baselines.We chose to implement our prototype in R because
of its popularity among data scientists. Hence, we experimen-
tally compare SheetReader with existing R packages for loading
spreadsheets. After analyzing several packages for Excel pars-
ing, we chose to include the openxlsx and readxl packages1 as
they showed the best performance for lowest memory usage and
fastest runtime, respectively. Both packages work solely with
Excel files and are written in C++. Openxlsx employs a hybrid
DOM/SAX approach, and extracts cell values using regular ex-
pressions, while readxl first constructs a DOM tree from the
spreadsheet XML using the XML DOM parsing library RapidXML
and then processes the tree further to extract the cell values.
Software Configuration. We use the following versions of R,
R packages, and libraries: R 4.0.3, data.table 1.13.2, openxlsx
4.2.3, readxl 1.3.1, miniz 2.1.0, libdeflate 1.7.We implemented
our prototype in C++ and compiledwith gcc/g++ 9.3.0. By default,
decompression uses 1 thread and parsing uses 8 and 2 threads for
the consecutive and the interleaved approach, respectively. If ap-
plicable, shared strings are parsed in parallel using one additional
thread. In the consecutive approach, we determine the buffer size
for the decompressed content from the ZIP metadata. In the in-
terleaved approach, we allocate a buffer with 1024 32KB-sized
elements after empirically evaluating several configurations.

1https://github.com/ycphs/openxlsx, https://readxl.tidyverse.org/

https://github.com/ycphs/openxlsx
https://readxl.tidyverse.org/
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Figure 8: Performance overview of SheetReader and exist-
ing R packages for parsing real-world spreadsheets.
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Figure 9: Performance overview of SheetReader and exist-
ingRpackages for parsing synthetic spreadsheets contain-
ing only numeric values.

5.2 Comparative Analysis
Comparison usingReal Data. Figure 8 compares SheetReader’s
interleaved parsing approach with the state-of-the-art in terms
of runtime and memory usage on the two real-world datasets.
Furthermore, we parse the strings parallel to the worksheet in
a single thread that performs both decompression and parsing.
SheetReader is 3.2× faster than readxl, the fastest existing solu-
tion, while also consuming 26× and 20× less memory for loans
and transactions, respectively. Compared to the most memory-
efficient existing solution, openxlsx, SheetReader is 17× faster
with 10.7× less memory consumption in the case of the loans file.
In the case of transactions, it is 15× faster with 8.6× less memory
consumption. Overall, our results demonstrate that SheetReader
provides runtime and memory-efficient spreadsheet parsing.
Scalability with Spreadsheet Size. Figure 9 shows the runtime
and memory usage as we increase the size of our synthetically
generated spreadsheets. Comparing the runtime performance,
openxlsx exhibits very long runtimes even for moderately sized
files, taking more than 2 minutes for a spreadsheet with 200,000
rows. Readxl, which is the fastest existing solution for loading
spreadsheets into R, reaches 65 seconds for the largest file. Our
approach, SheetReader, outperforms both baselines by around 2.5
to 3 times across all tested worksheet sizes.

In terms of memory efficiency, SheetReader has a considerable
lead over the other packages, consuming at most 728 MB for the
largest file of 600,000 rows. Specifically, SheetReader consumes up
to 40× and 20× less memory than readxl (29.5 GB) and openxlsx
(16.3 GB), respectively.

The excessive memory usage of readxl is caused by its un-
derlying XML DOM parsing approach. The generated DOM tree
that is kept in memory for subsequent processing consumes large
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Figure 10: Benchmarks of the Consecutive and the Inter-
leaved parsing approaches.

amounts of memory. As a result, the memory usage of readxl
is consistently over 10 times more than the size of the uncom-
pressed source worksheet, reaching almost 30 GB for 600,000
rows. For consumer machines, even worksheets with 200,000
or 300,000 rows can saturate all available memory (9 GB and
13.5 GB respectively in this benchmark), which would in turn
also impact the runtime. That is, the runtime measurements will
become significantly worse than the ones shown here if we use
a machine that does not have a sufficient amount of memory.

The package openxlsx employs an approach that can be con-
sidered a mix between DOM and SAX parsing. Instead of extract-
ing the whole document into a DOM tree, it extracts only the
significant parts of the document into lists using regular expres-
sions. However, it does not directly process the extracted values.
Specifically, while the extraction of values from the worksheet
is done in C++, the lists containing the values are returned to R.
Then, the R wrapper function that wraps the extraction processes
these values further to build the target Dataframe. Overall, while
openxlsx uses considerably less memory than readxl, its mem-
ory usage is still excessive, i.e., around 8 GB for 300,000 rows and
reaching 16 GB for 600,000 rows.

5.3 SheetReader Analysis
Parsing Approaches Comparison.We introduced two differ-
ent parsing approaches for SheetReader; consecutive and inter-
leaved. This benchmark studies the trade-offs between their run-
time and memory usage. Particularly, it aims to determine the
speedup of the consecutive over the interleaved approach, and to
show how the consecutive approach achieves this speedup at the
expense of an increased memory usage.

Figure 10 shows the results when applying both approaches
to the same synthetic spreadsheets and increasing the spread-
sheet size. Both approaches exhibit a linear increase in runtime
and memory usage that is proportional to the size, with the con-
secutive approach consistently having a better runtime but also
substantially higher memory usage. In contrast, the increase in
memory usage of the interleaved approach is negligible.

In the consecutive approach, the decompression step requires
two buffers, one for the compressed and one for the decompressed
content. Therefore, the maximum memory usage is effectively
determined by the sum of the sizes of the compressed and the
decompressed worksheet. The intermediate data structure is allo-
cated only after the deallocation of the compressed document (i.e.,
after decompression), while it is generally considerably smaller
than the worksheet. As such, it has no impact on the maximum
memory usage. In contrast, in the interleaved approach, since the
actual parsing process uses a constant amount of memory, any
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Figure 11: Benchmarks of parsing the shared strings se-
quentially or parallel to the worksheet.

increase of the memory usage over different worksheet sizes is
caused by the intermediate data structure, whose size depends
on the input worksheet.

Furthermore, the benchmark shows that while the runtime
rises linearly for both approaches, the increase for the interleaved
approach is stronger than for the consecutive one, culminating in
a difference of around 8 seconds for 600,000 rows.

Our benchmark confirms the advantages and disadvantages
of both parsing approaches discussed in Section 3. Additionally,
based on the experimental results, we propose using the inter-
leaved approach as the "safe default" option because it loads the
spreadsheet data in an acceptable amount of time while only
rarely consuming more memory than the one that is already
required by the target environment to store the same data. Users
can choose the consecutive approach if they require faster loading
times and have a machine with a sufficient amount of memory.
ParallelizingWorksheet and Shared Strings Parsing. Apart
from the choice of parsing approach, in the case of spreadsheet
systems that store strings separately from the worksheet such
as Excel, we can also choose whether to parse these documents
sequentially or in parallel. To compare the performance of these
two approaches, we generate synthetic spreadsheets for various
row counts that contain a mix of different data types. Specifically,
the synthetically generated mixed-type spreadsheets have 40
columns of floating point values, 30 columns of integer values,
20 columns of text with 25% unique values, and 10 columns of
text with 75% unique values.

As expected, Figure 11 shows that parsing the shared strings
and the worksheet in parallel yields runtime improvements. The
interleaved parsing approach benefits the most from this paral-
lelization, reaching a runtime reduction of around 30%. However,
contrary to our expectations, the parallel approach has a lower
memory usage than the sequential one for almost all benchmarks.
To determine the cause of this, next we examine the memory
characteristics of the benchmarks in more detail.
Memory Usage Analysis. Figure 12 shows a detailed memory
profile of the sequential and parallel approaches when parsing the
largest document (600,000 rows) from our previous experiment
using the consecutive approach. To identify when and where the
maximum memory usage occurred, we measure it periodically
and associate different time spans with different steps in the pars-
ing process. The green decompress and red parsing sections cor-
respond to worksheet parsing, while the yellow shared_strings
section combines both steps in the shared strings parsing process.
In the parallel benchmark, the yellow section depicts the extra
time taken by shared strings parsing. While worksheet parsing
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Figure 12: Memory measurements of the sequential and
the parallel approach (consecutive parsing).

finishes at around 15 seconds, shared strings parsing takes over
10 extra seconds to finish, delaying the dataframe construction.

Both benchmarks show that parsing the shared strings table is
two to three times slower than parsing the worksheet. The run-
time difference can be explained by the inability to parallelize the
parsing process for the shared strings table, while the worksheet
is distributed among 8 threads. Furthermore, the memory usage
increases steadily during the parsing of the shared strings table.
This increase in memory usage stems from allocating space to
copy the strings out of the original document, so that we can
return them to the user after the deallocation of the document.

The reason why parsing the worksheet and shared strings
table in parallel has a lower memory usage than doing so se-
quentially is a combination of three factors: the dynamic string
allocations, the long runtime of shared strings parsing compared
to worksheet parsing, and the order of the two parsing steps in
the sequential approach. The sequential approach processes all
shared strings and allocates space for them before decompress-
ing the worksheet, which represents a constant base memory
usage for all subsequent steps, including any processing of the
worksheet where shared strings are not required. As a result, the
maximum memory usage is reached when the worksheet is de-
compressed, since the copied strings occupy additional memory
on top of the decompressed content. In the parallel approach,
since the shared strings parsing step is slow, by the time all
strings are copied, the worksheet is fully parsed and the source
document has been deallocated.

We conclude that for the sequential approach, the parsing of
the shared strings table should occur after the worksheet parsing
to reduce the maximum memory usage. Parsing the strings after
the worksheet has the additional benefit of allowing to filter out
unneeded strings, i.e., strings that do not occur in the specified
sheet. Swapping the order of the parsing steps in our prototype
is straightforward, as these steps are independent.
Impact of Thread Count. To evaluate the effectiveness of our
parallelization efforts, we measure the impact of the number of
used threads on the runtime for both the consecutive and the inter-
leaved approach. Figure 13 shows that the benefits decrease as we
increase the thread count in both parsing approaches. Particularly
for the interleaved approach, any noticeable runtime improve-
ment (5 to 10%) stops at only two parsing threads, while the
runtime actually increases with more than two threads. Further
analysis when running the benchmarks reveals that the decom-
pression thread becomes the limiting factor at this point, so that
any additional parsing threads only introduce more synchroniza-
tion overhead. Regardless of the number of parsing threads, the
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Figure 14: Impact of parallel decompression.

decompression is too slow and results in idle threads waiting for
a new available buffer element. Thus, the only way to further
reduce the runtime is accelerating the decompression.

The consecutive approach exhibits a more gradual runtime
reduction, with the increase from 1 to 8 threads reducing the
runtime by almost half (20 to 12 seconds for 600,000 rows), while
the increase from 8 to 16 threads only has amarginal impact (12 to
10.5 seconds). We are again effectively limited by the speed of the
decompression step. Since this approach performs parsing after
the completion of the decompression, the slow decompression
component imposes the lower limit for the runtime.

5.4 Parallel Decompression
Since decompression is a runtime bottleneck, we performed an
experiment to determine the advantage that we can get from
parallelizing it. To that end, and since the current compression
used by the OOXML and ODF formats does not support paral-
lel decompression, we extracted the worksheet XML files from
the Excel files and re-compressed them with a modified Deflate
algorithm based on the MiGz library2. Furthermore, we estab-
lished boundaries in the Deflate stream after which there are
no back-references to previous blocks and stored the offsets of
these boundaries in the file metadata. The result is a valid De-
flate stream that can be decompressed with any existing library.
A decompression algorithm can now start full decompression
of the stream from any of the boundaries without requiring to
first fully decompress the previous blocks in the stream. There-
fore, we can parallelize the decompression of a single document.
Specifically, in our implementation we assign separate threads to
equally spaced boundaries. Each thread performs decompression

2https://github.com/linkedin/migz

and parsing in an interleaved manner (i.e., using our interleaved
approach) until it reaches the next boundary.

Figure 14 compares the consecutive approach without parallel
decompression with the interleaved approach that parallelizes
the decompression using our MiGz-derived algorithm when in-
creasing the thread count. We see that the parallel decompression
implementation outperforms the consecutive approach when us-
ing more than 2 threads, especially for larger files. In most cases,
using only 4 threads, the parallel decompression implementation
achieves the same runtime as the consecutive approach with 16
threads. In turn, 16 threads enable the MiGz-derived algorithm to
lower the runtime by an additional 35%. We also observe that in-
creasing the number of threads has a larger effect on the runtime
for the fully parallel implementation. Finally, we note that since
the individual threads employ the interleaved parsing approach,
the memory usage is significantly lower than the one of the con-
secutive approach. Therefore, parallel decompression allows us to
further reduce the runtime while retaining low memory usage.

5.5 Summary
Our experimental comparison with the existing solutions shows
the efficiency of our proposed spreasheet parsing architecture.
Overall, SheetReader with interleaved parsing loads spreadsheet
files 2× to 3× faster than the fastest existing solution while con-
suming up to 20× less memory than the most memory-efficient
existing solution. As such, our parser can process large spread-
sheets on current consumer machines without requiring an ex-
cessive amount of resources and degrading the user experience.

SheetReader offers an alternative consecutive parsing approach
which reduces the runtime by an additional 40% but also increases
thememory usage bymore than 4 times. Furthermore, parsing the
shared strings and the worksheet in parallel reduces the runtime
by 15% and 30% when using consecutive and interleaved parsing,
respectively. Parallelizing the parsing process itself grants the
consecutive parsing approach a 20% to 30% runtime reduction
when using 4 threads, while having only negligible impact on
the interleaved approach. Finally, we show that we could achieve
significant additional performance improvements by parallelizing
the decompression. Unfortunately, the current specification of
the OOXML and ODF formats does not allow this parallelization.

6 RELATEDWORK
While there is some work on extracting specific content from
spreadsheets, e.g., tables [10], there is no related work directly
focusing on spreadsheet parsing; current approaches rely on gen-
eralized XML parsing. Therefore, we review techniques proposed
for efficient parsing of XML and other text-based formats.
XML Parser Parallelization. Parallelizing XML parsing is a
non-trivial task [19]. As the XML format is self-describing, the
difficulty lies in splitting an XML document into chunks that can
be parsed in parallel. One line of work proposes a two-pass ap-
proach to build an XML skeleton structure, which allows to split
the document before parsing and merge the individual results
efficiently [17, 21]. Follow-up work proposes to also parallelize
the first pass by letting multiple threads create multiple skeletons
for each chunk, and then merging them into one [22]. Another
line of work shows that producing chunks with an arbitrary num-
ber of start and end XML tags and then merging partial results,
offers better scalability than the two-step approach on multicore
systems [25]. Furthermore, leveraging SIMD (single-instruction

https://github.com/linkedin/migz


multiple-data) instructions of modern CPUs, allows to paral-
lelize character scanning and to avoid cache misses, conditional
branches and branch mispredictions, thereby further minimizing
the parsing runtime [2]. Both lines of work are complementary
to SheetReader, as they can be employed to better split the XML
and parallelize character scanning at a lower level.
XML Parser Compilers. An approach to accelerate the parsing
procedure is to specialize the parser to a given schema. Parser
compilers generate parsers based on predefined schemata. XML
Screamer [11] compiles specialized parsers that merge parsing
and deserialization to avoid expensive data copying and trans-
formation operations. Chiu and Lu [4] propose an intermediate
representation with a generalized automata approach, through
which they generate efficient parsers. Although schema-based
specialization leads to better performance, it does not directly ex-
ploit spreadsheet-specific properties to further optimize parsing.
Parsing Text-Based Formats. Parsing widespread text-based
formats, e.g., CSV and JSON, is similarly challenging as parsing
XML. There has been extensive work on improving the perfor-
mance of CSV parsing, e.g., by employing speculative parsing
techniques [7], by optimizing the parsing process for multicore
CPUs [18], and by employing GPUs for parallelization [12, 26].
In-situ data processing approaches also employ several optimiza-
tions, such as selective parsing and just-in-time compilation [8].
Furthermore, multi-hypothesis CSV parsing addresses the chal-
lenge of validating files with unknown schemata [6].

The JSON format shares more similarities with the XML for-
mat, as they are both self-describing. Several approaches have
been proposed to improve the performance of JSON parsing.
For example, Sparser [20] employs raw filtering through SIMD
instructions before parsing, while Mison [16] speculatively pre-
dicts the physical location of necessary fields through structural
indices. Moreover, simdjson [14] proposes to limit the set of
employed instructions to increase the parsing and validation per-
formance of JSON documents on commodity CPUs. We see these
lines of work as orthogonal to ours, as they can be applied in the
context of SheetReader to further increase performance.

7 CONCLUSIONS
Spreadsheet systems are popular for accessible data analysis but
have limited capabilities when it comes to data science appli-
cations. Existing solutions for loading spreadsheets into other
data science environments to perform advanced analytics ex-
hibit critical performance problems in terms of either runtime or
memory usage. To address these problems, this paper introduces
SheetReader, a specialized spreadsheet parsing architecture that
operates in two different parsing modes, consecutive and inter-
leaved. To improve the runtime, SheetReader parallelizes the
parsing by exploiting the flat and repeating structures inherently
found in spreadsheet formats. It further uses task parallelism to
process worksheets and strings of the spreadsheet concurrently.
To reduce the memory utilization, SheetReader tightly couples
decompression and parsing. To provide a general solution for
different target environments, it stores the retrieved spreadsheet
values in an environment-agnostic intermediate data structure.
That way, one can easily create bindings for different targets
without the need to modify the core parser.

Our evaluation showed that SheetReader is highly efficient
in terms of both runtime and memory usage. The consecutive
approach offers a significant improvement in runtime and a mod-
erate reduction in memory usage, while the interleaved approach

yields a more moderate runtime improvement but has very low
memory consumption. Since decompression creates a bottleneck,
we also introduced and evaluated a method for parallel decom-
pression, showing that with fully data-parallel processing we can
further reduce the runtime while keeping the memory usage low.

In future work, we plan to investigate the applicability of
existing solutions that partially parallelize the decompression of
general Deflate streams, such as pugz [9]. Furthermore, we plan
to extend our prototype for other data science environments (e.g.,
Python) and to incorporate SheetReader as a DBMS spreadsheet
wrapper, similar to SCANRAW [3].
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