
Answering Graph Pattern Queries using Compact
Materialized Views

Michael Lan
New Jersey Institute of Technology

New Jersey, USA
mll22@njit.edu

Xiaoying Wu*

School of Computer Science, Wuhan
University

Wuhan, China
xiaoying.wu@whu.edu.cn

Dimitri Theodoratos
New Jersey Institute of Technology

New Jersey, USA
dth@njit.edu

ABSTRACT
We address the problem of evaluating graph pattern queries involv-
ing reachability (edge-to-path mapping) and direct (edge-to-edge
mapping) relationships under homomorphisms on data graphs
using materialized graph pattern views. We propose an original
approach for view materialization which materializes views as
summary graphs, an approach that records, in a compact way, all
the homomorphisms of the view to the data graph. In this context,
we characterize view usability in terms of query edge coverage
and provide necessary and sufficient conditions for answering
queries using views. We design algorithms for deciding whether
a query can be answered using a set of views, for generating the
summary graph of a query from the view materializations, and for
producing a minimal view set capable of answering a query. Our
experimental evaluation demonstrates that our approach outper-
forms, by several orders of magnitude, a state-of-the-art approach
which does not use materialized views, and substantially improves
upon its scalability.

ACM Reference Format:
Michael Lan, Xiaoying Wu, and Dimitri Theodoratos. 2022. Answering
Graph Pattern Queries using Compact Materialized Views. In Proceed-
ings of ACM Conference, Edinburgh, UK, March 29, 2022 (DOLAP ’22),
10 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Graphs model complex relationships between entities in a multi-
tude of modern applications. A fundamental operation for query-
ing, exploring and analyzing graphs is graph matching, which
consists of finding the matches of a query graph pattern in the data
graph. Graph matching is crucial in many application domains,
such as social network analysis [8], protein interaction analysis
[27], cheminformatics [28], knowledge bases [1, 30], and road
network management [3].

Existing approaches are characterized by: (a) the type of edges
the patterns have, and (b) the type of morphism used to map
the pattern to the data graph. An edge in a query pattern can be
either a child edge, which represents a parent-child relationship
in the data graph (edge-to-edge mapping) [4, 6, 10, 24, 25, 31,
33], or a descendant edge, which represents a node reachability
relationship in the data graph (edge-to-path mapping) [7, 13, 22].
The morphism determines how a pattern is mapped to the data
graph and, in this context, it can be an isomorphism (injective
mapping) [6, 25, 31, 33] or a homomorphism (general mapping)
[4, 7, 13, 22, 24]. Graph simulation [17] and its variants [12, 23]
are another way to match patterns to data graphs.

*The research of this author was supported by the National Natural Science Founda-
tion of China under Grant No. 61872276.

© Copyright 2022 for this paper by its author(s). Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0)

Earlier contributions considered isomorphisms and edge-to-
edge mappings, while more recent ones focus on homomorphic
mappings. By allowing edge-to-path mapping on graphs, patterns
with descendent edges are able to extract matches “hidden” deeply
within large graphs which might be missed by patterns with only
child edges. On the other hand, the patterns with child edges can
discover important parent-child relationships in the data graph
which can be missed by patterns with only descendant edges. We
adopt, in this paper, a general framework that considers patterns
which allow both child and descendant edges. This framework
incorporates the benefits from both types of edges.

Graph pattern matching is an NP-hard problem, even for iso-
morphic matching of patterns with only child edges [15]. Finding
the homomorphic matches of query patterns which involve de-
scendant edges on a data graph is more challenging. Descendant
edges in a query pattern increase the number of results since they
are offered more chances to be matched to the data graph com-
pared to child edges. Furthermore, finding matches of descendant
edges to the data graph is an expensive operation and requires
the use of a node readability index [9, 18, 29]. Despite the use of
reachability indexes, evaluating descendant edges remains a costly
operation. Existing approaches for evaluating pattern queries with
reachability relationships produce a huge number of intermediate
results (that is, results for subgraphs of the query graph which do
not appear in any result for the query). As a consequence, existing
approaches do not scale satisfactorily when the size of the data
graph increases.

Answering queries using materialized views is a well known
technique for improving the performance of query evaluation and
for evaluating queries without accessing the base data, in particular
in a distributed environment [11, 14, 16, 20, 40]. The idea is to
pre-compute and store the answers of views and to rewrite an
incoming query using exclusively the view materializations, if the
query language is closed [16], or to otherwise provide a process for
computing the query answer from the view materializations [20].
Materialized views can also be effectively used for addressing the
data scalability problem of queries.

In this paper we adopt a novel approach for materializing graph
pattern views over data graphs: a view materialization is a graph,
called a summary graph of the view, which is a compact represen-
tations of the view answer. A summary graph constitutes a search
space for the view answer and the view results can be enumerated
by applying multiway joins while traversing the graph.

Contribution. The main contributions of the paper are as follows:
• We consider hybrid queries (i.e., queries involving parent-child

and reachability relationships) to be mapped against large data
graphs using homomorphisms. In this context, we address the
problem of answering graph pattern queries using materialized
views. This problem has not been addressed before for this type
of queries and views.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

DOLAP ’22, March 29, 2022, Edinburgh, UK Michael Lan, Xiaoying Wu, and Dimitri Theodoratos

• We suggest an original way for representing materialized views
as summary graphs. A summary graph of a view compactly
encodes all the homomorphisms of the view to the data graph
in a structure which is, typically, much smaller than the view
answer (Section 3).

• We characterize answering a query using one or multiple views
in terms of query edge coverage from view edges. We provide
necessary and sufficient conditions for answering a query using
materialized views (Section 4).

• We design an algorithm which identifies the views from a pool
of materialized views that can be used for answering a query,
and computes the summary graph of a query from the summary
graphs of these views (Section 5).

• Not all available views might be needed for answering a query.
We provide an algorithm which finds a minimal set of views
(this is a set of views which does not include redundant views)
from the view pool (Section 5).

• We run extensive experiments to evaluate the efficiency and
scalability of our approach for answering queries using views.
We also compare it with a previous state-of-the-art approach
which does not use materialized views. Our results show that
our view-based approach outperforms that approach by orders
of magnitude in terms of execution time and displays better
scalability (Section 6).

2 DATA GRAPH AND GRAPH PATTERN
QUERIES

In this section, we present the data model, graph pattern queries,
edge-to-path mappings and homomorphisms. We also present
related concepts that are needed for the results presented later.

Data Graph. We assume that the data is presented in the form of
a data graph defined below.

Definition 2.1 (Data Graph). A data graph is a directed node-
labeled graph 𝐺 = (𝑉 , 𝐸) where 𝑉 denotes the set of nodes and
𝐸 denotes the set of edges (ordered pairs of nodes). Let L be a
finite set of node labels. Each node 𝑣 in𝑉 has a label 𝑙𝑎𝑏𝑒𝑙 (𝑣) ∈ L
associated with it.

Given a label 𝑎 in L, the inverted list 𝐼𝑎 is the list of nodes
in 𝐺 whose label is 𝑎. Figure 1(a) shows a data graph 𝐺 with
labels 𝑎, 𝑏, 𝑐, 𝑑 and 𝑒. Label subscripts are used to distinguish
nodes with the same label. The inverted list of label 𝑎 in 𝐺 is
𝐼𝑎 = {𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5}

Definition 2.2 (Node reachability). A node 𝑢 is said to reach
node 𝑣 in 𝐺 , denoted by 𝑢 ≺ 𝑣 , if there exists a path from 𝑢 to 𝑣

in 𝐺 . Clearly, if (𝑢, 𝑣) ∈ 𝐸, then 𝑢 ≺ 𝑣 . Abusing tree notation, we
refer to 𝑣 as a child of 𝑢 (or 𝑢 as a parent of 𝑣) if (𝑢, 𝑣) ∈ 𝐸, and 𝑣

as a descendant of 𝑢 (or 𝑢 is an ancestor of 𝑣) if 𝑢 ≺ 𝑣 .

Given two nodes 𝑢 and 𝑣 in 𝐺 , in order to efficiently check
whether 𝑢 ≺ 𝑣 , graph pattern matching algorithms use some kind
of reachability indexing scheme. In most reachability indexing
schemes the data graph node labels are the entries in the index for
the data graph [29]. Our approach can flexibly use any labeling
scheme to check node reachability. In order to check if 𝑣 is a child
of 𝑢, the basic access information of the graph 𝐺 can be used; for
example, adjacency lists.

Queries. We consider graph pattern queries that involve child
and/or descendant edges.

Definition 2.3 (Graph Pattern Query). A query is a graph 𝑄 .
Every node 𝑥 in 𝑄 has a label 𝑙𝑎𝑏𝑒𝑙 (𝑥) from L. There can be two

types of edges in 𝑄 . A child (resp. descendant) edge denotes a
child (resp. descendant) structural relationship between the re-
spective two nodes. A graph pattern that contains both child and
descendant edges is a hybrid graph pattern.

Intuitively, a child edge represents an edge in the data graph 𝐺 .
A descendant edge represents a path of edges in 𝐺 . Figure 1(b)
shows a query 𝑄 . Single line arrows denote child edges while
double line arrows denote descendant edges.

The match set 𝑚𝑠 (𝑥) of a node 𝑥 in 𝑄 is the inverted list
𝐼𝑙𝑎𝑏𝑒𝑙 (𝑥) of the label of node 𝑥 . A match of an edge 𝑒 = (𝑥,𝑦)
in 𝑄 is a pair (𝑢, 𝑣) of nodes in 𝐺 such that 𝑙𝑎𝑏𝑒𝑙 (𝑥) = 𝑙𝑎𝑏𝑒𝑙 (𝑢),
𝑙𝑎𝑏𝑒𝑙 (𝑦) = 𝑙𝑎𝑏𝑒𝑙 (𝑣) and: (a) 𝑢 ≺ 𝑣 if 𝑒 is a descendant edge, while
(b) (𝑢, 𝑣) is an edge in 𝐺 if 𝑒 is a child edge. The match set 𝑚𝑠 (𝑒)
of 𝑒 is the set of all the matches of 𝑒 in 𝐺 .

The match set 𝑚𝑠 (𝑒) of an edge 𝑒 = (𝑥,𝑦) on a data graph 𝐺

can be computed using the match sets𝑚𝑠 (𝑥) and𝑚𝑠 (𝑦) along with
reachability information on the nodes of 𝐺 (if 𝑒 is a descendant
edge), or the adjacency lists for the nodes of 𝐺 (if 𝑒 is a child
edge).

The notion of node reachability provided in Definition 2.2 for
nodes in a data graph is extended to nodes in a graph pattern in a
natural way.

Homomorphisms. Queries are matched to the data graph using
homomorphisms.

Definition 2.4 (Graph Pattern Homomorphism to a Data Graph).
Given a graph pattern 𝑄 and a data graph 𝐺 , a homomorphism
from 𝑄 to 𝐺 is a function ℎ mapping the nodes of 𝑄 to nodes of
𝐺 , such that: (1) for any node 𝑥 ∈ 𝑄 , 𝑙𝑎𝑏𝑒𝑙 (𝑥) = 𝑙𝑎𝑏𝑒𝑙 (ℎ(𝑥)); and
(2) for any edge (𝑥,𝑦) ∈ 𝑄 , if (𝑥,𝑦) is a child edge, (ℎ(𝑥), ℎ(𝑦))
is an edge of 𝐺 , while if (𝑥,𝑦) is a descendant edge, ℎ(𝑥) ≺ ℎ(𝑦)
in 𝐺 .

Figure 1(a,b) shows a homomorphism ℎ of query 𝑄 to the data
graph𝐺 . Query edges (𝐴1, 𝐵2) and (𝐶1, 𝐵2) which are child edges,
are mapped by ℎ to an edge in 𝐺 . The other edges of 𝑄 which
are descendant edges are mapped by ℎ to a path of edges in 𝐺

(possibly consisting of a single edge).
Homomorphisms can be also defined between query graph

patterns as follows.

Definition 2.5 (Homomorphism between Graph Patterns). Given
a graph pattern 𝑉 and another graph pattern 𝑄 , a homomorphism
from𝑉 to 𝑄 is a function ℎ mapping the nodes of𝑉 to nodes of 𝑄 ,
such that: (1) for any node 𝑥 ∈ 𝑉 , 𝑙𝑎𝑏𝑒𝑙 (𝑥) = 𝑙𝑎𝑏𝑒𝑙 (ℎ(𝑥)); and (2)
for any edge (𝑥,𝑦) ∈ 𝑉 , if (𝑥,𝑦) is a child edge, (ℎ(𝑥), ℎ(𝑦)) is a
child edge of 𝑄 , while if (𝑥,𝑦) is a descendant edge, ℎ(𝑥) ≺ ℎ(𝑦)
in 𝑄 .

Note that if (𝑥,𝑦) is a descendant edge in 𝑉 , the path (of child
and/or descendant edges) in 𝑄 from ℎ(𝑥) to ℎ(𝑦), can be a single
child or descendant edge. Figures 2(a) and (b) show a query 𝑄

and a query (view) 𝑉1 with a homomorphism from 𝑉1 to 𝑄 .

Query Answer. We call an occurrence of a pattern query 𝑄 on
a data graph 𝐺 a tuple indexed by the nodes of 𝑄 whose values
are the images of the nodes in 𝑄 under a homomorphism from 𝑄

to 𝐺 .

Definition 2.6 (Query Answer). The answer of𝑄 on𝐺 , denoted
as 𝑄 (𝐺), is a relation whose schema is the set of nodes of 𝑄 , and
whose instance is the set of occurrences of 𝑄 under all possible
homomorphisms from 𝑄 to 𝐺 .

Answering Graph Pattern Queries using Compact Materialized Views DOLAP ’22, March 29, 2022, Edinburgh, UK

Figure 1: (a) A data graph 𝐺 , (b) A graph pattern query 𝑄 and a homomorphism from 𝑄 to 𝐺 , (c) The answer of 𝑄 on 𝐺 , (d) A
summary graph 𝐺𝑄 of 𝑄 on 𝐺 .

Figure 1(c) shows the answer of a query 𝑄 on a data graph 𝐺 .
If 𝑥 is a node in 𝑄 labeled by label 𝑎, an occurrence of 𝑥 in 𝐺 is
the image ℎ(𝑥) of 𝑥 in 𝐺 under a homomorphism ℎ from 𝑄 to 𝐺 .
The occurrence set of 𝑥 on 𝐺 , denoted as 𝑜𝑠 (𝑥), is the set of all
the occurrences of 𝑥 on 𝐺 . This is a subset of the match set𝑚𝑠 (𝑥)
containing only those nodes that occur in the answer of 𝑄 on 𝐺

for 𝑥 (that is, nodes that occur in the column 𝑥 of the answer). For
instance, the occurrence set of node 𝐴1 of query 𝑄 in Figure 1 is
{𝑎1, 𝑎3, 𝑎4}.

If 𝑒 = (𝑥,𝑦) is an edge in 𝑄 , an occurrence of 𝑒 in 𝐺 is a pair
(𝑢, 𝑣) of nodes from 𝐺 such that 𝑢 = ℎ(𝑥) and 𝑣 = ℎ(𝑦), where
ℎ is a homomorphism from 𝑄 to 𝐺 . The occurrence set of 𝑒 on
𝐺 , denoted as 𝑜𝑠 (𝑒), is the set of all the occurrences of 𝑒 on 𝐺 .
This is the set of pairs (𝑢, 𝑣) of nodes in 𝐺 such that there is an
occurrence 𝑡 of 𝑄 on 𝐺 with 𝑡 .𝑥 = 𝑢 and 𝑡 .𝑦 = 𝑣 (that is, 𝑜𝑠 (𝑒) is
in the projection of the answer of 𝑄 on 𝐺 on the columns 𝑥 and 𝑦).
Clearly, 𝑜𝑠 (𝑒) ⊆ 𝑚𝑠 (𝑒). In the example of Figure 1, the occurrence
set of the edge (𝐴1, 𝐵2) of query 𝑄 is {(𝑎1, 𝑏1), (𝑎3, 𝑏3), (𝑎4, 𝑏3)}.

3 SUMMARY GRAPHS, VIEWS AND VIEW
MATERIALIZATIONS

A Compact Representation for Query Answers. The number of
homomorphic matches of a graph pattern query on a data graph
can very large. Therefore, we use summary graphs to compactly
encode all possible homomorphisms of a query to a data graph.

Definition 3.1 (Query Summary Graph). The summary graph
𝐺𝑄 of a pattern query 𝑄 is a k-partite graph where 𝑘 is the number
of nodes in 𝑄 . Graph 𝐺𝑄 has an independent node set, denoted
𝑐𝑜𝑠 (𝑞), for every node 𝑞 ∈ 𝑄 such that 𝑜𝑠 (𝑞) ⊆ 𝑐𝑜𝑠 (𝑞) ⊆ 𝑚𝑠 (𝑞).
Every node in 𝑐𝑜𝑠 (𝑞) is incident to an edge in 𝐺𝑄 if 𝑞 is incident
to an edge in 𝑄 . The set 𝑐𝑜𝑠 (𝑞) is called the candidate occurrence
set of 𝑞 in 𝐺𝑄 . For every edge 𝑒𝑞 = (𝑥,𝑦) in 𝑄 , the set of edges
𝑐𝑜𝑠 (𝑒𝑞) between the data graph nodes in the sets 𝑐𝑜𝑠 (𝑥) and 𝑐𝑜𝑠 (𝑦)
satisfies the inclusion relationships: 𝑜𝑠 (𝑒𝑞) ⊆ 𝑐𝑜𝑠 (𝑒𝑞) ⊆ 𝑚𝑠 (𝑒𝑞).
The set 𝑐𝑜𝑠 (𝑒𝑞) is called the candidate occurrence set of 𝑒𝑞 in 𝐺𝑄 .

Figure 1(d) shows a summary graph 𝐺𝑄 for the query 𝑄 of
Figure 1(a), and Figure 2(c) shows a summary graph for the query
(view) 𝑉1 of Figure 2(b). A summary graph 𝐺𝑄 losslessly sum-
marizes all the occurrences of 𝑄 on 𝐺 . Similarly to factorized
representations of query results studied in the context of classical
databases and probabilistic databases [26], 𝐺𝑄 exploits compu-
tation sharing to reduce redundancy in the representation and

computation of query results. Besides recording candidate occur-
rences sets for the edges of query𝑄 , a summary graph also records
how the edges in the candidate occurrence sets can be joined to
form occurrences for query 𝑄 . A summary graph 𝐺𝑄 represents
a search space for the answer of 𝑄 on 𝐺 . We later present an
algorithm for enumerating the results of 𝑄 on 𝐺 from a summary
graph 𝐺𝑄 .

We define a partial order ≺ on the summary graphs of a query
𝑄 . Let𝐺1

𝑄
and𝐺2

𝑄
be two summary graphs for 𝑄 . Then𝐺1

𝑄
≺ 𝐺2

𝑄

iff for every edge 𝑒 in 𝑄 , the candidate occurrence set for 𝑒 in 𝐺1
𝑄

is a subset of the candidate occurrence set for 𝑒 in 𝐺2
𝑄

. Partial
order ≺ has a least element 𝐺𝑎

𝑄
called the answer graph of 𝑄 on

𝐺 , and a greatest element 𝐺𝑚
𝑄

called the match graph of 𝑄 on 𝐺 .
One can see that for any edge 𝑒 in 𝑄 , the candidate occurrence
set for 𝑒 in 𝐺𝑎

𝑄
is the occurrence set 𝑜𝑠 (𝑒), while the candidate

occurrence set for 𝑒 in 𝐺𝑚
𝑄

is the match set𝑚𝑠 (𝑒).

Views and View Materializations. A view is a named query.
The class of views is not restricted. Any type of query can be a
view. We materialize views on a data graph by storing a summary
graph of this view.

Definition 3.2 (View Materialization). The materialization of a
view 𝑉 on a data graph 𝐺 is a summary graph of 𝑉 on 𝐺 . A view
is characterized as materialized if it has a materialization.

Figure 2(c) shows the materialization of view 𝑉2 of the same
figure. One can see that this summary graph is the answer graph
of 𝑉2.

4 MATERIALIZED VIEW USABILITY IN
GRAPH PATTERN QUERY ANSWERING

We define now when a view is usable in answering a graph pattern
query and we provide necessary and sufficient conditions for
answering a query using materialized views.

View Usability in Graph Pattern Query Answering. Graph
pattern queries can be evaluated by computing the match sets
of their edges on a data graph 𝐺 and then joining them on their
common query nodes. Let 𝑒𝑞 be an edge in a query 𝑄 . The match
set of 𝑒𝑞 is 𝑚𝑠 (𝑒𝑞) and its occurrence set is 𝑜𝑠 (𝑒𝑞) (recall that
𝑜𝑠 (𝑒𝑞) ⊆ 𝑚𝑠 (𝑒𝑞)). If there is a materialized view 𝑉 which has
an edge 𝑒𝑣 such that 𝑜𝑠 (𝑒𝑞) ⊆ 𝑜𝑠 (𝑒𝑣) ⊆ 𝑚𝑠 (𝑒𝑞) for every data
graph, then 𝑉 can be used for evaluating 𝑄 since 𝑜𝑠 (𝑒𝑣) can be
used instead of 𝑚𝑠 (𝑒𝑞) in the join. That is, 𝑒𝑣 “covers” 𝑒𝑞 . In

DOLAP ’22, March 29, 2022, Edinburgh, UK Michael Lan, Xiaoying Wu, and Dimitri Theodoratos

Figure 2: (a) A graph pattern query 𝑄 , (b) Views 𝑉1,𝑉2,𝑉3,𝑉4, and a homomorphism from 𝑉1 to 𝑄 , (c) A summary graph 𝐺𝑉2 of 𝑉2
on data graph 𝐺 of Figure 1(a).

addition, as 𝑜𝑠 (𝑒𝑣) is not bigger than 𝑚𝑠 (𝑒𝑞), this option is, in
general, beneficial in the evaluation of𝑄 . We define view usability
in query answering based on this remark. As we will see later,
when this happens, other edges of view 𝑉 might cover an edge
in 𝑄 as well, in which case, their occurrence sets can also be
exploited in evaluating query 𝑄 . We now formalize query edge
coverage:

Definition 4.1. An edge 𝑒𝑞 of a query 𝑄 is covered by an edge
𝑒𝑣 of a view 𝑉 if 𝑜𝑠 (𝑒𝑞) ⊆ 𝑜𝑠 (𝑒𝑣) ⊆ 𝑚𝑠 (𝑒𝑞) on any data graph 𝐺 .

In the example of Figure 2, one can see that the edge (𝐵1, 𝐵2)
of view 𝑉1 covers the edge (𝐵1, 𝐵2) of query 𝑄1 since for every
mapping 𝑚 of 𝑄 to 𝐺 , there is a mapping of 𝑉1 to 𝐺 which is a
restriction of𝑚. We can now define view usability.

Definition 4.2. A view 𝑉 is usable in answering a query 𝑄 if
there is an edge in 𝑄 which is covered by an edge in 𝑉 .

View Usability Conditions. We characterize query edge coverage
in terms of homomorphisms from a view to the query. We say that
a homomorphism ℎ from a view 𝑉 to a query 𝑄 maps an edge
𝑒 = (𝑥,𝑦) in𝑉 to an edge 𝑒 = (𝑢, 𝑣) in 𝑄 if ℎ(𝑥) = 𝑢 and ℎ(𝑦) = 𝑣 .

THEOREM 4.3. Let 𝑒𝑞 be an edge in a graph pattern query 𝑄
and 𝑒𝑣 be an edge in a view𝑉 . Edge 𝑒𝑞 in 𝑄 is covered by edge 𝑒𝑣
in 𝑉 iff there is a homomorphism from 𝑉 to 𝑄 that maps 𝑒𝑣 to 𝑒𝑞
such that if 𝑒𝑞 is a child edge then 𝑒𝑣 is also a child edge.

The proof can be found in the full version of the paper [2]. In
the example of Figure 2, the edge (𝐵1, 𝐵2) of view 𝑉1 covers the
edge (𝐵1, 𝐵2) of query𝑄1. In contrast, (𝐶1, 𝐵2) in𝑄 is not covered
by (𝐶1, 𝐵2) in𝑉1 since the former is a child edge and the latter is a
descendant edge, and (𝐸1, 𝐵2) in 𝑉1 does not cover any edge in 𝑄

since it cannot be mapped to any edge in 𝑄 by a homomorphism
from 𝑉1 to 𝑄 .

Redundant Query Edges. Two graph pattern queries are equiv-
alent if they have the same answer on any data graph. A graph
pattern query can have redundant edges. An edge in a query 𝑄

is redundant if its removal from 𝑄 results in a query which is
equivalent to 𝑄 . A descendant edge 𝑒 = (𝑥,𝑦) in a query 𝑄 is
transitive if there is a path from 𝑥 to 𝑦 in 𝑄 other than edge 𝑒.
Clearly, a transitive edge is redundant. Therefore, transitive edges
can be removed from 𝑄 without altering the answer of 𝑄 .

Answering a Graph Pattern Query Using Multiple Views. In
the presence of one or multiple materialized views, it is possible

that the answer of query𝑄 can be computed using only the answers
of the materialized view(s).

Definition 4.4. Let 𝑄 be a query and V be a set of materialized
views which can be used for answering 𝑄 . Query 𝑄 can be an-
swered using the views in V if, for every data graph, the answer
of 𝑄 can be computed from a relational algebra expression in
{𝜎, 𝜋, ⊲⊳,∪} involving exclusively the answers of the views in V.

The following theorem provides necessary and sufficient condi-
tions for answering a query using exclusively a set of materialized
views.

THEOREM 4.5. Let 𝑄 be a query and V be a set of usable
views. Query 𝑄 can be answered using the views in V if and only
if every non-redundant edge in 𝑄 is covered by an edge of a view
in V.

The proof can be found in the full version of the paper [2]. In
the example of Figure 2, one can see that query𝑄 can be answered
using the view set V = {𝑉1,𝑉2,𝑉3,𝑉4} as all its edges are covered
by edges of the views in V.

Given an edge 𝑒 in a query 𝑄 and a view 𝑉 , the covering set
of 𝑒 in 𝑉 , denoted 𝑐𝑜𝑣 (𝑒,𝑉), is the set of edges in 𝑉 which cover
𝑒. Given a set of views V, the covering set of 𝑒 in V, denoted
𝑐𝑜𝑣 (𝑒,V), is defined as 𝑐𝑜𝑣 (𝑒,V) = ⋃

𝑉 ∈V 𝑐𝑜𝑣 (𝑒,𝑉). Based on
Theorem 4.5, 𝑄 can be answered using V if 𝑐𝑜𝑣 (𝑒,V) ≠ ∅ for
every non-redundant edge 𝑒 of 𝑄 .

Minimal Set of Views. A query edge can be covered by multiple
view edges of the same and/or different views. However, it is
possible that not all of the usable views are needed for answering
the query.

Definition 4.6. Let 𝑄 be a query and let V be a set of views
such that 𝑄 can be answered using the views in V. Set V is
minimal if there is no proper subset V ′ of V such that 𝑄 can be
answered using the views in V ′.

Set V ′ does not have redundant views. In the example of
Figure 2, query 𝑄 can be answered using the view set {𝑉1,𝑉2,𝑉3}
which is minimal. We present in the next section an algorithm
which computes a minimal set of views for answering a query.

5 ALGORITHMS
In this Section, we present an algorithm called SumGraphBuild
which computes a summary graph for a pattern query 𝑄 using the

Answering Graph Pattern Queries using Compact Materialized Views DOLAP ’22, March 29, 2022, Edinburgh, UK

materializations (summary graphs) of the views in a view set V.
Algorithm SumGraphBuild uses another algorithm, called Find-
QCover, which computes the covering set 𝑐𝑜𝑣 (𝑒,𝑉) of a view 𝑉

for each query edge 𝑒. Therefore, Algorithms SumGraphBuild
and FindQCover can be used to check if a query can be answered
using the view set V. Finally, we present an algorithm called Find-
MinimalVSet which finds a minimal set of views for answering a
query from a view pool.

Computing the Covering View Edges for a Query Edge. Algo-
rithm FindQCover, shown in Algorithm 1, takes as input a query𝑄
and a view 𝑉 and returns the covering sets of the edges and nodes
of 𝑄 in𝑉 through a function 𝑐𝑜𝑣 on the nodes and edges of𝑉 . The
covering set of a query node in a view is defined analogously to
the covering set of a query edge in a view. Algorithm FindQCover
first calls procedure homEnumerate to enumerate all the homo-
morphisms from 𝑉 to 𝑄 that satisfy the condition of Theorem 4.3
(line 5). It encodes homomorphisms as n-ary tuples, where n is
the number of nodes in 𝑉 (lines 1,2). The homomorphisms found
are stored in set 𝐻 (line 4). 𝑐𝑜𝑣 (𝑒) denotes the covering set of
query edge 𝑒 in 𝑉 and 𝑐𝑜𝑣 (𝑞) denotes the covering nodes of query
node 𝑞 in 𝑉 (line 6). Procedure homEnumerate performs a recur-
sive backtracking search to find (candidate) matches in 𝑄 for the
nodes of𝑉 iteratively, one at a time, according to the chosen order
(line 1) before returning any generated homomorphism. Finding
homomorphisms of graphs to graphs is an NP-hard problem but
this is not an issue in this context since the number of nodes and
edges of queries and views is restricted. Using set 𝐻 , Algorithm
FindQCover calls procedure findCover to compute the covering
nodes and edges of 𝑄 in 𝑉 .

Algorithm SumGraphBuild on the query 𝑄 and the view 𝑉1 of
Figure 2 will return 𝑐𝑜𝑣 ((𝐵1, 𝐵2)) = {(𝐵1, 𝐵2)}, 𝑐𝑜𝑣 ((𝐶1, 𝐵2)) =
∅, and 𝑐𝑜𝑣 ((𝐷1, 𝐵2)) = ∅, as there is only one homomorphism
from 𝑉1 to 𝑄 .

Computing a Query Summary Graph from the Summary
Graphs of the Materialized Views. Algorithm SumGraphBuild,
shown in Algorithm 2, takes as input a query 𝑄 and a set of
materialized views (summary graphs) V, and produces a summary
graph for 𝑄 in the form of a function 𝑐𝑜𝑣 on the nodes and edges
of 𝑄 representing their candidate occurrence sets. The algorithm
consists of two phases: the first phase initializes the candidate
occurrence sets (𝑐𝑜𝑠) of the nodes and edges of 𝑄 (line 1) and the
second phase builds a summary graph by iteratively refining the
candidate occurrence sets generated in the first phase until a fixed
point is reached (lines 2-4).

To initialize function 𝑐𝑜𝑠 for the node and edges of 𝑄, Sum-
GraphBuild begins by computing the covering sets of the nodes
and edges of 𝑄 with respect to each view 𝑉 in V using algorithm
FindQCover (Algorithm 1) (lines 3-4 in Procedure initializeCos()).
Then, for every node 𝑞 in 𝑄 , the algorithm intersects the occur-
rence sets 𝑐𝑜𝑠 (𝑣) of the covering nodes 𝑣 ∈ 𝑐𝑜𝑣 (𝑞) to obtain the
candidate occurrence set 𝑐𝑜𝑠 (𝑞) (lines 5-6). Similarly, for every
edge 𝑒𝑞 in 𝑄 , it intersects the occurrence sets 𝑐𝑜𝑠 (𝑒𝑣) of the cov-
ering edges 𝑒𝑣 ∈ 𝑐𝑜𝑣 (𝑒𝑞) to obtain the candidate occurrence set
𝑐𝑜𝑠 (𝑒𝑞) (lines 7-11).

In the second phase, SumGraphBuild refines function 𝑐𝑜𝑠 using
two procedures, which iterate on the edges of 𝑄 in different direc-
tions. The first procedure, called forwardPrune(), visits each edge
𝑒𝑞 = (𝑞𝑖 , 𝑞 𝑗) ∈ 𝑄 from the tail node 𝑞𝑖 to the head node 𝑞 𝑗 , and
removes node 𝑛𝑞𝑖 and its associated outgoing edges from 𝑐𝑜𝑠 (𝑞𝑖)
and 𝑐𝑜𝑠 (𝑒𝑞), respectively, if there is no 𝑛𝑞 𝑗

∈ 𝑐𝑜𝑠 (𝑞 𝑗) such that

Algorithm 1 Algorithm FindQCover.

Input: Graph pattern query 𝑄, and graph pattern view 𝑉 .

Output: Function 𝑐𝑜𝑣 on the nodes and edges of 𝑄 .
1. Pick an order 𝑣1, . . . , 𝑣𝑛 for the nodes of𝑉 ;
2. Let 𝑡 be a n-tuple initialized so that 𝑡 [𝑖] is 𝑛𝑢𝑙𝑙 for 𝑖 ∈ [1, 𝑛];
3. Let 𝑆𝑖 be the set of nodes of 𝑄 having the same label as view node 𝑣𝑖 ;

4. 𝐻 := ∅ /* set 𝐻 records the homomorphisms from𝑉 to 𝑄 */
5. homEnumerate(1, 𝑡);
6. For every node 𝑞 in 𝑄 and for every edge 𝑒 in 𝑄 , 𝑐𝑜𝑣 (𝑞) = ∅ and

𝑐𝑜𝑣 (𝑒) = ∅;
7. findCover();
8. return 𝑐𝑜𝑣;

Procedure homEnumerate(index 𝑖, tuple 𝑡)
1. if (𝑖=𝑛+1) then
2. add 𝑡 to 𝐻 and return;
3. 𝑁𝑖 := {𝑣𝑗 | (𝑣𝑖 , 𝑣𝑗) ∈ 𝑉 𝑜𝑟 (𝑣𝑗 , 𝑣𝑖) ∈ 𝑉 , 𝑗 ∈ [1, 𝑖 − 1] }
4. 𝑆′

𝑖
:= 𝑆𝑖 ;

5. for (every 𝑣𝑗 ∈ 𝑁𝑖) do
6. 𝑆′

𝑖
:= {𝑞 ∈ 𝑆′

𝑖
| 𝑞 ≺ 𝑡 [𝑗] 𝑜𝑟 𝑡 [𝑗] ≺ 𝑞 };

7. for (every 𝑞 ∈ 𝑆′
𝑖
) do

8. if ((𝑣𝑗 , 𝑣𝑖) is a child edge in𝑉 and (𝑡 [𝑗], 𝑞) is not a child edge
in 𝑄) or ((𝑣𝑖 , 𝑣𝑗) is a child edge in𝑉 and (𝑞, 𝑡 [𝑗]) is not a child
edge in 𝑄) then

9. Remove 𝑞 from 𝑆′
𝑖
;

10. for (every node 𝑞 ∈ 𝑆′
𝑖
) do

11. 𝑡 [𝑖] := 𝑞;
12. homEnumerate(𝑖 + 1, 𝑡);
Procedure findCover()

1. for (every tuple 𝑡 ∈ 𝐻) do
2. for (every node 𝑣 ∈ 𝑉) do
3. add 𝑣 to 𝑐𝑜𝑣 (𝑡 [𝑣]);
4. for every edge (𝑣𝑖 , 𝑣𝑗) in𝑉 do
5. if 𝑒 = (𝑡 [𝑣𝑖], 𝑡 [𝑣𝑗]) is an edge in 𝑄 which is a child edge if

(𝑣𝑖 , 𝑣𝑗) is a child edge then
6. add (𝑣𝑖 , 𝑣𝑗) to 𝑐𝑜𝑣 (𝑒);

(𝑛𝑞𝑖 , 𝑛𝑞 𝑗
) is an occurrence of 𝑒𝑞 in 𝑐𝑜𝑠 (𝑒𝑞). The second proce-

dure, called backwardPrune(), visits each edge 𝑒𝑞 = (𝑞𝑖 , 𝑞 𝑗) ∈ 𝑄

from the head node 𝑞 𝑗 to the tail node 𝑞𝑖 and removes 𝑛𝑞 𝑗
and its

associated incoming edges from 𝑐𝑜𝑠 (𝑞 𝑗) and 𝑐𝑜𝑠 (𝑒𝑞), respectively,
if there is no 𝑛𝑞𝑖 ∈ 𝑐𝑜𝑠 (𝑞𝑖) such that (𝑛𝑞𝑖 , 𝑛𝑞 𝑗

) is an occurrence in
𝑐𝑜𝑠 (𝑒𝑞). The above process is repeated until function 𝑐𝑜𝑠 becomes
stable, i.e., no further removals can be applied to it.

Finally, the refined function 𝑐𝑜𝑠 representing the summary
graph of 𝑄 is returned to the user (line 5).

Consider the query 𝑄 and the views 𝑉1,𝑉2,𝑉3 and 𝑉4 in the
example of Figure 2. Algorithm SumGraphBuild on the answer
graph for 𝑉1 of Figure 2(c) and the answer graphs for the views
𝑉2,𝑉3 and 𝑉4 (not shown in figure) will return the summary graph
of Figure 1(d) which is, in fact, the answer graph of 𝑄 .

Note that the candidate occurrence sets of the query node and
edges can be stored as bitmaps on data graph nodes resulting not
only in space savings but also in substantial performance savings
as all candidate occurrence set intersection operations can be
implemented as bit-wise AND operations.

Finding a Minimal View Set. Algorithm FindMinimalVSet, shown
in Algorithm 3, takes as input a set of views V which can be used
for answering 𝑄 and returns a minimal subset V ′ of V which
can be used for answering 𝑄 . The algorithm begins with an empty
set of views V ′. It adds a view to V ′ as long as this view covers
at least one query edge not covered by the set of views already

DOLAP ’22, March 29, 2022, Edinburgh, UK Michael Lan, Xiaoying Wu, and Dimitri Theodoratos

Algorithm 2 Algorithm SumGraphBuild.

Input: Graph pattern query 𝑄 and set V of materialized views on
𝐺 which can be used for answering 𝑄 .
Output: A summary graph of 𝑄 on 𝐺 (represented by function 𝑐𝑜𝑠

on the nodes and edges of 𝑄).
1. initializeCos();
2. while (𝑐𝑜𝑠 has changes) do
3. forwardPrune();
4. backwardPrune();
5. return 𝑐𝑜𝑠;

Procedure initializeCos()
1. For every node 𝑞 ∈ 𝑄 , initialize 𝑐𝑜𝑠 (𝑞) to be𝑚𝑠 (𝑞) .
2. For every edge 𝑒𝑞 ∈ 𝑄 , initialize 𝑐𝑜𝑠 (𝑒𝑞) to be ∅
3. for (every view𝑉 ∈ V) do
4. 𝑐𝑜𝑣 := 𝐹𝑖𝑛𝑑𝑄𝐶𝑜𝑣𝑒𝑟 (𝑄,𝑉);
5. for (every node 𝑞 ∈ 𝑄) do
6. 𝑐𝑜𝑠 (𝑞):=𝑐𝑜𝑠 (𝑞) ∩𝑣∈𝑐𝑜𝑣 (𝑞) 𝑐𝑜𝑠 (𝑣);
7. for (every edge 𝑒 ∈ 𝑄) do
8. if (𝑐𝑜𝑠 (𝑒) = ∅) then
9. 𝑐𝑜𝑠 (𝑒) := ∩𝑒𝑣∈𝑐𝑜𝑣 (𝑒)𝑐𝑜𝑠 (𝑒𝑣);

10. else
11. 𝑐𝑜𝑠 (𝑒) := 𝑐𝑜𝑠 (𝑒) ∩𝑒𝑣∈𝑐𝑜𝑣 (𝑒) 𝑐𝑜𝑠 (𝑒𝑣);

Procedure forwardPrune()
1. for (each edge 𝑒𝑞 = (𝑞𝑖 , 𝑞 𝑗) ∈ 𝑄 and each 𝑛𝑞𝑖 ∈ 𝑐𝑜𝑠 (𝑞𝑖)) do
2. if (there is no 𝑛𝑞 𝑗

∈ 𝑐𝑜𝑠 (𝑞 𝑗) such that (𝑛𝑞𝑖 , 𝑛𝑞 𝑗
) is an occurrence

in 𝑐𝑜𝑠 (𝑒𝑞)) then
3. Remove 𝑛𝑞𝑖 and its associated outgoing edges from 𝑐𝑜𝑠 (𝑞𝑖)

and 𝑐𝑜𝑠 (𝑒𝑞) , respectively;

Procedure backwardPrune()
1. for (each edge 𝑒𝑞 = (𝑞𝑖 , 𝑞 𝑗) ∈ 𝑄 and each 𝑛𝑞 𝑗

∈ 𝑐𝑜𝑠 (𝑞 𝑗)) do
2. if (there is no 𝑛𝑞𝑖 ∈ 𝑐𝑜𝑠 (𝑞𝑖) such that (𝑛𝑞𝑖 , 𝑛𝑞 𝑗

) is an occurrence
in 𝑐𝑜𝑠 (𝑒𝑞)) then

3. Remove 𝑛𝑞 𝑗
and its associated incoming edges from 𝑐𝑜𝑠 (𝑞 𝑗)

and 𝑐𝑜𝑠 (𝑒𝑞) , respectively;

Algorithm 3 Algorithm FindMinimalVSet.

Input: Graph pattern query 𝑄 and a set V of views which can be
used for answering 𝑄 .
Output: A minimal set V ′ ⊆ V of views which can be used for
answering 𝑄 .

1. V′ := ∅;
2. findViews();
3. removeRedundant();
4. return V′;

Procedure findViews()
1. 𝑈 := 𝑒𝑑𝑔𝑒𝑠 (𝑄); /* the set of uncovered edges of 𝑄 */
2. while (𝑈 ≠ ∅) do
3. Select an edge 𝑒 in 𝑈 ;
4. Find a view𝑉 in V which has an edge covering 𝑒;
5. Let 𝐶 be the set of edges in 𝑄 which are covered by𝑉 ;
6. V′ := V′ ∪ {𝑉 };
7. 𝑈 := 𝑈 −𝐶;

Procedure removeRedundant()
1. for (every view𝑉 ∈ V′) do
2. if (𝑄 can be answered using exclusively V′ − {𝑉 }) then
3. Remove𝑉 from V′;

selected in V ′. After all the query edges are covered, the algo-
rithm eliminates redundant views by checking if the removal of
that view would cause a query edge to be uncovered by the set of
views in V ′.

In the example of Figure 2, Algorithm 3 will initially add to
V ′ all the views 𝑉1,𝑉2,𝑉3 and 𝑉4 if the views are considered in
the order 𝑉1,𝑉2,𝑉3,𝑉4. It will subsequently identify the view 𝑉3
as redundant and it will remove it from V ′ to return the minimal
view set {𝑉1,𝑉2,𝑉4}.

As our experiments show, considering additional views for
answering a query 𝑄 beyond a set of views that cover all the edges
of 𝑄 does not significantly reduce the query evaluation cost. Thus,
a minimal set of views from the materialized view pool constitutes
a reasonable choice for answering a query.

6 EXPERIMENTAL EVALUATION
In this section, we present an experimental evaluation of our
materialized view approach in terms of time performance and
scalability.

6.1 Experimental Setting
Algorithms in comparison. We implemented our approach for an-
swering queries using materialized views. In our implementation
of Algorithm SumGraphBuild, we used bitmaps to represent query
and view node occurrence sets and adjacency lists and bit-wise
AND operations for intersecting sets. We refer to this approach in
this section as MatView.

We compare MatView with the approach presented in [37] for
evaluating hybrid graph pattern queries using homomorphisms
over a large graph. This approach employs an algorithm called
FltSim to construct a summary graph for the input query on a data
graph. Therefore, it can be directly compared with MatView, which
also constructs a summary graph for the input query. Algorithm
FltSim first applies a filtering technique to prune nodes and edges
from the data graph that do not participate in the query answer,
and uses the pruned data graph to construct an initial summary
graph. It then refines this summary graph using double simulation
to exclude nodes and edges that are unlikely to be part of the query
answer before returning it to the user.

The main difference between FltSim and SumGraphBuild lies
in the summary graph edge construction: FltSim needs to access a
reachability index on𝐺 in order determine the existence of reacha-
bility relationships between nodes in the candidate occurrence sets
and connect them by edges. In contrast, SumGraphBuild obtains
edges for the candidate occurrence sets of the query edges from
the candidate occurrence sets of the covering view edges. This
is much cheaper than accessing a reachability index and gives
the upper hand to MatView which benefits from the materialized
views. We refer to the base approach that does not use materialized
views as FltSim.

We do not compare MatView with other approaches as FltSim is
shown in [37] to outperform previous state-of-the art approaches
[7, 24, 39, 42] for this type of query patterns on data graphs.

Datasets. We ran experiments on two real-world graph datasets
which have been used in previous works [25, 31]. The datasets
have different structural properties and come from different appli-
cation domains, such as the web and social networks. Table 1 lists
the properties of the datasets. Its last column displays the average
number of incident edges (both incoming and outgoing) per node.

Answering Graph Pattern Queries using Compact Materialized Views DOLAP ’22, March 29, 2022, Edinburgh, UK

For our scalability experiments we vary the number of nodes and
edges of the data graphs and their number of distinct labels.

Table 1: Key statistics of the graph datasets used.

Domain Dataset # of nodes # of edges Avg #incident edges
Web BerkStan (bs) 685K 402K 11.76
Social DBLP (db) 317K 1049K 6.62

Queries. We generated 10 graph pattern query templates, shown
in Figure 3. These hybrid query templates involve child and de-
scendant edges. They have various and complex structures and
many of them were used in previous work [7, 24]. The number
associated with each node of a query template denotes the node
id. Query instances are generated by assigning labels to nodes.

Figure 3: Graph pattern query templates used in the evalua-
tion.

Views. For every run using MatView, a query 𝑄 was run with a set
of views V. Each view was randomly generated from the query
graph.

A query edge 𝑒𝑞 can be covered by more than one view edge.
Algorithm SumGraphBuild initially intersects the candidate oc-
currence sets of its covering view edges in order to compute the
candidate occurrence set of a query edge. The more covering
edges on 𝑒𝑞 are intersected, the smaller their resulting candidate
occurrence set would be when this is computed by algorithm
SumGraphBuild.

The average number of covering edges for a query edge 𝑒𝑞 in
𝑄 in a view set V is:

𝑐𝑜𝑣𝑎𝑣𝑔 (𝑄,V) =
∑︁
𝑉 ∈V

𝑐𝑜𝑣 (𝑒𝑞,𝑉)/|𝐸 (𝑄) |

When 𝑐𝑜𝑣𝑎𝑣𝑔 (𝑄,V) = 1, each query edge is covered by exactly
one view edge. We expect that the higher 𝑐𝑜𝑣𝑎𝑣𝑔 (𝑄,V) is, the
smaller the summary graph 𝐺𝑄 will be. The lowest value for
𝑐𝑜𝑣𝑎𝑣𝑔 (𝑄,V) is produced by a minimal set V.

For each query computation, we used a set of views V with
the same number of edges. With the exception of the experiment
where 𝑐𝑜𝑣𝑎𝑣𝑔 (𝑄,V) is varied, 𝑐𝑜𝑣𝑎𝑣𝑔 (𝑄,V) is manitained within
a fixed range: 1 ≤ 𝑐𝑜𝑣𝑎𝑣𝑔 (𝑄,V) ≤ 2. For the experiments in
sections 6.2, 6.3, and 6.6, all sets of views V used by MatView
contained views with mixed edges and exactly two edges, and
were chosen to be minimal using Algorithm 3.

Metrics. We measured the evaluation time of the queries in a
query set in seconds (sec). In the case of FltSim, this includes
the preprocessing time (i.e., the time spent on filtering data graph
nodes and edges). Given that the number of query results can be
very large, we terminated the evaluation of a query after finding
107 matches.

Our implementation was coded in Java. All the experiments
reported were performed on a 64-bit Linux machine equipped
with an Intel Xeon 6240 @ 2.60 Hz processor and 768GB RAM.

6.2 Benefit of Using Materialized Views
Figure 4 displays the elapsed time of FltSim versus MatView for
all the queries of Figure 3 on a bs data graph with 350K nodes
and 5 labels. The scale of the y-axis is logarithmic. We observe
that for all queries, MatView is several orders of magnitude better
than FltSim; in most cases, MatView is approximately three orders
of magnitude better than FltSim.

Figure 5 displays the elapsed time of FltSim versus MatView
for all the queries of Figure 3 on a dblp data graph with 250K
nodes and 20 labels. The scale of the y-axis is logarithmic. As
in the bs data graph, for all queries, MatView is several orders of
magnitude better than FltSim. In the case of 𝑄10, which has many
descendant edges, MatView is five order of magnitude better than
FltSim.

Figure 4: Elapsed time of FltSim and MatView for various
queries on a bs data graph with 350K nodes and 5 labels.

Figure 5: Elapsed time of FltSim and MatView for various
queries on dblp data graph with 250K nodes and 20 labels.

6.3 Data Graph Size Scalability
In this experiment, we evaluated the performance of the two algo-
rithms as the data set size grows. We ran queries on increasingly
larger randomly chosen subsets of a data graph, such that each
increasingly larger subset is a superset of the previous subset,
and recorded the elapsed time. Figure 6 shows the results, on a
logarithmic scale for y-axis, for queries 𝑄5 and 𝑄6 on the bs data
graph with 5 labels. Figure 7 shows the results, on a logarithmic
scale for the y-axis, for queries 𝑄7 and 𝑄9 on the dblp data graph
with 20 labels.

DOLAP ’22, March 29, 2022, Edinburgh, UK Michael Lan, Xiaoying Wu, and Dimitri Theodoratos

(a) 𝑄5

(b) 𝑄6

Figure 6: Elapsed time of FltSim and MatView on increasingly
larger number of data subsets of the bs data subset with 5
labels.

(a) 𝑄7

(b) 𝑄9

Figure 7: Elapsed time of FltSim and MatView on increasingly
larger number of data subsets of the dblp data subset with 20
labels.

In all cases, the execution time for all algorithms increased
when the total number of graph nodes increased. MatView pro-
vided significantly better performance than FltSim for evaluating
the two queries. In addition, the slope of 𝐹𝑙𝑡𝑆𝑖𝑚 is much steeper
than that of 𝑀𝑎𝑡𝑉𝑖𝑒𝑤 .

We also observed that in Figure 7, for the data point with 100K
nodes, the evaluation time for MatView was very small. This is
because, in contrast to the other data points, there were no matches
for query𝑄7; while FltSim had to spend time to filter out irrelevant
nodes and edges from the data graph before it discovered that the
query has an empty answer, MatView was able to quickly discover
that this query has empty answer.

6.4 Varying the Number of Covering View Edges

(a) 𝑄5

(b) 𝑄7

Figure 8: Elapsed time of MatView on queries run with varying
𝑐𝑜𝑣𝑎𝑣𝑔 (𝑄,V) (top label in x-axis) and a different number of
covering views (bottom label in x-axis) on a bs data set with
20 labels and 350K nodes.

We ran experiments comparing the performance of FltSim
and MatView varying 𝑐𝑜𝑣𝑎𝑣𝑔 (𝑄,V) (using a different number
of views). All views had mixed edges and exactly two edges. We
started by evaluating a query using a minimal set of views, where
each query edge is covered by only one covering edge, and gradu-
ally added one view at a time. Each time a new view was added,
𝑐𝑜𝑣𝑎𝑣𝑔 (𝑄,V) increased slightly. In Figure 8 we plotted the value
of 𝑐𝑜𝑣𝑎𝑣𝑔 (𝑄,V) for each new set of views V on the top row label
of the X-axis, and plotted the number of views in V on the bottom
row label of the X-axis.

The results for two of these queries, 𝑄5 and 𝑄7, that are run
on the bs data graph with 20 labels and 350K nodes are shown
in Figure 8. We observed that for sets of views with a higher
𝑐𝑜𝑣𝑎𝑣𝑔 (𝑄,V), the summary graphs obtained were only smaller,
but the differences did not have much impact on the evaluation
times. Thus, selecting a minimal view set for evaluating query 𝑄

is a viable solution.

Answering Graph Pattern Queries using Compact Materialized Views DOLAP ’22, March 29, 2022, Edinburgh, UK

6.5 Varying the Number of Edges per View
We compared the performance of MatView and FltSim using views
with two edges versus views with three edges. Both the set of
views with two edges and the set of views with three edges met
the condition where 1 < 𝑐𝑜𝑣𝑎𝑣𝑔 (𝑄,V) < 2; this was achieved by
varying the number of views within V such that, for each query
𝑄 , the set with three-edge views contained less views than the set
with two-edge views.

The results for all 10 queries evaluated on the bs data graph
with 20 labels and 350K nodes are shown in Figure 9. Overall, for
nine out of ten queries, we found that using views with three edges
obtained better evaluation times than using views with two edges,
while for one of the queries (𝑄3), they obtained approximately the
same evaluation time.

Figure 9: Elapsed time of MatView using 2-edge views and
3-edge views for various queries on a bs data subset with 20
labels and 350K nodes.

6.6 Varying the Number of Query Edges
We measured the execution time of the two appoaches varying
the number of edges in the queries. To obtain these queries, we
started with the original query, then removed one edge at a time.

The results for two of these queries, 𝑄2 and 𝑄5, on the bs data
graph with 20 labels and 350K nodes using a logarithmic scale
are shown in Figure 10. We can see that the execution time does
not follow a specific pattern as adding on more edge to a query
can increase or decrease the number of query results.

6.7 Summary
The experiments reported here have examined the performance of
pattern query evaluation algorithms on graphs. The results can be
summarized as follows:
- The performance of a graph pattern matching algorithm is

affected significantly by costly computations using the reacha-
bility index.

- The view materialization approach MatView significantly re-
duces evaluation times by using the view materializations in-
stead of accessing the reachability index.

- MatView shows the best efficiency and scalability performance
between the two algorithms, while displaying a negligible oc-
currence set intersection time cost. This demonstrates the effec-
tiveness of the view materialization approach.

7 RELATED WORK
Answering queries using views has been extensively studied for
relational data (see [16] for a survey) and tree data [5, 32, 35, 40,
41]. Due to the importance of graph pattern matching in many

(a) 𝑄2

(b) 𝑄5

Figure 10: Elapsed time of FltSim and MatView on queries
with a different edges on a bs data subset with 20 labels and
350K nodes.

application domains and the need to improve pattern matching
time on large graph data, there have recently been quite a few
contributions [11, 14, 21, 34, 36, 38] addressing the problem of
answering graph pattern queries using views.

Fan et al. [14] investigate this problem for graph pattern queries
based on graph simulation and study its complexity. Under this set-
ting, they characterize graph pattern matching using graph pattern
views based on pattern containment, and provide algorithms for
answering graph pattern queries using a set of materialized views.
This work was extended to address answering graph queries using
views in terms of subgraph isomorphism [36]. Another extension
[21] studies the approximation of graph pattern queries using
views based on both graph simulation and subgraph isomorphism.

More recently, Trindade et al. [11] presented a graph query
optimization framework called Kaskade which materializes graph
views to enable efficient query evaluation. Kaskade considers two
types of views: path views which match to a path of data nodes
with bounded length, and relational counterparts which are filters
and aggregates. Kaskade only supports query rewriting/answering
using a single view. Unlike previous work, it focuses on leveraging
structural properties of graphs and queries to enumerate views and
to select the best views to materialize based on a budget constraint.

To speed up graph query processing, Wang et al. [34] proposed
to acquire and utilize knowledge from the results of previously
executed queries, which are essentially materialized views. Views
considered for answering a new query are subgraphs or super-
graphs of the query. Unlike previous approaches this approach
considers the framework of a collection of small data graphs and
aims at minimizing the number of isomorphism tests that need to
be performed to find the data graphs that contain the query pattern.

DOLAP ’22, March 29, 2022, Edinburgh, UK Michael Lan, Xiaoying Wu, and Dimitri Theodoratos

Wu et al. [38] studied the problem of using materialized views
for homomorphic pattern matching on data graphs, but considered
only tree-pattern queries. Le et al. [19] studied the problems of
rewritting SPARQL queries using views, but did not consider
materializing these views.

The problem we address in this paper is different than those
addressed by existing graph view approaches. We consider general
graph patterns and not simply paths or trees. Our patterns contain
child and descendant edges, allowing for both edge-to-edge and
edge-to-path matches to the data graph. Patterns are mapped to the
data graph using homomorphisms which relax the strict one-to-one
mapping entailed by isomorphisms and, unlike graph simulation,
preserve the topology of the data graph. We adopt the concept of
a summary graph to encode all possible homomorphisms from a
query pattern to the data graph, and materialize views as summary
graphs. By generating a summary graph for a query pattern using
the summary graphs of multiple materialized views, our approach
greatly reduces the time to find the homomorphic matches of the
query.

8 CONCLUSION
We have addressed the problem of answering graph pattern queries
using graph pattern materialized views to efficiently evaluate such
queries on large data graphs under homomorphisms. We con-
sidered a broad class of pattern queries that involve both node
reachability and direct relationships. We suggested an original
approach which materializes views as summary graphs, therein
compactly representing the homomorphic matches of the views.
In this context, we characterized the view usability problem in
terms of query edge coverage, and provided necessary and suffi-
cient conditions for answering graph pattern queries using views.
We designed algorithms for deciding whether a query can be an-
swered from materialized views, for computing query summary
graphs from the summary graphs of the views, and for producing
minimal sets of views for answering a query. Our experimental
results showed that our approach outperforms, by several orders
of magnitude, approaches that do not use materialized views, and
provides much better scalability.

We are currently working on scale-independently answering
queries using views based on the framework set in this paper.

REFERENCES
[1] DBpedia. https://wiki.dbpedia.org/.
[2] Full version of the paper. https://drive.google.com/drive/folders/1MwxsgrrKGM_t

4IzWHdtgfYJzwlauFs6h?usp=sharing.
[3] Network Repository. http://networkrepository.com/.
[4] C. R. Aberger, S. Tu, K. Olukotun, and C. Ré. Emptyheaded: A relational

engine for graph processing. In SIGMOD, pages 431–446, 2016.
[5] A. Arion, V. Benzaken, I. Manolescu, and Y. Papakonstantinou. Structured

materialized views for XML queries. In VLDB, 2007.
[6] B. Bhattarai, H. Liu, and H. H. Huang. CECI: compact embedding cluster

index for scalable subgraph matching. In SIGMOD, pages 1447–1462, 2019.
[7] J. Cheng, J. X. Yu, and P. S. Yu. Graph pattern matching: A join/semijoin

approach. IEEE Trans. Knowl. Data Eng., 23(7):1006–1021, 2011.
[8] A. Ching, S. Edunov, M. Kabiljo, D. Logothetis, and S. Muthukrishnan. One

trillion edges: Graph processing at facebook-scale. PVLDB, 8(12):1804–1815,
2015.

[9] E. Cohen, E. Halperin, H. Kaplan, and U. Zwick. Reachability and distance
queries via 2-hop labels. SIAM J. Comput., 32(5):1338–1355, 2003.

[10] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. A (sub)graph isomorphism
algorithm for matching large graphs. IEEE Trans. Pattern Anal. Mach. Intell.,
26(10):1367–1372, 2004.

[11] J. M. F. da Trindade, K. Karanasos, C. Curino, S. Madden, and J. Shun.
Kaskade: Graph views for efficient graph analytics. In ICDE, pages 193–204,
2020.

[12] W. Fan, J. Li, S. Ma, N. Tang, Y. Wu, and Y. Wu. Graph pattern matching:
From intractable to polynomial time. PVLDB, 3(1):264–275, 2010.

[13] W. Fan, J. Li, S. Ma, H. Wang, and Y. Wu. Graph homomorphism revisited for
graph matching. PVLDB, 3(1):1161–1172, 2010.

[14] W. Fan, X. Wang, and Y. Wu. Answering pattern queries using views. vol-
ume 28, pages 326–341, 2016.

[15] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, 1979.

[16] A. Y. Halevy. Answering queries using views: A survey. VLDB J., 10(4), 2001.
[17] M. R. Henzinger, T. A. Henzinger, and P. W. Kopke. Computing simulations

on finite and infinite graphs. In FOCS, pages 453–462, 1995.
[18] R. Jin, Y. Xiang, N. Ruan, and D. Fuhry. 3-hop: a high-compression indexing

scheme for reachability query. In SIGMOD, pages 813–826, 2009.
[19] W. Le, S. Duan, A. Kementsietsidis, F. Li, and M. Wang. Rewriting queries on

SPARQL views. In Proc. of the Intl. Conf. on World Wide Web, pages 655–664,
2011.

[20] M. Lenzerini. Data integration: A theoretical perspective. In Proceedings of
the Twenty-first ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, June 3-5, Madison, Wisconsin, USA, pages 233–246. ACM,
2002.

[21] J. Li, Y. Cao, and X. Liu. Approximating graph pattern queries using views. In
CIKM, pages 449–458, 2016.

[22] R. Liang, H. Zhuge, X. Jiang, Q. Zeng, and X. He. Scaling hop-based reach-
ability indexing for fast graph pattern query processing. IEEE Trans. Knowl.
Data Eng., 26(11):2803–2817, 2014.

[23] S. Ma, Y. Cao, W. Fan, J. Huai, and T. Wo. Strong simulation: Capturing
topology in graph pattern matching. ACM Trans. Database Syst., 39(1):4:1–
4:46, 2014.

[24] A. Mhedhbi, C. Kankanamge, and S. Salihoglu. Optimizing one-time and
continuous subgraph queries using worst-case optimal joins. ACM Trans.
Database Syst., 46(2):6:1–6:45, 2021.

[25] A. Mhedhbi and S. Salihoglu. Optimizing subgraph queries by combining
binary and worst-case optimal joins. Proc. VLDB Endow., 12(11):1692–1704,
2019.

[26] D. Olteanu and M. Schleich. Factorized databases. SIGMOD Record, 45(2):5–
16, 2016.

[27] N. Przulj, D. G. Corneil, and I. Jurisica. Efficient estimation of graphlet
frequency distributions in protein-protein interaction networks. Bioinform.,
22(8):974–980, 2006.

[28] A. M. Smalter, J. Huan, Y. Jia, and G. H. Lushington. GPD: A graph pattern
diffusion kernel for accurate graph classification with applications in chemin-
formatics. IEEE ACM Trans. Comput. Biol. Bioinform., 7(2):197–207, 2010.

[29] J. Su, Q. Zhu, H. Wei, and J. X. Yu. Reachability querying: Can it be even
faster? IEEE Trans. Knowl. Data Eng., 29(3):683–697, 2017.

[30] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: a core of semantic
knowledge. In WWW, pages 697–706, 2007.

[31] S. Sun and Q. Luo. In-memory subgraph matching: An in-depth study. In
SIGMOD, pages 1083–1098, 2020.

[32] N. Tang, J. X. Yu, M. T. Özsu, B. Choi, and K.-F. Wong. Multiple materialized
view selection for XPath query rewriting. In ICDE, 2008.

[33] J. R. Ullmann. An algorithm for subgraph isomorphism. J. ACM, 23(1):31–42,
1976.

[34] J. Wang, N. Ntarmos, and P. Triantafillou. Indexing query graphs to speedup
graph query processing. In EDBT, pages 41–52, 2016.

[35] J. Wang and J. X. Yu. XPath rewriting using multiple views. In DEXA, 2008.
[36] X. Wang. Answering graph pattern matching using views: A revisit. In DEXA,

pages 65–80, 2017.
[37] X. Wu and D. Theodoratos. Evaluating hybrid graph pattern queries using

runtime index graphs. https://arxiv.org/abs/2112.08638.
[38] X. Wu, D. Theodoratos, D. Skoutas, and M. Lan. Evaluating mixed patterns on

large data graphs using bitmap views. In DASFAA, pages 553–570, 2019.
[39] X. Wu, D. Theodoratos, D. Skoutas, and M. Lan. Efficient in-memory evalua-

tion of reachability graph pattern queries on data graphs. In DASFAA, 2022.
[40] X. Wu, D. Theodoratos, and W. H. Wang. Answering XML queries using

materialized views revisited. In CIKM, 2009.
[41] X. Wu, D. Theodoratos, W. H. Wang, and T. Sellis. Optimizing XML queries:

Bitmapped materialized views vs. indexes. Inf. Syst., 38(6):863–884, 2013.
[42] Q. Zeng, X. Jiang, and H. Zhuge. Adding logical operators to tree pattern

queries on graph-structured data. PVLDB, 5(8):728–739, 2012.

	Abstract
	1 Introduction
	2 Data Graph and Graph Pattern Queries
	3 Summary Graphs, Views and View Materializations
	4 Materialized View Usability in Graph Pattern Query Answering
	5 Algorithms
	6 Experimental Evaluation
	6.1 Experimental Setting
	6.2 Benefit of Using Materialized Views
	6.3 Data Graph Size Scalability
	6.4 Varying the Number of Covering View Edges
	6.5 Varying the Number of Edges per View
	6.6 Varying the Number of Query Edges
	6.7 Summary

	7 Related Work
	8 Conclusion
	References

