
Pruning Network Based Knowledge Distillation for Offline

Handwritten Chinese Character Recognition

Zhuo Li1, Yongping Dan2, Zongnan Zhu, and Dinggen Zhang

1 Zhongyuan University of Technology, Zhengzhou, Henan, China
1lizhuo970604@gmail.com

2 6100@zut.edu.cn

Abstract

Recently, deep convolutional neural networks have brought great breakthrough in im-
age classification, which provide effective solution for the handwritten Chinese character
recognition problem. Researchers have experimented with various networks to increase
recognition accuracy. Although good accuracy is achieved on different networks, these
networks tend to be computation-intensive and memory-intensive that make them difficult
to be deployed on resource-constrained devices. To solve the problem, the paper proposes
an optimization to reduce the number of model parameters by using pruning network and
knowledge distillation. Besides, to improve the model’s ability to extract the input fea-
tures, an attention mechanism is adopted in the proposal. The experimental results show
that the number of parameters decreased by nearly 26%. At the same time, the recog-
nition accuracy improves by 1.17% with the value of 96.99% compared with the original
model. The optimization method presented in this paper not only improves the accu-
racy of handwritten Chinese characters recognition but also reduces the number of model
parameters.

1 Introduction

With the continuous development of Chinese culture, handwritten Chinese character recogni-
tion (HCCR) has attracted more and more attention and has been an important research topic.
HCCR has been widely used in many fields, such as automatic bill recognition, handwritten
Chinese character entry, cultural heritage preservation [1], automated teaching and office work.
In recent years, convolutional neural networks (CNNs) have made great progress and break-
throughs in the field of computer vision. This is mainly due to the design of different network
structures. For example, AlexNet [2], VGG [3], GoogLeNet [4] and ResNet [5], which have
shown excellent performance in HCCR tasks. Although these neural networks have made great
success in the field of HCCR, they have large requirements for computing resources, power con-
sumption and storage space, which make them are difficult to be deployed on embedded devices
such as ARM boards and FPGAs with limited hardware resources. For the reason that CNNs
has a large number of redundant computations [6]. Therefore, it has been a major research
topic to reduce the number of parameters while still ensuring accuracy for HCCR.

The remainder of this paper is organized as follows: Section 2 briefly reviews the related
works. Section 3 introduces the mothod of attention mechanism, model pruning, and knowledge
distillation. Section 4 gives the experimental results and experimental procedure in detal.
Section 5 summarizes this paper and describes the future work.

2 Related work

Attention mechanisms are widely used in deep learning to enhance the performance of CNNs.
[7] terms the ”Squeeze-and-Excitation” (SE) block, that adaptively recalibrates channel-wise
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feature responses by explicitly modelling interdependencies between channel. SE blocks bring
significant improvements in performance for existing state-of-the-art CNNs at slight additional
computational cost. [8] proposes convolutional block attention module (CBAM), CBAM se-
quentially infers attention maps along two separate dimensions, channel and spatial, then the
attention maps are multiplied to the input feature map for adaptive feature refinement. [9]
proposes an efficient channel attention (ECA) module, which only involves a handful of param-
eters while bringing clear performance gain. Avoiding dimensionality reduction is important
for learning channel attention, and appropriate cross-channel interaction can preserve perfor-
mance while significantly decreasing model complexity. [10, 11] uses weighting and Huffman
coding to minimize storage space furthermore. [12] eliminates the unimportant channles by
applying L1 regularization to the scale factor of the batch normalization (BN) layer. [13] uses
least absolute shrinkage and selection operator (LASSO) regression to sparse the weights and
cut out unimportant channels. Then, least squares method is used to ensure that the cropping
operation has little impaction on the features by using LASSO. [14] takes adopts a new Taylor
expansion-based criterion for approximating the loss function change caused by pruning net-
work parameters. This is a modern formula for achieving effective reasoning in neural networks
through pruning the convolution kernel. [15] introduces a new type of ensemble composed of one
or more full models and many specialist models which learn to distinguish fine-grained classes
that the full models confuse. [16] presents matching guided distillation (MGD) as an efficient
and parameter-free manner to solve the problem of adding the adaptation module in classic
methods.

3 Methods

3.1 Attention mechanism

Channel attention mechanism has demonstrated to offer great potential in improving the perfor-
mance of CNNs, which can be used for classification. The attention mechanism in deep learning
draws on human attentional thinking to focus on the key information in an image rather than
the whole image [17]. As shown in Fig. 1, the lightweight attention mechanism ECA module is
used for HCCR.
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Figure 1: ECA module

Given an aggregated feature y ∈ RC without dimensionality reduction, channel attention
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can be learned by Eq.(1).
ω = σ(Wy) (1)

Where W is a C × C parameter matrix. In order to capture local cross-channel interac-
tion, employing Eq.(2) to learn channel attention, aiming at guaranteeing both efficiency and
effectiveness.

Wk =


ω1,1 · · · ω1,k 0 0 · · · · · · 0

0 ω2,2 · · · ω2,k+1 0 · · · · · · 0
...

...
...

...
. . .

...
...

...
0 · · · 0 0 · · · ωC,C−k+1 · · · ωC,C

 (2)

Wk involves k × C parameters. When all channels share the same learning parameters.

ωi = σ

 k∑
j=1

wjyji

 , yji ∈ Ωki (3)

Where Ωki indicates the set of k adjacent channels of yi. Eq.(3) can be readily implemented
by a fast 1D convolution with kernel size of k.

ω = σ(C1Dk(y)) (4)

Where C1D indicates 1D convolution. Here, the method in Eq.(4) is called by ECA module,
which only consists of k parameters. The channel dimension C is proportional to the convolution
kernel size k, as shown in Eq.(5), where k is taken as shown in Eq.(6).

C = φ(k) = 2(γ∗k−b) (5)

k = ψ(C) =

∣∣∣∣ log2(C)

γ
+
b

γ

∣∣∣∣
odd

(6)

Where |t|odd indicates the nearest odd number of t. Setting γ and b to 2 and 1, respectively.
Clearly, through the mapping ψ, highdimensional channels have longer range interaction while
low-dimensional ones undergo shorter range interaction by using a non-linear mapping.

3.2 Model pruning

Shown in Fig. 2, channel pruning is a coarser-grained pruning, which is accomplished by deleting
the redundant channels of feature map. A scale factor γ is added for each channel, which is
then multiplied by the channel output. The network weights and these scale factors are jointly
trained, and the latter is sparsely regularized. The redundant channels which are determined
according to the scale factors, is pruned after training. The training objective feature is given
as Eq.(7).

L =
∑
(x,y)

l(f(x,w), y) + λ
∑
γ∈Γ

g(γ) (7)

Where (x, y) denotes the training input and output, w denotes the trainable weight, the
first term of Eq.(7) denotes the loss corresponding to regular convolutional network training,
g(·) is a sparsity-induced penalty on the scaling factors, and λ is the balance factor of the first
and second terms.
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In the course of the experiment, choosing g(s) = |s|, which is known as L1-norm and widely
used to achieve sparsity. BN has been adopted by most modern CNNs, as a standard method to
achieve fast convergence and better generalization performance. Let zin and zout be the input
and output of a BN layer, B denotes the current batchsize, BN layer performs the following
transformation:

ẑ =
zin − µB√
σ2
B + ε

, zout = γẑ + β (8)

Where µB and σB are the mean and standard deviation values of input activations over B,
γ and β are trainsble affine transformation parameters which provides the possibility of linearly
transforming normalized activations back to any scales.

Figure 2: Channel pruning

3.3 Knowledge distillation

The goal of knowledge distillation is to use the large model’s knowledge to direct the small
model’s training so that the small model can match the large model’s output. The teacher
model and the student model are described as the large and small models respectively. Fig. 3
depicts the structure. To obtain a better soft target, the temperature parameter T is quoted,
as shown in Eq.(9).

qi =
exp(Zi/T )∑
j exp(Zj/T )

(9)

Where Zi is the probability of the i-th category in the output vector, j ∈ (1, 2, ..., k), and k
is the total number of categories. The exp is an exponential operation, and qi is the soft target
output obtained by the function. For the same input, when T is set to 1, the student network
creat a hard target. Using a higher value for T produces a softer probability distribution over
classes, and the teacher network and student network generate a soft target respectively. The
hard target and the two soft targets are used as the input of the cross-entropy loss function
to learn the weights. As a result, the objective function of the knowledge distillation can be
summed up as Eq.(10).

L = αLsoft + βLhard (10)
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Figure 3: Knowledge distillation

4 Experiment

4.1 Experiment dataset

Shown in Fig. 4, the data on the left is from the CASIA-HWDB1.1 dataset, which is a publicly
available HCCR dataset provided by the Institute of Automation of the Chinese Academy of
Sciences. 16 classes are selected from the CASIA-HWDB1.1 dataset as part of the dataset in this
paper. The right side is the same type of Chinese character written by different volunteers. The
two parts are combined to form a new dataset, which is named MiniHWDB dataset. Shown
in Table 1, MiniHWDB contains of 12,000 images. The dataset is split into two parts: the
training set and test with the ratio of 8:2.

Figure 4: Offline handwritten Chinese character dataset

Dataset Total images Training ratio Image size classification
MiniHWDB 12000 0.8 256*256 16

Table 1: MiniHWDB dataset

4.2 Experimental process

In the process of training and inference, the input is resized to 224×224. The batch size is
set to be 64. The adaptive optimizer SGD is taken to optimize the loss function. All of
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the experiments are conducted on a computer with the 3.00 GHz Intel(R) Core(TM) i7-9700
processor, 2×8GB of RAM, and a GeForce RTX 2060 graphics card with 6GB of video memory.

At the first, ResNet18 is adopted as the original network. As shown in Fig. 4, different
people have their own writing styles, and there is a lot of useless information (white area) in
the input. The attention mechanism ECA is used to improve the feature extraction from the
input. After that, the teacher network ECA-ResNet56 and the student network ECA-ResNet18
are obtained respectively. Next, the student network is pruned at the channel level according
to the pruning ratios, which can be set 0.4 and 0.6. When the pruning rate is defined as 0.4, it
means that 40% of the channels are pruned. The new student networks CS-ECA-ResNet18(0.4)
and CS-ECA-ResNet18(0.6) are obtained after the pruning is completed. Finally, the teacher
network ECA-ResNet56 is used to guide the pruned student network. The distilled student
network is named KD-SC-ECA-ResNet18. In the course of the experiment, the parameters are
set as shown in Table 2.

Description Value
Adaptive selection of kernel size k 5
Temperature 5
Batch size 64
Minimun number of epochs 30
Maximun number of epochs 100

Table 2: Parameter Setting

4.3 Results and analysis

The accuracy of the original network ResNet18 reached 94.40%. By introducing the attention 
mechanism ECA, the accuracy is improved by 1.42%, while the number of parameters only 
increases by 4.5%. Since ECA is a lightweight module, it can be seen that the parameters 
increase by introducing the attention mechanism is negligible. Channel pruning reduce the 
number of parameters by removing unimportant channels, but the result is loss of accuracy. To 
improve the loss of accuracy due to pruning, the method of teacher network is taken to guide 
the pruned network. Teacher networks usually to be deep networks. Although the increasing 
in depth of the network improves the accuracy, it also brings significant increase of parameters. 
For example, the teacher network is much deeper than the student network, but only 3.39%
accuracy improvement. However, the number of parameters is 2.19 times than the student 
network. Although parameters and accuracy are difficult to balance in the task of HCCR, 
the parameters are given priority. Because these networks are mostly deployed on devices like 
mobile phones that do not have large storage.

With the increase in the number of parameters, the model is hard to be deployed on embed-
ded devices. So channel pruning is adopted to reduce the number of parameters, this results 
in a loss of accuracy. Therefore, knowledge distillation is used to improve the accuracy of the 
pruned network. When the pruning rate is 0.4. The accuracy of the KD-SC-ECA-ResNet18(0.4) 
is improved 1.71%, and the number of parameters is reduced 16.7%, compared to the ECA-
ResNet18. When the pruning rate is 0.6. The accuracy of the student network is improved 
1.17%, and the number of parameters is reduced 25.6%, compared to before the pruning and 
knowledge distillation. The pruning rate is over 0.6, it is tough to obtain a good result even 
after knowledge distillation. The results of different models are shown in Table 3.
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Model Accuracy Params
ResNet18 94.40 11.19M
ECA-ResNet18 95.82 11.69M
ECA-ResNet56 99.21 25.56M
KD-SC-ECA-ResNet18(0.4) 97.53 9.74M
KD-SC-ECA-ResNet18(0.6) 96.99 8.70M

Table 3: Experiment accuracy and model parameter number

5 Conclusion and future work

This paper focuses on images classification for offline handwritten Chinese character recognition.
The method by using attention mechanism, channel pruning and knowledge distillation, not only
obtains higher recognition accuracy, but also has a lower number of parameters than original
network. In this paper, the attention mechanism is used to improve the network’s ability
to extract features, channel pruning effectively reduces the number of parameters, and the
knowledge distillation improves the accuracy. It is beneficial for the model to be deployed on the
resource-canstrained devices. In future work, the model can be compressed with other methods
to further reduce model size. It is very useful for the development of artificial intelligence,
especially for the field of computer vision.
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