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Abstract  
The paper is devoted to the development of an approach to machine learning for Big Data under 

epistemic and aleatoric uncertainties which are taken into account with the help of 

corresponding minimax criteria. The keystone of the method is processing subsets of training 

data in parallel, using the partitioning based on Voronoi tessellation. Computational 

complexity is analyzed and compared with sequential data processing. An example from a 

medical application is considered, where the method is investigated for different learners and 

resampling strategies. 
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1. Introduction 

The active usage of Big Data technology in various branches [1-8] requires the development of high-

performance algorithm for solving the Machine Learning (ML) problems. To cope with Big Data 

parallel computing is one of the most effective solution in the case of ML. It leads to the necessity of 

the partitioning on Big Data sets. Voronoi diagrams are traditionally used for such type of problems.  

The minimax approach (together with maximin and maximax) is traditionally used for regression 

problems [9], [10]. In the case of ML, one of the generalized minimax approaches is known as the 

Minimax Probability Machine (MPM) [11].  

It can be argued that MPM is a classic result of studying the reliability of intelligent models [12], 

[9], which can be considered as a typical method of classifying the reliability of learning. The task of 

MPM optimization is to minimize the upper limit of the probability of incorrect classification of the 

study of model parameters.  

The upper limit of the probability of incorrect classification can be used as an explicit indicator to 

assess the reliability of classification models. A version of MPM with parametric reduction was 

proposed in [11], [13] for nonlinear classification problems. Several advanced MPM algorithms have 

been presented from different points of view [14], [15], [16], [17]. In [15], [16] it was pointed out that 

in some cases it is necessary to distinguish the probability of incorrect classification of two classes, as 

one class may be more important than another. In [18], MPM was extended for regression. In [9], MPM 

was introduced to prepare the fuzzy classifier for a more transparent and understandable classification 

model. In addition to MPM, the study of the reliability of intelligent models has been considered from 

other points of view.  

For example, the concepts of "conflict" and "ignorance" were introduced to denote the reliability of 

classification models in [19], [20].   

To make the method of adopting the minimum probabilistic method available for learning additional 

intelligent models and to implement the study of the reliability of these models, a generalized hidden 

minimum probability machine (GHM-MPM) is proposed. MPM classification was used as an explicit 

indicator to characterize the reliability of the classification model. 
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2. Description of the method 

The problem of supervised ML, which means the prediction of 𝛶 with the help of 𝑋, loss function 

𝐿, and the set of probability distributions 𝛤 on (𝑋, 𝑌) can be formulated as minimax problem with the 

respect to 𝐿, provided that the maximization is due to all possible distributions 𝐺 and minimization is 

with the respect to decision rules 𝜓 ∈ 𝛹. 

𝑎𝑟𝑔 𝑚𝑖𝑛
𝜓∈𝛹

𝑚𝑎𝑥
𝑃∈𝛤

𝛦[𝐿(𝛶, 𝜓(𝑋))]                              (2.1) 

where 𝐸[•] is expectancy. 

The problem (2.1) can be solved with the help of introducing the generalization of the entropy 
maximum principle. Mathematical description of the problem of supervised ML in systemic medical 

research was presented in [21], [22]. Here we formulate it in the case of minimax criterion. 

Mathematically ML problem for the systemic medical research is based on the following data. We have 

dataset 𝐷, which includes 𝑁 tuples  

                                                                  NiXD i ,1|                                                                  (2.2) 

In order to model aleatory uncertainties, consider supervised ML regarding the distribution of 

learning tuples. For the class of all subsets of 𝐷 we introduce 𝛤, including the distributions of classes 

of training and testing datasets 

,,2,1,,|),( ,,,,,,








 N
jtestjtrainjtestjtrainjtestjtrain jDDDDDDDDD      (2.3) 

where D jtrain, and D jtest,  are all possible datasets for training and testing correspondingly. In practice, 

resampling strategies are distributions of the classes of tuples which are characterizing aleatoric 

uncertainties the best. We introduce the resampling strategies  𝛾 ⊂ 𝛤 

 ,,|),( ,,,,,, DDDDDDDDD ktestkktrainkjtestjtrainktestktrain        (2.4) 

As examples of resampling strategies we can consider 𝑐𝑣3, 𝑐𝑣5, 𝑐𝑣10, which correspond to fold 

cross-validation for different 𝑘. 

Each 𝑖 th tuple 𝑋𝑖 = (𝑥1
𝑖 , 𝑥2

𝑖 , . . . , 𝑥𝑝
𝑖 , 𝛶𝑖)𝑇 consists of input data (𝑥1

𝑖 , 𝑥2
𝑖 , . . . , 𝑥𝑝

𝑖 )𝑇 (called by also 

attributes) and output data 𝛶𝑖. 

Let raw 𝑥𝑗 = (𝑥𝑗
1 , 𝑥𝑗

2 , . . . , 𝑥𝑗
𝑁) present the value of 𝑗 th attribute of all 𝑁 tuples. Output attribute 𝛶 =

(𝛶1, 𝛶2, . . . , 𝛶𝑁) includes all output data. The attributes 𝑥1, . . . , 𝑥𝑝 and 𝛶 (depending on the tasks of 

classification or regression) can accept both numerical and categorial values. 

In the simplest case, the supervised ML problem is to predict, using the certain predictor, the value 

of output attribute 𝛶𝑁+1 based on the values of attributes 𝑥1
𝑁+1, . . . , 𝑥𝑝

𝑁+1. The predictor should 

maximize the accuracy of prediction of output attribute, namely the probability 

𝑃{𝛶𝑗𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑠 𝑡𝑜 𝑥1
𝑁+1, . . . , 𝑥𝑝

𝑁+1} for arbitrary 𝑗 ∈ {1, . . . , 𝑁}1. Further, applying minimax 

approach, we introduce ℎ ∈ 𝛹 for the considered class of ML models ℎ(𝑋, 𝛾), which can be trained and 

tuned for the data 𝑋 ⊂ 𝐷 and assessed taking into account certain resampling strategies 𝛾. Comparing 
different ML models, the goal is to minimize expected losses. But you also need to consider resampling 

strategies, which should also assess the loss function. This formulation of the ML problem considers 

two types of uncertainty. Namely, uncertainty in oversampling is aleatory because it is related to data. 
At the same time, the uncertainty in the choice of models is epistemic. Mathematically, the minimum 

problem of MN is described as a search for a model ℎ due to 

𝑎𝑟𝑔 𝑚𝑖𝑛
ℎ∈𝛹

𝑚𝑎𝑥
𝛾∈𝛤

𝛦[𝐿(𝛶, ℎ(𝑋, 𝛾))]                                       (2.5) 

2.1. The problem of the dimension reduction 

Because real sets of systemic medical studies include dozens of vital signs, morphological, 

biochemical, and clinical assessments, it is natural to want to reduce the number of symptoms, leaving 
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the ones with the greatest differences. The principal components analysis method (PCA) is one of the 

widely used methods of dimensional reduction. Although it is used for unsupervised ML problems, it 

helps us refine the results when used for supervised ML, such as a classification or regression problem. 

The task of reducing the number of attributes is extremely important for medical use in interpreting the 

results. Below we propose a method of its application in conditions of aleatory uncertainty. 

When regarding the Voronoi tessellation, the dimension reduction algorithm has to be applied for 

each Voronoi cell. Moreover, since in the minimax ML (machine learning) problem the loss function 

is calculated for all resampling strategies, the dimension reduction algorithm must be applied separately 

for each strategy 𝛾. We can present arbitrary resampling strategy 𝛾 as 𝑈𝑙
𝑟 = 𝐼𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔

𝑙 (𝛾), where 

𝐼𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔
𝑙 (𝛾), 𝑙 ∈ 1, 𝑟 is lth sample of indices from 1 to N, which corresponds to training tuples of the 

strategy 𝛾  

Let 𝐷𝑙(𝛾) be input data coming from 𝐷, if sample of indices 𝐼𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔
𝑙 (𝛾) were applied. Namely, 

𝐷𝑙(𝛾) = {(𝑥1
𝑖 , 𝑥2

𝑖 , . . . , 𝑥𝑝
𝑖 , 𝛶𝑖)𝑇}

𝑖∈{1...𝑁}∩𝐼𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔
𝑙 (𝛾)

 , where Nl < N is the number of training tuples in 

the lth training sample. 

Before training and tuning the model ℎ(𝑋, 𝛾), we reduce the dimension 𝑝 ∈ 𝑁 of D with the respect 

to 𝛾. For this purpose we offer the modification of PCA method  with the respect to Voronoi cell and 

resampling strategy 𝛾 (see Algorithm 1). 

Algorithm 1: PCA for the resampling strategy 𝛾 

Input data: 𝐷 = {(𝑥1
𝑖 , 𝑥2

𝑖 , . . . , 𝑥𝑝
𝑖 , 𝛶𝑖)𝑇}

𝑖=1

𝑁
, 𝛾  

Output: principle components together with the attributes. 

1 transform data D into the matrix A including all numerical entries; 

2 apply resampling strategy 𝛾 for А: 𝐴𝑙 = {(𝑎1
𝑙,𝑖 , 𝑎2

𝑙,𝑖 , . . . , 𝑎𝑝
𝑙,𝑖 , 𝛶𝑙,𝑖)𝑇}

𝑖=1

𝑁𝑙
∈ 𝑅𝑝1+1×𝑁𝑙 , 𝑙 = 1, 𝑟; 

3 for each 𝐷𝑙(𝛾), 𝑙 = 1, 𝑟 do 

4 𝑎𝑙,𝑖:=
1

𝑁𝑙
∑ 𝑎𝑖

𝑙,𝑗 , 𝑖 = 1, 𝑝1
𝑁𝑙
𝑗=1 ; 

5 calculate 𝑉𝑎𝑟(𝑎𝑙,𝑖), 𝑖 = 1, 𝑝1; 

6 𝑉𝑎𝑟(𝐴𝑙): = ∑ 𝑉𝑎𝑟(𝑎𝑙,𝑖)
𝑝1
𝑖=1 ; 

7 𝐴𝑙
′ : = {𝑎𝑗

𝑙,𝑖 − 𝑎𝑙,𝑖}𝑖=1,𝑝1,𝑗=1,𝑁𝑙
∈ 𝑅𝑝1×𝑁𝑙 .; 

8 𝐶𝑙: =
1

𝑝1
𝐴𝑙
′ (𝐴𝑙

′ )𝑇 ∈ 𝑅𝑝1., 

9 calculate eigenvalues: 𝜆𝑙,1 ≤ 𝜆𝑙,2 ≤. . . ≤ 𝜆𝑙,𝑝1
 

10 calculate eigenvectors 𝐶𝑙 : 𝑤𝑙,1, 𝑤𝑙,2. . . 𝑤𝑙,𝑝1
 corresponding to 𝜆𝑙,1 ≤ 𝜆𝑙,2 ≤. . . ≤

𝜆𝑙,𝑝1
respectively 

11 𝑃𝐶1𝑙: = 𝐴𝑙
𝑇𝑤𝑙,𝑝1

, 𝑃𝐶2𝑙: = 𝐴𝑙
𝑇𝑤𝑙,𝑝1−1; 

12 calculate variances 𝑉𝑎𝑟(𝑃𝐶1𝑙) та𝑉𝑎𝑟(𝑃𝐶2𝑙); 

13 ExplainedVar(PC1𝑙): =
Var(PC1𝑙)

Var(𝐷𝑙)
, ExplainedVar(PC2𝑙): =

Var(PC2𝑙)

Var(𝐷𝑙)
; 

14 𝜋(𝑤𝑙,𝑝1
) та 𝜋(𝑤𝑙,𝑝1−1) 

End 

16ExplainedVar(PC1𝑙): =
1

𝑟
∑ ExplainedVar(PC1𝑙)𝑟

𝑙=1 , 

ExplainedVar(PC12): =
1

𝑟
∑ ExplainedVar(PC12)

𝑟

𝑙=1

 

17 return names of attributes з 𝜋(𝑤𝑙,𝑝1
), 𝑙 = 1, 𝑟і 𝜋(𝑤𝑙,𝑝1−1), 𝑙 = 1, 𝑟 

Next, we describe the basic steps of Algorithm 1. In step 1, we convert all categorical attributes, 

encoding them as a set of boolean inputs, each of which represents one category 0 or 1. We can generate 

columns with category flags automatically. 
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Further we repeat the steps 4-14 for each 𝐷𝑙(𝛾), 𝑙 = 1, 𝑟. So, they include the computing of mean 

values of raws (Step 4), variance 𝑉𝑎𝑟(𝑎𝑙,𝑖), 𝑖 = 1, 𝑝1 (Step 5), general variance (sum of sample 

variances) 𝑉𝑎𝑟(𝐴𝑙) (Step 6), deviation matrix 𝐴𝑙
′ ∈ 𝑅𝑝1×𝑁𝑙  (Step 7), covariance matrix 𝐶𝑙 ∈ 𝑅𝑝1 (Step 

8), eigenvalues of matrix 𝐶𝑙 due to increasing order (Step 9), eigenvectors 𝐶𝑙 (Step 10). Here we 

consider eigenvectors 𝑤𝑙,𝑝1
 and 𝑤𝑙,𝑝1−1 ∈ 𝑅𝑝1, which correspond to 𝜆𝑙,𝑝1

and 𝜆𝑙,𝑝1−1 respectively. At 

the step 11 we get two principle components 𝑃𝐶1𝑙: = 𝐴𝑙
𝑇𝑤𝑙,𝑝1

and 𝑃𝐶2𝑙 : = 𝐴𝑙
𝑇𝑤𝑙,𝑝1−1. We calculate 

their variances Var (PC1l) and Var (PC2l) at step 12. From this we obtain the percentages of the 

explained variance corresponding to the first two components ExplainedVar (PC1l) and ExplainedVar 

(PC2l) respectively (Step 13). Next, we organize the values of the eigenvectors 𝑤𝑙,𝑝1
і 𝑤𝑙,𝑝1−1 in 

descending order of their absolute values. For this purpose, we use permutations  𝜋(𝑤𝑙,𝑝1
) and 

𝜋(𝑤𝑙,𝑝1−1). We use the denotion 𝜋(𝑥) for a permutation that organizes the vector x in descending order 

of the absolute values of its elements. 

Next we return the names of the first ExplainedVar (PC1l) 100% attributes in permutation 𝜋(𝑤𝑙,𝑝1
) 

and the first ExplainedVar (PC2l) 100% attributes in permutation  𝜋(𝑤𝑙,𝑝1−1) (Step 14). 

After completing the main cycle, we calculate the variance of the main components for the 

resampling strategy \ gamma (Step 16). Finally, we return the names of the first ExplainedVar (PC1l) 

100% attributes, which are most common in permutations 𝜋(𝑤𝑙,𝑝1
), 𝑙 = 1, 𝑟  and the first ExplainedVar 

(PC2l) 100% attributes that are most common in permutations 𝜋(𝑤𝑙,𝑝1−1), 𝑙 = 1, 𝑟 (Step 17).  

As a result of reduction of dimension we receive some numerical matrix 𝐴𝑟𝑒𝑑 =

{(𝑎1
𝑖 ; 𝑎2

𝑖 , . . . , 𝑎𝑝2
𝑖 , 𝛶𝑖)𝑇}

𝑖=1

𝑁
∈ 𝑅𝑝2+1×𝑁, 𝑝2 ≤ 𝑝1. These data can then be used as training to solve ML 

problems based on the minimax approach. 

Note 1. Stages 2 and 10-14 are modifications of the traditional PCA algorithm. First, in step 1, we 

convert all categorical attributes that are widely used in systemic medical research into boolean data. 

Second, when considering the two main components traditionally used for planar presentation of 

training kits, we propose an approach to selecting some reduced number of attributes for further research 

(e.g., developing a ML model). This number is related to the number of variations explained. The latter 

assumption allows us to truly reduce the size of ML problems in systemic medical research under 

uncertainty. 

Note 2. Of course, we must take into account the case if the variance due to the first two components 

is low. In such cases, we need to take into account the components PC3, PC4 and so on to obtain the 

appropriate dispersion. Steps 10-14 and other algorithms should be changed accordingly. 

Note 3. It should be noted that the PCA should be calculated depending on the resampling strategy, 

as the PCA is applied to training tuples. 𝐷𝑙(𝛾) (not for the whole data set D). Therefore, in Step 14, 

different features may be selected depending on the sample of indices 𝐼𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔
𝑙 (𝛾). In turn, this affects 

the selection of attributes in the last step of the algorithm for the entire resampling strategy. 

2.2. General flowchart of parallel machine learning with the help of Voronoi 

diagrams 

The general block diagram (Figure 2.1) allows us to obtain a learner of the ML problem based on a 

minimax approach with the possibility of accurate, acceptable and stable results. The MN model, 

formulated under conditions of certainty, is presented in [22]. Here, we summarize a flowchart for 

solving the problem under uncertainty in both the model and the resampling strategy. 

We start with the import and preparation of data (feature generation, gap filling, normalization) 

collected in EMR systems. Methods of importing data sets from EMR systems are presented. Note that 

the choice of open source EMR systems over commercial ones is extremely important because it allows 

open access to clinical data that can be processed and selected for subsequent stages of ML [22]. 

Then we should define the task from the point of view of MN. This can be regression, classification, 

grouping, and so on. Resampling strategies  are also defined. For example, resampling strategies 
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supported by the mlr package include: cross-validation (cv), cross-validation (LOO), re-cross-

validation (RepCV), color subsampling, also called Monte Carlo cross-validation (Subsample), Holdout 

method (training / testing) (Holdout) [23].  In a real application, we are dealing with a large number of 

attributes. Only some of them can be important for the tasks of MN. Therefore, it is natural to try to 

reduce the dimension by discarding the attributes with the largest deviations. 

Next we specify the set Ѱ of appropriate methods (learner) of the solution. The most important is 

the choice of parameters for the methods, which affects the accuracy of the model. In the next cycle, 

configure the parameters for each model with Ѱ based on all resampling strategies  , which are used. 

The original model will satisfy the criterion of the minimax approach (2). 

 
Figure 2.1:  Development of a parallel ML model for systematic medical research 

The capabilities of the mlr package allow us to implement this using appropriate tools designed with 

certain tasks in mind [24], [25], [26]. The ML model presented above is fully consistent with the mlr 
package, which offers prototypes of the ML problem cases: task, resampling, learning. 

2.3. Computational complexity 

In order to analyze the computational complexity of the proposed approach, consider an example of 

a set  Ѱ, which includes the method of a 4-layer neural network with the number of neurons 𝑖, 𝑗, 𝑘, 𝑙 on 

layers based on inverse error propagation and method C5.0 induction of decision tree height  ℎ. 

Assume that the training data sample 𝐷 includes #(𝐷) tuples based on 𝑖 attributes. 

Let 𝑣 be the number of seeds for Voronoi tessellation. Corresponding computational complexity is 

𝑂𝑉𝐷 ≔ 𝑂 (𝑣 𝑙𝑜𝑔 𝑣 + 𝑣⌈
𝑖
2

⌉) 

The computational complexity of the specified neural network method based on 𝑡
 
iterations  is 

Error! Reference source not found.: 

𝑂𝑁𝑁: = 𝑂(𝑡#(𝐷)(𝑖𝑗 + 𝑗𝑘 + 𝑘𝑙))                                     (2.6) 
 

Computational complexity of decision tree induction [28]: 

𝑂𝐶5.0 ≔ 𝑂(ℎ#(𝐷) 𝑙𝑜𝑔 #( 𝐷))                                       (2.7) 

Computational complexity of resampling based on 𝑘-fold cross validation is  Error! Reference 

source not found.: 

𝑂𝐶𝑉 = 𝑂(𝑘#(𝐷))                                                (2.8) 
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Thus, the computational complexity of constructing the ML model based on the scheme in Figure 
2.1 is 

𝑂𝑀𝐿 = 𝑂𝑉𝐷𝑂𝐶𝑉(𝑂𝑁𝑁 + 𝑂𝐶5.0)                                               (2.9) 

Since k is constant, then from (2.9) shows that the computational complexity increases by one order 

of magnitude. 

3. Example of the medical data 

Modern systemic medical research (evidence-based medicine) is the integration of the best scientific 

evidence with clinical experience and patient expectations [30]. They are aimed at improving health 

care in the future. Systematic medical research helps doctors and researchers gain knowledge about 

human health and disease. They also allow you to find more effective ways to prevent and treat disease. 

Assessment of health is based on a comprehensive and systematic examination of the patient, which 

includes history, objective examination of the body, analysis of laboratory blood tests and various 

secretions, instrumental and interventional studies, including X-ray, CT, MRI, endoscopy, biopsy and 

others methods. 

Nowadays, cardiovascular diseases attract attention because they are "the number one cause of death 

in the world" [31]. In the study of cardiac diseases, there are quite a number of nuances and indicators 

that experts pay attention to during diagnosis. Diagnostic criteria include both physical tests and history, 

as well as laboratory, instrumental research methods. During the survey, the doctor may ask questions 

about the patient's family members (genetic predisposition), lifestyle and habits. Physical inactivity 

(sedentary lifestyle), unhealthy diet, alcohol consumption and smoking significantly increase the risk 

of cardiovascular disease. During laboratory studies, much attention is paid to the assessment of the 

level of lipids and their fractions (lipid profile). It includes indicators of total cholesterol, triglycerides, 

high, low, very high and very low lipoprotein density, as well as the level of atherogenicity. Lipid 

imbalance increases the risk of atherosclerosis. Among other things, the patient's overweight is one of 

the dangerous risk factors for heart disease. Blood glucose and glycated hemoglobin are among the 

most important indicators of carbohydrate metabolism in the body and markers of diabetes. Diabetes is 

a separate disease, but its presence significantly increases the risk of cardiovascular disease. In addition 

to the risk assessment, the necessary extended hematological, biochemical and instrumental studies are 

performed. In addition to the general blood test, the patient's blood pressure is measured, the following 

instrumental methods are used: electrocardiogram (ECG), Holter monitoring, echocardiography, 

coronary angiography, MR angiography. 

This experimental study includes data from 1651 patients diagnosed with myocardial infarction. The 

target attribute of forecasting is life expectancy. Each patient's data includes 97 attributes that contain 

both numerical and categorical values. Such information includes data on the type of heart attack (focal 

or transmural), the location of the heart attack (anterior or posterior). Mortality information (hospital, 

short-term and long-term) is also used. The presence of concomitant pathologies is described. And here 

we use a detailed analysis, because such pathologies can be combined. Risk factors typical of 

cardiovascular diseases are investigated, namely, clinical evaluation includes data on such risk factors 

as gastritis, gallstone disease, lung disease, nephrological disorders, rheumatic thyroid disease, 

angiopathology, gastrointestinal diseases, oncology, chronic obstructive pulmonary disease, 

hypertension, diabetes, smoking. 

The considered detailed clinical course includes indicators of vital functions, namely heart rate, 

systolic blood pressure and diastolic blood pressure, analyzes of heart attack complications in the form 

of arrhythmias, in particular, detailed heart attack complications developed in the hospital. The data 

lists all indicators of the general analysis of blood. Special attention is paid to leukocytes (WBC), 

biochemical analysis of blood is presented, information on medicines which the patient received in 

hospital is included. After the dimension reduction algorithm, the following features remained: sex, 

age, re-myocardial infarction (RMI), life expectancy after MI (death_days), body mass index (BMI), 

leukocyte density (White_blood_cells_count), left ejection fraction ventricle (LVEF).  
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We consider set Ѱ, which includes the models of linear regression (regr.lm), SVM model with radial 

base kernel (regr.ksvm), and  random forest (regr.ranger).  

Resampling strategies include cross-validation of cv3, cv5, cv7, cv9, cv10. The loss function L was 

calculated as the rmsse rmse and the training time. In the case of RMSE as an indicator of efficiency 

(Table 2.1), the regr.ksvm model is a solution of the ML problem based on the minimax. Namely, we 

first compare the error values for all the models considered. In the second step, we see that the RMSE 

value for the ksvm model will be minimal among the maximum. In Figure 2.2 we can see the analysis 

of the effectiveness of ML models with different resampling strategies for standard deviation as an 

indicator of efficiency.  

 
Figure 2.2: Comparison of the effectiveness of ML models for different resampling strategies (cv3, cv5, 

cv7, cv9, cv10) based on RMSE 

Table 2.1.  

RMSE of ML model 

Resampling 

strategy 

Linear regression SVM  Random forest 

cv3  

cv5  

cv7  

cv9  

cv10  

0.2100193167 

0.210649921 

0.2106224629 

0.2098297672 

0.2102195218 

0.03786423738 

0.02506639264 

0.02404772839 

0.02371189948 

0.02263394791 

0.04423246658 

0.02696577121 

0.02362994412 

0.01803804644 

0.0164288483 

max  0.210649921 0.03786423738 0.04423246658 

minimax   0.03786423738  
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Table 2.2.   

Training time of ML model 

Resampling 

strategies 

Linear regression SVM  Random forest 

cv3  

cv5  

cv7  

cv9  

cv10  

0.006666667 

0.0020000 

0.0000000 

0.002222222 

0.0050000 

6.05333333 

13.98800000 

18.52428571 

25.152222 

28.64400000 

15.62000000 

35.35600000 

45.66714286 

65.76222222 

76.46600000 

max  0.006666667 28.64400000 76.46600000 

minimax  0.006666667   

 

 

Figure 2.3: Comparison of the effectiveness of ML models for different resampling strategies (cv3, cv5, 

cv7, cv9, cv10) based on training time. 

4. Conclusions 

Based on the above examples, it is established that taking into account the uncertainty in the data 

(aleatory uncertainty) significantly affects the model based on ML.  
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For example, as can be seen from Table 2.2, there is a resampling strategy (namely cv10), in which 

the random forest model shows the lowest value of the RMSE loss function on the set of all models 

considered.  

At the same time, there are resampling strategies (cv3), in which this model shows greater errors 

compared to the model of SVM. In this situation, the choice of a random forest model would lead to 

unexpected losses arising from aleatory uncertainty.  

Therefore, the minimax approach proposes to establish a resampling strategy with the maximum 

("worst") value of the loss function, on which the desired model should behave best (get the minimum 

value of the loss function). 
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