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Abstract

In this paper new class of deep learning (DL) neural networks is considered and investigated-
so-called hybrid DL networks based on self-organization method Group Method of Data
Handling (GDMDH). The application of GMDH enables not only to train neural weights but
to construct the network structure as well. As nodes of this structure different elementary
neurons with two inputs may be used. So, the advantage of such structure is a small number
of tuning parameters. In the paper the following types of neurons are considered: Wang-
Mendel network with two inputs and neo-fuzzy neurons. The advantage of the neo-fuzzy
neurons is unlike general fuzzy neurons is absence of fuzzy membership functions training and
less computational time for training. The application of GMDH enables to train neuron weights
sequentially layer after layer in the process of construction network structure until the stop
criterion holds. Such approach allows to exclude drawbacks of DL training algorithms -decay
or explosion of gradient. The process of structure construction and optimization using GMDH
algorithm is presented. The numerous applications of suggested hybrid DL networks for
solution of Al problems like forecasting of share prices and market indicators at various stock
exchanges are considered and analyzed. The comparison with conventional DL networks is
performed which enables to estimate their efficiency and advantages.
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1. Introduction

Last years deep learning (DL) networks are widely used in different problems of artificial
intelligence: forecasting, pattern recognition, medical diagnostics, etc.[1-4]. For its training various
algorithms were developed usually based on Back propagation method. Presence of many layers when
using gradient algorithm usually lead to occurrence drawbacks as vanishing or explosion of gradient.
Therefore, the approach was suggested how to exclude this drawback to perform layer after layer
training using stacked encoder-decoder or stacked restricted Boltsmann machines [1, 2]. However, the
problem is left how to choose the number of layers in DL network. The existing methods of DL don’t
enable to generate structure of DI networks. But the training process will be more efficient if to adapt
not only neuron weights but the structure of network as well. For this goal the application of GMDH
method seems very promising. GMDH is based on principle of self- organization and enables to
construct network structure automatically in the process of algorithm run [5-7].
In the previous years GMDH-neural networks having active neurons [5-7], R-neurons [19], Q-neurons
[3] as nodes were developed; in the area integrating fuzzy GMDH and neural networks the GMDH-
neuro-fuzzy systems and GMDH-neo-fuzzy systems [13] were developed; GMDH-wavelet-neuro-
fuzzy systems [14,15] were also elaborated. The very important property of GMDH is that as building
blocks for construction of a structure of DL networks elementary models with only two inputs, so-called
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partial descriptions, are used. This allows to cut substantially training time for hybrid DI network as
compared with conventional DL networks.

Therefore, GMDH-hybrid neuro-fuzzy system was developed in [16] that combines advantages of
the traditional GMDH and DL fuzzy networks and may be trained with simple learning procedures. The
nodes of this network are Wang-Mendel elementary neural networks with only two inputs. The
experimental investigations of this class of hybrid DL networks have shown their efficiency and
preference over conventional DL networks. But the drawbacks of application of Wang-Mendel
networks as nodes of hybrid DI networks lies herein that it’s necessary to train not only neural weights
but membership functions as well.

Therefore, later another class of hybrid networks — GMDH — neo-fuzzy networks were developed
wherein as nodes of network -neo-fuzzy neurons with two inputs are used [17]. For their training its
necessary to adapt only neuron weights that demands less computational resources and cuts training
time. That’s very important for DL networks with a large number of hidden layers. The experimental
investigations of hybrid -neo-fuzzy networks and comparison with conventional DL network have
shown their efficiency and less computational calculations for training.

The goal of this paper is to investigate different hybrid GMDH-neo-fuzzy networks with small
number of adjusted parameters and estimate their efficiency for structure optimization and forecasting.

2. Hybrid network structure optimization based on GMDH method

The GMDH method was used to synthesize the structure of the hybrid network based on the principle
of self-organization. The successive increase in the number of layers is carried out until the value of the
external criterion of optimality MSE begins to increase for the best model of the current layer. In this
case it is necessary to return to the previous layer, to find there the best model with the minimum value
of criterion. Then we move backward, go through its connections, find the corresponding neurons of
the previous layer. This process continues until we reach the first layer and the corresponding structure
is automatically determined.

The process of synthesis of the network structure in the forward direction is shown in Fig. 1 where
in green color the outputs which passed through selection block (SB)are shown while in red color -
outputs which were dropped (excluded) by SB.

The process of restoring the desired structure in the backward direction is shown in Fig. 2. In the
yellow color nodes and their connections selected by this process are indicated
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Figure 1. Hybrid network structure construction using GMDH method

The corresponding optimal constructed structure of the hybrid network for this forecasting problem
is shown in Fig. 3. It consists of 3 layers: first layer has 3 neo-fuzzy neurons, second layer- two neurons
and the last- one neuron.
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Figure 3. Optimal Structure of hybrid network for covid forecast constructed by GMDH

3. Experimental investigations of hybrid GMDH -fuzzy networks in forecasting
problems

For efficiency estimation of hybrid GMDH DL networks the problems of the forecasting share price
and market indices at the stock exchanges were considered. The experimental investigations for stock
prices forecasting were carried out. In the first experiment as a forecasted variable the RTS index
in 2013 with time step one week was chosen. As external regressors (inputs) stock prices of the leading
companies were used. Total sample had 55 points that was used while searching the optimal partial
description in the GMDH.

As the accuracy criteria of the obtained models MAPE and RMSE were used. In the first experiment
the dependence of MAPE on inputs number was explored. The forecasting results for hybrid neuro-
fuzzy network are presented in the table 1. For comparison the corresponding results for full cascade
neo-fuzzy network (NFN) network are presented.

As it follows, hybrid GMDH-neuro-fuzzy network has higher accuracy than the cascade neuro-fuzzy
network due to properties of hybrid networks.

In the next experiment the problem of forecasting share prices of Microsoft corp was considered. As
input sample the stock prices of Microsoft corp. since 01.11.14 to 29.12.14 were used. The sample size
was 64 points. The training sample included 62 points the test sample 4 points. The forecasting interval
was for 4 steps ahead, the first two steps are checked with available data. The constructed GMDH-
neuro-fuzzy network had 6 fuzzy inputs. The experimental results are presented in Table 2 and Table 3.
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As it follows from the experimental results the GMDH-neuro-fuzzy network showed better forecasting
accuracy than the cascade neuro-fuzzy network. Its MAPE value doesn’t exceed 0.4%.

Table 1.
Accuracy for hybrid GMDH-network and Cascade neo-fuzzy network

MAPE for hybrid GMDH-

number of inputs MAPE for cascade NFN

network
2 0,04038 0,06031
4 0,03950 0,05141
6 0,03998 0,04425
8 0,04248 0,04396
10 0,04935 0,05171
12 0,04084 0,04465
Table 2.
Forecasting Results for hybrid GMDH- network
Date Real value Predicted value Absolute error Relative error, %
26.12.14 18030,2 17971,63 58,577 0,325
24.12.14 18053,7 17991,94 61,772 0,342
Table 3.

Forecasting Results (MAPE) for Different Neuro-Fuzzy Networks and GMDH

GMDH-neuro-fuzzy Cascade-neuro-fuzzy

Real value GMDH system

network network
48.14 0.623 1.20 3.40
47.88 2.13 1.94 2.54
average 1.377 1.57 2.97

In the next experiment training time for GMDH-neuro-fuzzy network, and cascade fuzzy network
were compared. In the Table 4 the training time in seconds for hybrid GMDH- neuro-fuzzy network
and full cascade neuro-fuzzy network is presented. As an initial sample Microsoft stock prices in the
same period since 01.11.14 t0 29.12.14 was used.

Table 4.
Training time for hybrid GMDH network and cascade network

Inputs number GMDH-hybrid network, s cascade network, s
2 0,004 0,015
4 0,009 0,021
6 0,013 0,037
8 0,021 0,048
10 0,030 0,053

In the next experiments efficiency of hybrid neo-fuzzy network in forecasting index NASDAQ was
explored. The data was taken in the period from 13.11. 17 till 29.11.19. The sample size was 510 points.
As an output variable the closing price of the index NASDAQ next day was taken. In the first
experiment the accuracy dependence on number of inputs for hybrid neo-fuzzy network was
investigated. In the table 5 the forecasting results are presented under different inputs number with 8
membership functions per variable (parameter h) and ratio training/test =70/30. In the next experiment
the investigation of error dependence on number of MF per variable (parameter h) was performed.
Number of inputs was n=5, training/test ratio was 70/30. The results are presented in Fig.4.

Analyzing these results, one may conclude that with MF number rise MAPE first falls, then attains
minimum and after then begins to rise. That fully matches to self- organization principle of GMDH
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method [3]. The best value was obtained with the following parameters values: number of inputs n=5,
h=8, number of layers 4 and MAPE value is 3,91.

Table 5.
Forecasting MAPE versus inputs number for hybrid neo-fuzzy netwrok

Inputs
number
MAPE 5,2 4,7 4,33 3,91 4,22 4,72 5,24 5,53 5,85
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Figure 4. MAPE versus number of membership functions h per variable

For forecasting efficiency estimation of the hybrid network, it was compared with a cascade neo-
fuzzy network [11] and GMDH at the same data. In the cascade neo-fuzzy network, the following
parameters values were used: number of inputs n=9, number of rules 9, cascades number is 3. The
comparative forecasting results are presented in the table 6, training sample — 70%.

Analyzing these results one can easily conclude the suggested hybrid neo-fuzzy network and neuro-
fuzzy network have the best accuracy, the second one is GMDH method and the worst is the cascade
neo-fuzzy network. The forecasting accuracy of both hybrid networks differs insignificantly.

In the next experiments the training time of different hybrid networks and alternative NN was
investigated and compared. In the table 7 the training time in seconds for GMDH-neuro-fuzzy and -
neo-fuzzy network and full cascade neuro-fuzzy network are presented. As an initial sample we used
Microsoft stock prices in the period since 01.11.14 to 29.12.14., a sample size is 64 points.

As it follows from the presented results the least training time has hybrid neo-fuzzy network, the
second place takes hybrid neuro fuzzy network and the last is full cascade network

4. Optimization of hybrid GMDH -neo-fuzzy network in the problem of
forecasting

In the next experiments investigations of hybrid GMDH -neo-fuzzy network in the problem of Dow
Jones Index forecasting were performed and compared with FNN ANFIS.

The Dow Jones is the stock index of the 30 largest American companies, which was founded in
1896. The initial data was taken from Yahoo, a leading financial information provider owned by
Yahoo! To prepare the initial data, data were uploaded at various intervals, namely the value of the
stock index by days, weeks and months. Each of the sets contains the following data:

e Date - data period,;

Open - opening price;

High - the highest price for the period;
Low - the lowest price for the period;
Close - the price at the end of the period,;
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o Adj Close - average closing price;
o  Volume - sales for the period.

Table 6.
MAPE values for different forecasting methods

. Hybrid Hybrid GMDH- neo-
inputs Cascade neo-fuzzy
number/method neuro-fuzzy fuzzy GMDH neural network
network network
4 inputs 4,30 4,31 4,19 6,04
5 inputs 3,93 3,91 4,11 6,09
6 inputs 4,35 4,36 5,53 8,01
7 inputs 4.80 4,77 6,26 8,68
Table 7.
Training time for different fuzzy neural models
Inputs number Time for GMDH- Time for GMDH- Time for full cascade
neuro-fuzzy neo-fuzzy network, network, s
network, s S
2 0.004 0.003 0.015
4 0.009 0.007 0.021
6 0.013 0.012 0.037
8 0.021 0.018 0.048
10 0.030 0.025 0.053

The data set for the interval of one day contains 4867 records, of which non-zero records are 4788
ones. The data set for the interval one month contains 1001 records, of which 1000 records are non-
zero. The data set for the interval of one month contains 195 records, of which 195 are non-zero.

Data normalizing. Reduction to a single scale is provided by normalization of each variable to the
range of its values. In the simplest case, it is a linear transformation

mx, = % in the interval x; € [0, 1].

To find the most informative features as an input vector, we have alternately trained the network on
data sets that transmit only the following features subsets:

('Open’, 'High', 'Low', 'Volume', 'Close’); (‘Open’, 'High', 'Low, "Volume");

(‘'Open’, 'High', 'Low!, 'Close"); (‘Open’, 'High', 'Low"); ('Open’, 'High', 'Close");

('Open’, 'High', "Volume"); ('Open’, 'Close’, 'Low"); (‘'Open’, 'Volume', 'Low");

('High', 'Low', 'Close"); (‘Open’, 'High'); ('High', 'Close"); (‘'Low’, 'Close"); (‘Open’, 'Volume").

The main network parameters that can be configured include the size of the input vector, the number
of rules, and the function that sets them, the number of parameters that are transferred to the next layer.

The size of the input vector is determined by the number of informative features that are transmitted
for training, and the number of days on the basis of which the network gives the predicted value. Also,
the number of network functions that can be set includes the number of membership functions and their
appearance, as well as the degree of freedom of choice of the system.

To select these parameters, it is necessary to conduct an experiment, training the system, setting
these parameters in the interval, and keeping those that give the best results in the test sample.

The following parameters were investigated:

e n-—number of preceding days, based on which the forecasting is performed (sliding window

size). N € [1; 6];

e h-number of membership functions in each node, h € [2; 9];

—en\2 ,
e s—membership function parameter exp [— (ngcl) ] where o = (bha) (s = (h — 1));
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b —an interval end,;

a — an interval beginning;

h — membership functions number, which cover the interval;

s € [0.01; 1.5];

f — number of parameters which are transferred to the network next layer (freedom of choice).
To set of initial data was divided into a training sample and test sample in the ratio of 70% and 30%,

respectively. Having launched GMDH-neo-fuzzy system for training, values of MAE and MAPE

criteria were obtained with different combinations of these parameters. For the Dow Jones stock index

with different forecast intervals, the best parameters for the different set of informative features were

obtained as a result of training and testing, which are shown in Table 8.

Table 8.
The results of the selection of the optimal parameters of GMDH-neo-fuzzy system for Dow Jones index
with different prediction intervals

Sets of informative 1 month 1 week

features n hf s MAE MAPE nh f s MAE MAPE

'Open’, 'High', 'Low’, 12210 0.0147 0.0452 2 42 0.7 0.0077 0.0295
'Volume', 'Close’
'Open’, 'High', 'Low', 1 2313 0.0156 0.0476 243 0.9 0.0086 0.0332

'Volume'
'Open’, 'High', 'Low', 12210 0.0147 0.0453 2 4 2 0.7 0.0077 0.0295

'Close’
'Open’, 'High', 'Low' 1 2313 0.0156 0.0476 243 0.9 0.0086 0.0332
'Open’, 'High', 'Close' 1 2 3 1.2 0.0153 0.0467 2 4 3 0.9 0.0079 0.0309
'Open’, 'High', 'Volume' 5 25 0.1 0.0177 0.0654 2 4 3 1.0 0.0098 0.0380
'Open’, 'Low', 'Close' 1 2 3 1.2 0.0147 0.0456 2 4 3 0.7 0.0081 0.0308
'Open’, 'Volume','low' 5 3 7 0.1 0.0171 0.0644 4 2 6 0.1 0.0095 0.0348
'High', 'Low', 'Close’ 12210 0.0147 0.0453 2 42 0.7 0.0077 0.0295
'Open’, 'High' 52501 00177 0.0654 243 1.0 0.0098 0.0380
'Open’, 'Close’ 1 22 13 0.0165 0.0498 24 3 0.6 0.0085 0.0331
'High', 'Close’ 12212 0.0154 0.0467 2 4 3 0.9 0.0079 0.0309
'Low’, 'Close’ 12212 0.0147 0.0456 2 4 2 0.7 0.0081 0.0306
'Open’, 'Volume' 52208 0018 0.0689 342 01 0.0112 0.0445

Thus, analyzing presented results one may conclude that the most informative for GMDH-neo-fuzzy
system are the following sets of features: ['Open’, 'High', 'Close'], ['Open’, 'Low, 'Close'], [High', 'Low',
'Close’], ['High', 'Close'], ['Low, 'Close.

For the Dow Jones stock index for one month forecast period, the following optimal configurations
of GMDH-neo-fuzzy network were obtained:

e the number of informative features - 3;
the number of periods on the basis of which the forecast is made - 1;
the number of membership functions in each of the nodes - 2;
the number of layers - 2;
the number of nodes in the first layer — 3;

e number of nodes on the second layer — 1.

For the Dow Jones stock index for the one week forecast period, the following optimal
configurations of the GMDH-neo-fuzzy system were obtained:

e the number of informative features- 3;

o the number of periods on the basis of which the forecast is made - 2;

. the number of membership functions in each of the nodes - 4;
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e the number of layers - 2;

o the number of nodes on the first layer - 15;

o the number of nodes on the second layer — 1.

The form of the membership function for forecasting interval of one week is shown in the Figure 5.
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Figure 5. Forms of the membership function of Dow Jones index for the forecast period of 1 week

For the Dow Jones stock index for one week forecast period, the following optimal configurations
of GMDH-neo-fuzzy network were obtained:

e number of informative features - 3;
the number of periods on the basis of which the forecast is made - 5;
the number of membership functions in each of the nodes - 2;
the number of layers - 2;
the number of nodes in the first layer - 105;
the number of nodes in the second layer - 1

Next, experiments were performed to find the optimal values of the parameters of FNN ANFIS. The
size of the input vector is determined by the number of informative features that are transmitted for
training, and the number of days of prehistory, on the basis of which the forecasting is performed.

To select these parameters, an experiment was performed, including training of the network, setting
these parameters in the interval, and choosing those that give the best results at the test sample.

The following intervals for parameters were set:

e nis the number of previous days on the basis of which the forecast is made (the size of the

sliding window), ne [1; 6];

e h-the number of membership functions in each of the nodes, h € [2; 9].

The set of initial data was divided into a training sample and test data in the proportion of 70% and
30%, respectively. By launching the ANFIS network with different combinations of these parameters,
data on MAE and MAPE criteria were obtained.

For the Dow Jones stock index one month forecast period, the following optimal ANFIS network
configurations were obtained:

e number of informative features - 3;

e number of nodes — 6;

e the number of periods on the basis of which the forecast is made - 2;

e the number of membership functions in each of the nodes - 6.

After finding all the optimal parameters of GMDH-neo-fuzzy system and training parameters, the
system was trained, and then the data for prediction was provided. Training and testing of the system
took place on data for the period up to 01.01.2021 for monthly periods, and until 01.06.2021 for weekly
and day periods. Forecasting was based on data for the period after 01.01.2021. for monthly periods
and after 01.06.2021 for day and week periods. For Dow Jones index with a forecast period of one
month, the following forecasting data were obtained: MAE - 0.02952; MAPE - 0.0335, forecasting time
- 0.00025s. Learning and forecasting results are shown in Figure 6.
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5. Comparison of forecasting results of GMDH-neo-fuzzy system and ANFIS
network

Experimental investigations of the accuracy of Dow Jones index forecasting with forecasting
intervals of one month, one week and one day were performed. using a hybrid GMDH-neo-fuzzy
network. For each prediction interval the optimal parameters found in previous experiments were
selected. A comparative analysis with the forecasting results obtained by FNN ANFIS was performed.
According to the results of forecasting, values of MAE, MAPE and training time for each type of neural
network were obtained. All comparison results are summarized in Tables 10 — 12,

Table 9.
The results of the selection of the optimal characteristics of ANFIS network for Dow Jones index with
different forecast intervals

Sets of 1 month 1 week 1 day
informative  n h  MAE MAPE n h MAE MAPE n h  MAE  MAPE
features

'Open’, 2 6 0222 00710 1 9 0.0091 0.0334 1 10 0.0037 0.0142
'High', 'Low’

'Open’, 2 3 0.0223 0.0727 2 8 0.0080 0.0303 1 11 0.0034 o0.0129
'High',

'Close’

'Open’, 2 6 0.0192 0.0680 2 10 0.0804 0.0307 1 5 0.0045 0.0154
'Low!,

'Close’
'High', 'Low', 2 8 0.0209 0.0720 2 9 0.0903 0.0325 2 10 0.0036 0.0134
'Close’

'High', 2 9 00223 00750 1 3 0.0077 0.0282 1 7 0.0035 0.0135
'Close’

'Low!’, 2 7 00201 00691 1 5 0.0094 00338 1 5 0.0035 0.0136
'Close’

As one can see, for all forecasting intervals the best forecasting results were obtained for hybrid
GMDH-neo-fuzzy system. The worst forecasting result for ANFIS network was obtained for one month
forecasting period. The largest difference in the accuracy of forecasting by both criteria was obtained
for the forecasting period of one month (over 200%). As the forecasting period decreases, the gap
between the networks accuracy also decreases. In addition, training and direct prediction times were
also significantly less for hybrid GMDH-neo-fuzzy system.
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Figure 6. Results of training and forecasting Dow Jones Index with interval one month by hybrid GMDH
neo-fuzzy system
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Table 10.
Comparison of the forecasting results of GMDH-neo-fuzzy neural network and FNN ANFIS for Dow
Jones Index with forecasting interval 1 month

Criterion GMDH-neo-fuzzy Meperxka ANFIS Difference
neural network
MAE at training sample 0.016938 0.016135 4.70%
MAPE at training sample 0.061866 0.052607 14.97%
MAE at test sample 0.02952 0.096734 -227.68%
MAPE at test sample 0.03350 0.107397 -220.59%
Training time (sec.) 0.0023246 75.258 32375x
Forecasting time (sec) 0.0003123 0.02652 84.92x

Table 11.
Comparison of the forecasting results of GMDH-neo-fuzzy neural network and FNN ANFIS for Dow
Jones Index with forecasting interval 1 week

Criterion GMDH-neo-fuzzy FNN ANFIS Difference
neural network

MAE at training sample 0.007949 0.008564 -7.74%
MAPE at training sample 0.029890 0.029291 2.00%
MAE at test sample 0.011476 0.019279 -67.99%
MAPE at test sample 0.012468 0.020923 -67.82%
Training time (sec.) 0.012840 194.3520 14980x
Forecasting time (sec) 0.00027132 0.028604 105.42x

Table 12.
Comparison of the forecasting results of GMDH-neo-fuzzy neural network and FNN ANFIS for Dow
Jones Index with forecasting interval 1 day

Criterion GMDH-neo-fuzzy FNN ANFIS Difference
neural network
MAE at training sample 0.003618 0.004234 -17.03%
MAPE at training sample 0.013981 0.014067 -0.615%
MAE at test sample 0.005348 0.005822 -8.86%
MAPE at test sample 0.005812 0.005822 -0.172%
Training time (sec.) 0.19944 876.3658 4394.13x
Forecasting time (sec) 0.00040317 0.038055 94.39x

6. Conclusion

In the paper hybrid GMDH -neuro-fuzzy and neo-fuzzy networks are considered and investigated.

The algorithm of hybrid network structure synthesis is presented and demonstrated at the problem
of forecasting. The experimental investigations of the hybrid networks were carried out and compared
with conventional DL networks. The experiments have shown that forecasting accuracy of hybrid
neuro-fuzzy and neo- fuzzy networks at the considered problems are approximately equal and it’s better
than for alternative DL cascade neo- fuzzy networks and GMDH. The problem of forecasting Dow
Jones Index with application of hybrid neo- fuzzy networks was considered, investigated and compared
with FNN ANFIS at the different forecasting intervals. The optimal parameters of hybrid neo- fuzzy
networks were found. The experimental results have shown the forecasting accuracy of hybrid neo-
fuzzy networks is much better than for FNN ANFIS. The training time is the least for hybrid neo- fuzzy
networks as compared with all considered alternative DL networks.
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In a whole the hybrid DL networks based on GMDH are free from drawbacks of conventional DL
networks- decay or explosion of gradient. Besides, they enable to construct optimal network structure
automatically in the process of algorithm GMDH run and additionally they demand less computational
costs for training due to small number of tunable parameters (only two) in every hidden node as
compared with DL networks of general structure. That’s is especially significant for DL networks with
large number of layers.
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