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Abstract 
Generalizations based on finite training sets are based on the fundamental compactness 
hypothesis, which states that objects belonging to the same class in the feature space should 
be close to each other and far from objects of other classes. This concept became generally 
accepted and was carefully studied. Meanwhile, the hypothesis of compactness is purely 
geometric in nature and essentially uses the concept of a metric in the feature space. In 
particular, it generates in a completely natural way the well-known nearest neighbor method, 
which uses a classifier based on geometric distance. However, this hypothesis ignores the 
probabilistic nature of the features. For unimodal distributions it works well, but in the 
general case, this hypothesis may not hold and the generalization becomes incorrect. We 
propose an alternative approach based on the homogeneity hypothesis. We call homogeneous 
objects the objects whose features have the same distribution. From a statistical point of 
view, this means that they belong to the same general population. The use of the universal 
measure of homogeneity (Petunin's p-statistic) makes it possible to effectively use the 
apparatus for testing statistical hypotheses about the homogeneity of features for both non-
intersecting and largely overlapping samples that do not satisfy the compactness hypothesis, 
and also to build new variants of statistical featureless discriminant analysis. Instead of 
metrics in traditional featureless recognition, we propose to use the Petuninʼs heterogeneity 
measure. This approach is rigorously substantiated mathematically and has demonstrated 
high efficiency in practical applications, specifically, in breast cancer screening. 
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1. Introduction 

The complexity of the pattern recognition is closely related to the compactness hypothesis which 
allows generalizations to be made based on finite training sets. The meaning of this hypothesis is 
intuitively clear: similar objects should be close to each other in the feature space, and dissimilar ones 
are far away. This definition has an obvious geometric character since the concepts of nearness and 
farness depend on the metric used. In a completely natural way, it generates the simplest classifier that 
displays a typical pattern of thinking by precedents. This simplest classifier is called the nearest 
neighbor method and recognizes the tested objects by their proximity to the training objects. 

The hypothesis described above has a significant drawback, since it does not take into account the 
probabilistic nature of the training data. Typically, the data forms samples extracted from some 
sample space. For correct identification of objects represented by these samples, it is necessary to take 
into account their random nature. The distance between random samples in the sample space is also 
random. Therefore, a mechanism is needed that would make it possible to correctly assess the 
proximity between random samples. The geometric hypothesis of compactness does not work in this 
case. To solve the problem, we introduce into consideration the concept of homogeneity of objects, 
which means that these objects belong to the same general population. Since objects are identified 
with samples of features, their homogeneity should be assessed using criteria for testing statistical 
hypotheses about homogeneity.  The purpose of the chapter is to describe the hypothesis alternative to 
the compactness hypothesis and propose the modification of the featureless (relational) discriminant 
analysis using a homogeneity measure instead of a distance. The paper is organized in the following 
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way. Section 1 contains an introduction and a general description of the problem. Section 2 provides a 
survey of non-parametric tests for homogeneity and describes a homogeneity measure (p-statistics) 
that is the main subject of our research. Section 3 describes connection between the p-statistics and 
featureless (relational) discriminant analysis. Section 4 describes results of numerical comparisons of 
popular homogeneity measures (the Kolmogorov–Smirnov statistics and the Wilcoxon statistics) with 
the p-statistics. Here we show how the p-statistics allow reduction of dimensions and arranging 
features with respect to their significance for recognition. Section 5 contains conclusions and 
describes possible directions of the work. 

2. Two-sample homogeneity measure 

Consider samples  1 2 1, ,..., nx x x x G   and  1 2 2, ,..., ny y y y G   from populations  1G  and 2G  

obeying distribution functions 1F   and 2F  that are absolutely continuous. Let the null hypothesis be 

1 2F F  and the alternative hypothesis be 1 2F F . The samples drawn from the same populations are 

called homogeneous. There are many tests for testing the hypotheses on samples` homogeneous: 
purely nonparametric (Smirnov [1, 2], Dickson [3], Wald and Wolfowitz [4], Mathisen [5], Wilcoxon 
[6], Mann–Whitney [7], Wilks [8] etc.) and conditionally nonparametric (Pitman [9], Lehmann [10], 
Rosenblatt [11], Dwass [12], Fisz [13], Barnard [14], Birnbaum [15], Jockel [16], Allen [17], Efron 
and Tibshirani [18], Dufour and Farhat [19] etc.). Let us consider the Klyushin–Petunin test that is 
purely non-parametric and does not use any requirements to distribution functions excepting being 
absolutely continuous [20]. We propose to put this test in the ground of the featureless discriminant 

analysis. The Hillʼs assumption ( )nA  [21] states that if random values 1 2, ,..., nx x x G  are 

exchangeable and belong to absolutely continuous distribution then  
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where x  is a sample value from a population G  following an absolutely continuous distribution 

function F , and 
 i

x   and 
 j

x  are the i-th and j-th order statistics. This assumption was proved for 

independent identically distributed random values [22] and for exchangeable identically distributed 
random values [23]. It is a basis of a nonparametric test for samples homogeneity [20]. Thus, 

computing the relative frequency ijh   of the event 
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The significance level of this interval depends on the parameter g. When g = 3 the significance 

level of 
 n

ijI  does not exceed 0.05 [20]. P-statistics, which is a homogeneity measure of samples x and 

y, is defined by the equation 
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As far as the p-statistics is the relative frequency of the event  

1

n

ij ij
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, similar to the 

above mention case we may construct the Wilson interval I
 
for the p-statistics an use it as a basis of 

the test: if  the upper bound of I  is greater than 0.95, the null hypothesis is accepted, else the null 
hypothesis is rejected. 
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If the null hypothesis is true, the events  
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n

ij ij
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 form a generalized Bernoulli scheme 

[24, 25]. If the alternative hypothesis is true, the these events form a modified Bernoulli scheme. If 
the null hypothesis can be either true or false, this trial scheme is called Matveichuk–Petunin scheme 

[26]. If   the null hypothesis holds,  lim 0,1
1n

j i

n





, and  lim 0,1
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, then the asymptotic 

significance level  of a sequence of confidence intervals  n

ijI  is less than 0.05 [20].   

Real samples usually contain rounded numbers and often repeated elements (ties) occur. Thus, we 
must distinguish a hypothetical sample that is drawn from hypothetical population G  containing 

absolutely precise numbers and an empirical sample drawn from an empirical population G  

containing rounded measurement. Therefore, we shall have a sample  1 2, , ..., nx x x x  approximating 

a hypothetical sample  1 2, , ..., nx x x x  Let (1) (2) ( )... nx x x    and (1) (2) ( )... mx x x    be 

variational series of hypothetical and empirical samples.  

If a number x  is drawn from G  independently from x  the Hill assumption (1) holds, hence: 
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where  ( )  l lt t x  is the multiplicity of ( )lx . If x  does not contain ties then 0.i     

Consider the null hypothesis that hypothetical absolutely continuous distribution functions 1F  и 

2F  of hypothetical populations 1G  and 2G  are identical. Suppose, we have empirical samples 

 1 1,..., nx x x G   and  1 2,..., ny y y G  , where 1G   and 2G   are corresponding empirical 

populations. Construct the Wilson confidence interval   (1) (2),ij ij ijI p p  for the probability of the event 

  ( ) ( ),k i jy x x  using its observed relative frequency. Let us denote 
 1

#
2

ij

n n
N I


   and 

compute the empirical p-statistics
 

1
# .

1
ij

j i
h I

N n

 
  

 
 Then, construct a confidence interval 

 (1) (2),I p p  for probability 
1

ij

j i
p I

n

  
  

    
using h . If  the upper bound of I  is greater than 

0.95, the null hypothesis is accepted, else the null hypothesis is rejected. 

3. P-statistics and relational discriminant analysis 

The relational discriminant analysis is developed in the papers of Petunin et al. [27], Duin and 
Pekalska [28–35] etc. The main idea of relational discriminant analysis consists in the replacing a 
presentation of objects in feature space via vectors of feature (hypothesis on vector space) by a 
proximity (similarity) to some training set using a distance in a metric space. This idea is very 
productive and valuable, but implicitly it used a concept of geometric proximity space with a metrics. 
This approach is invalid for random samples. Let us imagine data on a pool of cells (e.g. their areas) 
measured in microscopic research. A researcher obtains a sample of real values but not an ordered 
vector. So, to use a distance to measure proximity to training samples is impossible. That is why the 
concept of homogeneity measure is very useful for such cases. Despite the large number of statistical 
tests for samples homogeneity only Kolmogorov-Smirnov statistics, U-statistics (Wilcoxon test) and 
p-statistics have the properties allowing numerical estimating the samples homogeneity (similarity in 
the sense of belonging to the same population). 

For example, we can use the p-statistics to solve the problem of dimension reduction and feature 
selection. Compute the proximity measure between samples from G1 and G2 with respect to two 
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features: ith and jth. Consider the matrixes of features of kth object from G1 and lth object from G2 ( n  

is the number of features and m  is the number of measured values of every feature) : 
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Consider the ith columns corresponding to ith feature from uk and vl: 
        1 2, ,...,

T
k k k k

i i i miX x x x  and 

        1 2, ,...,
T

l l l l

i i i miY y y y . Then, compute p-statistics for samples (not vectors!) 
 k

iX  and 
 l

iY  and 

construct the vector of p-statistics for uk and vl with respect to every feature: 
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for uk  and an object from G2 with respect to ith feature. This scheme may be applied for 
comparing uk with other object from G1: 
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Pairing p-statistics we form a proximity vector space corresponding to ith and jth features: 
    ,
i j

t t   and     ,
i j

s s  , , 1,2,..., ; , 1,2,..., .i j m t s n   Now, in the proximity vector space we have 

two sets of points consisting of average interclass homogeneity measure and average intraclass 
homogeneity measure. Thus, we may use in the proximity space any classificator developed for 
metric spaces. The average intraclass homogeneity measure allows estimating intrinsic diversity of 
objects in the population, and the average intraclass homogeneity measure allows estimating the 
feature significance.  

4. Experiments and results 

  To estimate the sensitivity and specificity of the tests we have carried out numerical experiments 
using samples from normal distribution with various parameters describing the degree of overlapping. 
We used samples containing 40 random numbers with the same mean and different standard 
deviations (location shift) and with different means and the same standard deviation (scale shift). We 
computed the p-statistics with its lower and upper confidence bounds, the Kolmogorov–Smirnov 
statistics and its p-value and the Wilcoxon statistics and its p-value. The sensitivity of the Klyushin–
Petunin test [20] was estimated as the relative frequency of the event when the upper confidence 
bound for the p-statistics is less that 0.95 when distributions are different. The sensitivity of the 
Kolmogorov–Smirnov test and the Wilcoxon signed-rank test was estimated as the relative frequency 

of the event when corresponding p-value  0.05 when distributions were different. The sensitivity of 
the Klyushin–Petunin test is considered as the relative frequency of the event when the upper 
confidence bound for the p-statistics is greater that 0.95 for identical distributions. The specificity of 
the Kolmogorov–Smirnov and the Wilcoxon signed-rank test is considered as the relative frequency 

of the event when p-value  0.05 when distributions are identical. In this way we have tested two 
statistical hypotheses: on location shift and on a scale. The null hypothesis on location shift states that 
the locations of both distributions are the same. The null hypothesis on scale shift states that the 
variances of both distributions are the same. The alternative hypotheses, in opposite, state that the 
distribution functions are different.  These cases are illustrated at Fig. 1 and Fig. 2. The results are 
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provided in Tables 1–8. Note a remarkable property of the p-statistics. It not only correctly recognizes 
heterogeneous samples but also demonstrate monotonic decreasing as the location shift increases. 

As it was expected, in the case of location shift both the Kolmogorov–Smirnov test and the 
Wilcoxon signed-rank test work perfectly. The effectiveness of the Kolmogorov–Smirnov test is 
explained by the increasing discrepancy between the empirical distributions as the location shift 
increases. The Wilcoxon signed rank test was developed namely for this case and effectively 
recognizes inversions. However, when we test the scale shift hypothesis the situation changes. Now, 
the distribution functions are largely overlapped and the discrepancy between them is not very 
significant. Moreover, the Wilcoxon signed-rank test poorly recognizes the inversions between 
largely overlapped samples. These statements are justified by the following results (Table 4–6).  

 

Fig. 1. Probability densities with different means and the same variance (location shift) 

 
Fig. 2. Probability densities with the same mean and different variance (scale shift) 

Table 1  
Upper bound of the confidence intervals for the p-statistics (location shift without ties) 

Distribution N(0,1) N(1,1) N(2,1) N(3,1) N(4,1) 

N(0,1) 1.000 0.771 0.590 0.426 0.375 
N(1,1) – 1.000 0.827 0.519 0.375 
N(2,1) – – 1.000 0.697 0.430 
N(3,1) – – – 1.000 0.566 
N(4,1) – – – – 1.000 

As we see, the Kolmogorov–Smirnov test has failed in the case of largely overlapped samples in 
more than almost a half of the cases, and the Wilcoxon signed-rank test has failed in all the cases. The 
Klyushin–Petunin test fails in almost a third of cases of very overlapped samples following the 
distributions N(0,3), N(0,4) and N(0,5). 

In practice, data are often rounded and ties occur in samples. To simulate this effect we use the 
same samples as in previous experiments but have rounded them up to two decimal digits. After 
rounding, samples in average contained four ties. The results are provided in Tables 7–12.  As 
expected from the theoretical point of view, the results of the Kolmogorov–Smirnov test and the 
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Wilcoxon signed rank test have not changed comparing with the case without ties because the ties do 
not affect on the Kolmogorov–Smirnov test statistics and the Wilcoxon signed rank test statistics. 
Thus, we do not provide the results for these cases because they are the same as in Tables 5 and 6. 

It is easy to see, that ties have affected on the p-statistics and have slightly changed the monotonic 
decreasing of the p-statistics with respect to the increasing of the location shift. The Klyushin-Petunin 
test, as the Kolmogorov–Smirnov test, fails comparing distributions N(0,3), N(0,4) and N(0,5), 
analogously to the case without ties. But it was effective in the cases when the Kolmogorov–Smirnov 
test failed and the Wilcoxon signed rank test failed.  

Table 2 
P-value of the Kolmogorov–Smirnov test (location shift without ties) 

Distribution N(0,1) N(1,1) N(2,1) N(3,1) N(4,1) 

N(0,1) 1.000 0.0002 <0.0001 <0.0001 <0.0001 
N(1,1) – 1.000 0.0002 <0.0001 <0.0001 
N(2,1) – – 1.000 <0.0001 <0.0001 
N(3,1) – – – 1.000 <0.0001 
N(4,1) – – – – 1.000 

Table 3 
 P-value of the Wilcoxon signed-rank test (location shift hypothesis without ties) 

Distribution N(0,1) N(1,1) N(2,1) N(3,1) N(4,1) 

N(0,1) 1.000 0.001 <0.0001 <0.0001 <0.0001 
N(1,1) – 1.000 0.006 <0.0001 <0.0001 
N(2,1) – – 1.000 <0.0001 <0.0001 
N(3,1) – – – 1.000 <0.0001 
N(4,1) – – – – 1.000 

Table 4 
Upper bound of the confidence intervals for the p-statistics (scale shift hypothesis without ties) 

Distribution N(0,1) N(0,2) N(0,3) N(0,4) N(0,5) 

N(0,1) 1.000 0.741 0.531 0.581 0.570 
N(0,2) – 1.000 0.866 0.767 0.762 
N(0,3) – – 1.000 0.979 0.964 
N(0,4) – – – 1.000 0.999 
N(0,5) – – – – 1.000 

Table 5 
P-value of the Kolmogorov–Smirnov test (scale shift without ties) 

Distribution N(0,1) N(0,2) N(0,3) N(0,4) N(0,5) 

N(0,1) 1.000 0.014 0.001 <0.0001 <0.0001 
N(0,2) – 1.000 0.029 0.014 0.097 
N(0,3) – – 1.000 0.766 0.405 
N(0,4) – – – 1.000 0.766 
N(0,5) – – – – 1.000 

Table 6 
P-value of the Wilcoxon signed-rank test  (shift hypothesis without ties) 

Distribution N(0,1) N(0,2) N(0,3) N(0,4) N(0,5) 

N(0,1) 1.000 0.202 0.221 0.221 0.900 
N(0,2) – 1.000 0.087 0.158 0.785 
N(0,3) – – 1.000 1.000 0.314 
N(0,4) – – – 1.000 0.795 
N(0,5) – – – – 1.000 
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Table 7 
Upper bound of the confidence intervals for the p-statistics (location shift hypothesis with ties) 

Distribution N(0,1) N(1,1) N(2,1) N(3,1) N(4,1) 

N(0,1) 1.000 0.652 0.511 0.390 0.337 
N(1,1) – 1.000 0.801 0.472 0.355 
N(2,1) – – 1.000 0.697 0.430 
N(3,1) – – – 1.000 0.562 
N(4,1) – – – – 1.000 

Table 8 
Upper bound of the confidence intervals for the p-statistics (scale shift hypothesis with ties) 

Distribution N(0,1) N(1,1) N(2,1) N(3,1) N(4,1) 

N(0,1) 1.000 0.412 0.323 0.395 0.394 
N(1,1) – 1.000 0.786 0.695 0.644 
N(2,1) – – 1.000 0.983 0.963 
N(3,1) – – – 1.000 0.977 
N(4,1) – – – – 1.000 

Thus, we have demonstrated the prevalence of the p-statistics over the Kolmogorov–Smirnov and 
the Wilcoxon signed rank tests. The Klyushin–Petunin test on homogeneity based on the p-statistics 
has high sensitivity and specificity both in cases location and scale shifts and in the cases when 
sample arbitrary overlapped. It is a universal test for test homogeneity of two samples and may be 
successfully use in application of featureless discriminant analysis as a substitution of a metrics. The 
p-statistics effectively estimates the homogeneity of the sample and takes values from the interval 
(0,1). This greatly facilitates its use in the classification of objects defined by samples, in comparison 
with the Kolmogorov-Smirnov test and Wilcoxon signed rank test. 

Since relational discriminant analysis is based on describing the proximity of data, the concept of 
statistical homogeneity fits perfectly with its concept. Instead of comparing feature vectors 
representing objects, we can compare samples containing their features. This makes it possible to 
replace the hypothesis of compactness with the hypothesis of homogeneity and to reduce recognition 
to assessing the homogeneity of samples. Thus, the p-statistic and the Klyushin-Petunin test can be a 
valuable tool for pattern recognition in the paradigm of relational discriminant analysis. 

5. Conclusions and future work 

For correct generalization based on finite training sets, it is necessary to correctly state the 
fundamental postulates. Relational discriminant analysis is based on the compactness hypothesis, 
which states that objects belonging to the same class in the feature space must be close, and objects 
from different classes must be distant. This geometric hypothesis is not correct in the case of 
assessing the proximity between objects that are characterized not by vectors (ordered sets of 
features), but by random samples (unordered sets of features), since in such cases it makes no sense to 
talk about a geometric distance (metric). We propose to base the relational analysis on the hypothesis 
of homogeneity, which states that objects from the same class (homogeneous) belong to the same 
general population, that is, the samples of features that characterize them have the same distribution, 
and objects from different classes belong to different general populations (heterogeneous), that is, the 
samples of features that characterize them have different distributions. For a numerical assessment of 
the homogeneity of the samples, we propose to use the Petunin p-statistics, which showed high 
sensitivity and specificity in experiments both in testing the hypothesis of a mean shift and in testing 
the hypothesis of the scale shift, in contrast to the statistics of Kolmogorov-Smirnov and Wilcoxon 
signed rank tests. The proposed approach is strictly mathematically justified and has demonstrated 
high efficiency in practical applications. 

The future direction of the work is to estimate theoretical power of the proposed test and develop 
its multivariate version. In particular, Petunin's ellipses and ellipsoids, which are constructed on the 
basis of Hill's assumption, are of great interest. With their help, one can unambiguously order random 
points in a multidimensional space according to their statistical depth, similar to the Mahalanobis 
distance, detect outliers, and change points in multidimensional time series. Such tasks often arise in 
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control systems for the timely detection of deviations from the normal operation. In the one-
dimensional case, p-statistics, in contrast to the Kolmogorov–Smirnov statistics, are resistant to 
random noise and universal, in contrast to the Mann–Whitney–Wilcoxon statistics. 

Promising methods are the transformation of multidimensional data into one-dimensional samples 
for subsequent classification. For this, Fisher's linear discriminant analysis transformations can be 
applied. Similarly, in the multivariate case, one can consider the average p-statistic calculated from 
one-dimensional samples, followed by an estimate of its average value. Corresponding experiments 
show the high efficiency of p-statistics in comparison with traditional methods. 

The nonparametric approach allows one to effectively solve the problems of classifying one-
dimensional and multidimensional data, identify the most and least probable elements of the sample, 
and rank them using statistical peeling. This is of great importance in medical applications, because 
due to the unambiguous ranking of multivariate data, it becomes possible to assess the individual risk 
of a particular patient, and not just the probability of his belonging to a certain group. Such 
applications have become the focus of a new area of research in artificial intelligence, which is called 
explainable artificial intelligence. The approach described in the paper is fully consistent with the 
concept of explained artificial intelligence, since machine learning problems solved using p-statistics 
allow for an accurate probabilistic interpretation.  

The universal and robust nature of p-statistics (its robustness to outliers and independence from the 
type of hypothesis on mean or variance shift) makes it an indispensable useful tool in statistical 
studies of data of any size, both small and large. With a small sample size of the strategy, p-statistics 
work well in combination with the bootstrap and jackknife methods. In such cases, similarly to the 
multidimensional case, the averaged p-statistics is used, which surpasses traditional analogues in its 
properties. In the case of large data, the p-statistic can be computationally difficult, but fragmenting 
large samples and averaging the p-statistic solves this problem as well. 

Thus, the presented work proves the high accuracy, sensitivity and specificity of p-statistics, its 
robustness and superiority over the traditional Kolmogorov–Smirnov and Mann–Whitney–Wilcoxon 
statistics. Excellent characteristics and a wide field of applications allow us to hope that p-statistics 
will become a very useful tool for solving many problems of data analysis and machine learning. 
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