
Controlled Experiments on User Stories’ Modeling:
Past, Present, and Future
Konstantinos Tsilionis1, Anis Rahmawati Amna2, Samedi Heng3,
Stephan Poelmans1 and Geert Poels2,4

1KU Leuven, Leuven, Belgium
2Ghent University, Ghent, Belgium
3HEC Liège, Université de Liège, Liège, Belgium
4FlandersMake@UGent core lab CVAMO, Ghent, Belgium

Abstract
User stories (US) are short sentences written in natural language, structured around 3 dimensions
(WHO/WHAT /WHY). They describe functionalities of the to-be software system and constitute the pri-
mary requirements artifacts used in agile methods. Originally, a few US templates have been suggested
but these were written in a completely informal manner without guidance. In time some research has
been made to furnish better guidelines when creating US and develop frameworks to increase their
overall quality. Some of these frameworks are based on conceptual modeling, some others on linguistic
approaches. The application of these frameworks in real life contexts nevertheless remains an open
issue. To evaluate their applicability several experiments have been conducted in various settings. The
present paper aims to summarize these experiments and suggest some others for future work.

Keywords
User Stories, User Story, Agile Requirement Modeling, Modeling Experiment.

1. Introduction

User stories (US) are artifacts often used in agile methods (i.e., Extreme Programming and
Scrum) and tools (i.e., Jira) to describe user desiderata during the requirements’ elicitation
stage preceding the implementation of the system. These artifacts are purposed to document
major functionalities and/or indispensable features that the to-be system needs to satisfy;
they are commonly built around the WHO-dimension (i.e., explicating the role asking for the
functionality), theWHAT -dimension (i.e., describing the functionality), and theWHY -dimension
(i.e., justifying the reasoning for implementing the functionality). The benefits of utilizing these
artifacts are mostly associated to the understandability and readability that they yield to the
requirements’ gathering process especially when perceived individually or in small sets.

Nevertheless, the utilization of such a simple requirements’ specification format does come at
a cost. A lot of freedom is given in their creation which is in a sense very positive for users non-

Agil-ISE 2022: Intl. Workshop on Agile Methods for Information Systems Engineering, June 06, 2022, Leuven, Belgium
 konstantinos.tsilionis@kuleuven.be (K. Tsilionis); anisrahmawati.amna@ugent.be (A. R. Amna);
samedi.heng@uliege.be (S. Heng); stephan.poelmans@kuleuven.be (S. Poelmans); geert.poels@ugent.be
(G. Poels)
� 0000-0001-9702-6941 (K. Tsilionis); 0000-0002-6037-0914 (S. Heng); 0000-0001-9247-6150 (G. Poels)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

27

mailto:konstantinos.tsilionis@kuleuven.be
mailto:anisrahmawati.amna@ugent.be
mailto:samedi.heng@uliege.be
mailto:stephan.poelmans@kuleuven.be
mailto:geert.poels@ugent.be
https://orcid.org/0000-0001-9702-6941
https://orcid.org/0000-0002-6037-0914
https://orcid.org/0000-0001-9247-6150
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

familiar with technical aspects but could lead to poor consistency in the way they are expressed
and the overview and consistency of the requirements they express. Also, US do not provide
visually-aided requirements representations that would help with the sorting of multiple (and
extended) sets of US and would provide alternative modeling configurations for the impending
system. The following section provides a discretionary collection of experiments purposed to
delineate some of the factors that may be influencing a more qualitative appropriation of US
artifacts on behalf of novice modelers.

2. Past Controlled Experiments

To begin with, the studies of Dapiaz et al. [1, 2] describe two modes of an experiment investi-
gating the impact of two requirements’ specification notations (namely Use Cases and US) on
the derivation of static conceptual models (i.e., UML class diagrams). The entire experiment
was meant to explore the factors affecting the quality of these models so as to assist agile
practitioners and modelers in making informed decisions concerning the choice of requirements
engineering notations. First, the authors describe a controlled mode for the experiment where
they realize that the US accounted for the participants’ preferred notation, contributing to higher
quality static conceptual models. However, this mode included a requirements’ specification
process that was pre-determined by the researchers and uniform to all the subjects. The second
mode of the experiment was more pragmatic in the conditions of its execution in the sense that
test subjects had to go through the entire process of requirement elicitation and specification to
derive their conceptual models. This second mode revealed that it is not much the notation that
affects the quality of the derived models but other factors inherent to the derivation process
itself. Nonetheless, the findings support an overall degree of optimality attributed to the US
notation as measured by the correctness and completeness of a manually derived UML class
diagram by novice modelers.

The problem of poor representability concerning the nature, granularity, and inter-
dependence of the constituted elements within a US set has been acknowledged in the study
of Wautelet et al. [3]. To deal with these issues, the authors furnish a unified US model (see
Fig. 1) for tagging the elements of the WHO-, WHAT -, and WHY -dimensions of a US; each
tag represents a concept with an inherent nature and defined granularity. The constructs of
this model (i.e., Role, Task, Hard-Goal, Soft-Goal, etc.) become the basis for the creation for the
visual representation of a US structuring method called the Rational Tree [4, 5]. The latter uses
the notation of the i* Strategic Rationale (SR) diagram [6] to build various trees of relating US
elements in a single project (Fig. 2.a) with the purpose of identifying depending US, identifying
Epic ones and group them around common Themes (Fig. 2.b). In this way, the utilization of
the Rational Tree can recognize and reduce even further any occurring modeling redundancies
during the stages of requirements’ analysis and design.

The study performed by Wautelet et al. [7] was meant to uncover the difficulties that software
modelers face in the process of building visually-aided representations (i.e., conceptual models)
when the software problem is structured in the form of US sets. For this, the authors have
conducted an experiment purposed to analyze, describe, and compare the feasibility of novice
modelers (master-level students) and experienced modelers (PhD candidates and Post-docs) to

28

Soft_Goal

dimension : Enum{WHAT,WHY}

name : String

Hard_Goal

dimension : Enum{WHAT,WHY}

name : String
0..n0..n 0..n0..n

so that

Capability

name : String

dimension : String = WHAT

Role

name : String

dimension : String = WHO

0..n

1..n

0..n

1..n

wants/wants to/needs/can/would like

Task

name : String

dimension : Enum{WHAT,WHY}
0..n1..n 0..n1..n

wants/wants to/needs/can/would like

0..n

0..n

0..n

0..n

so that

0..n
0..n

0..n so that
0..n

Goal

0..n

0..n

0..n

0..n

so that

0..n

1..n

0..n

1..n

wants/wants to/needs/can/would like

0..n0..n 0..n0..n

so that

Figure 1: Unified Model for User Stories.

b)

²

Role_1

Task_1

Hard_Goal_1

Capability_1

Task_2

Soft_Goal_1

Capability_2

Task_3

Hard_Goal_2

Capability_3

US2: As Role_1, I want Capability_1,

so that Task_2

US3: As Role_1, I want Soft_Goal_1,

US1: As Role_1, I want Task_1, so

that Hard_Goal_1

US4: As Role_2, I want Capability_2,

so that Task_3

US5: As Role_2, I want Capability_3,

so that Hard_Goal_2

User Stories (US) Strategic Rational Diagram (SRD)
(SRD)

Role_2

are part of

Elements

Links

Task Hard-goal Capability

Role Boundary

Role

WHO WHAT WHY

User Story

Soft-goal

Decomposition link

Means-end link

Contribution link(+,-)

����

����	
���

����

���� ����

����������� �����������

������

������������������
������������������

��������������
���
������������

������������������
������������
 �!�������������"������������#�
�#��������������������$��"��#��

#$�����������������������

��
�������������
�������

%������������������
�������

&�
��#��������
��������

%�����������
���������������

��#�����
��������

Element of EPIC US

(a) Icons used for representing user story’s elements (b) Canonical model

1

Figure 2: Using Rationale Tree to Structure User Stories’ Sets.

build and use a Rationale Tree diagram1 out of an existing US set. Both groups had to start by
recognizing and tagging elements of the WHO-, WHAT-, WHY-dimensions of a given US set to
the constructs of the unified model of [3], with each tag representing a concept with an inherent
nature and defined granularity. Once tagged, the US elements had to be graphically represented
by building one or more Rational Tree diagrams. Overall, the participants had some difficulties
in making the association between the WHO-, WHAT-, WHY-affiliated concepts within the US
sets and the modeling constructs of the unified US model. Nevertheless, there was no significant
difference in the ability to build a Rational Tree between novice modelers and more experienced
researchers since all test subjects produced artifacts that would describe rather well the software
problem.

The experiment of Wautelet et al. [8] was meant to identify whether improving US quality
through the Quality User Story (QUS) framework proposed by Lucassen et al. [9] would lead to
a better identification of different concepts of US sets and a better development of Rationale

1The Rational Tree diagram refers to the artifact produced when employing the Rational Tree as a user story
structuring method.

29

Tree diagrams. The experiment was performed on 34 master-level students composed of 2
groups, one using the raw US set while the other using the QUS-compliant one. The exact
goals were i) to identify the concepts of non-functional requirements, missing requirements,
epics and themes; ii) to be able to build a Rationale Tree diagram; iii) to evaluate the impact of
the Rationale Tree on the identification of these concepts; iv) to evaluate the impact of using
an improved in quality (through QUS) US set on the ability of to identify the aforementioned
concepts. Overall, the authors could not conclude with certainty whether the improvement of
the quality on a US set could improve the ability of novice modelers to identify crucial constructs
of a specific modeling case (i.e., missing requirements etc.). Nonetheless, the experiment was
able to portray that improvements in the quality of US is correlated with an enhanced ability
on behalf of the modelers to identify and represent elements like tasks, capabilities and links.

The studies of Tsilionis et al. [10, 11] perform a primary theoretical analysis of two distinct
techniques that can be used for structuring sets of US but have different complexities in their
application and different abilities to represent dependencies and decompositions. In essence,
the authors try to investigate which user story structuring method (i.e., the Rational Tree
or the User Story Mapping [12]) produces artifacts that allow for a better comprehension of
the software problem. The answer to this question represents the basis for the conduct of a
controlled experiment; indeed, a first group of novice modelers (master-level students) has been
required to employ the Rational Tree method and build artifacts out of a given set of US; a second
group of novice modelers was asked to do the same with the User Story Mapping approach.
The results suggest that whilst the Rational Tree method seems not as easy to understand as
the User Story Mapping, when the modelers receive practical, step-by-step guidance on how
to implement the Rational Tree, they managed to produce qualitative representations of the
software problem. Additionally, the authors notice that there are no significant differences
between the participating groups, regardless of the US-structuring method they utilize, in terms
of recognizing basic constructs within their given sets of US (i.e., missing requirements, Epics,
etc.).

3. Ambiguity in User Stories - A Planned Experiment

While the experiments described in the previous section focus on conceptual modeling as an
approach to help writing better US or making better use of US, a different stream of research
has investigated the quality of US from a linguistic perspective. Even when highly structured
because of the use of predefined templates, US are essentially a textual format for describing
requirements, and are thus prone to ambiguity just as any other type of requirements described
in natural language. Recently, Amna and Poels performed a systematic literature review of the
research on ambiguity in US [13]. This review indicated that vagueness in the formulation of
US results in problems like inconsistent requirements, incomplete requirements, and duplicated
requirements. These problems have been attributed to the intrinsic quality of US [8, 14], the
cognitive capability of developers [7, 15], and US misrepresentation [16, 17]. The ambiguity
that results from problematic US can be manifested at different linguistic levels (i.e., lexical,
syntactic, semantic, pragmatic).

To help identifying issues with US that possibly result in ambiguity, we are developing a

30

framework that classifies these issues according to the linguistic level at which ambiguity
manifests itself and the consequence of this ambiguity in terms of requirements quality (i.e.,
vagueness, inconsistency, insufficiency, duplication). The framework illustrates the issues with
examples (as kind of anti-patterns) and also provides examples of how the issues can be resolved.
The issues themselves are based on quality criteria taken from the QUS framework proposed by
Lucassen et al. [9] and the Agile Requirements Verification framework proposed by Heck and
Zaidman [18]. The idea is that developers can use the framework when writing US or reviewing
US written by others.

To test this idea (and the framework itself), a first ’laboratory’ experiment is planned. The
experiment will involve advanced students, including both IT students and business students
with a major in IT. These students have preliminary knowledge in Requirements Engineering
(RE), US writing and reviewing, and Agile Software Development (ASD), and thus act as proxies
for real developers. Participating students will be randomly assigned to one of two groups.
Each group is required to review a set of US in which we have injected problems related to
the issues covered by the framework. The treatment group will be instructed to make use
of the framework to detect these problems, while the control group will be asked to do the
same, without the help of the framework. Participants are required to tag the US dimension
WHO/WHAT/WHY that is problematic, and will also be asked to provide a short explanation
for the potential ambiguity issues they identify (i.e., why is it problematic?).

Both groups will first receive some training (e.g., a tutorial) to make them aware of require-
ments ambiguity and its consequences for software development. Prior to the experiment, a
short questionnaire will be distributed to collect information regarding the participants’ profile.
After the experiment, participants in the treatment group will be asked feedback regarding
the usefulness of the framework. Apart from that we will compare the number of problems
identified to the total number of problems injected (i.e., an absolute measure of how effective
the framework is) and also make a comparison between both groups (i.e., a relative measure
of effectiveness). More detailed analysis will be performed for the different linguistic levels of
ambiguity and the requirements quality problems that might be caused by ambiguity in US.

4. Conclusion and Future Work

This paper presented a review of experiments that have been conducted in US modeling. Those
are typically designed to investigate the effectiveness of artifacts to comprehend the correct
meaning of user stories. While conceptual models have been commonly used as artifacts to
make better sense and use of US, linguistic approaches can help in identifying and ultimately
avoiding badly written US. We are currently developing a framework based on such linguistic
approach, and plan an experiment to evaluate its effectiveness and perceived usefulness.

References

[1] F. Dalpiaz, A. Sturm, Conceptualizing requirements using user stories and use cases: A con-
trolled experiment, in: International Working Conference on Requirements Engineering:
Foundation for Software Quality, Springer, 2020, pp. 221–238.

31

[2] F. Dalpiaz, P. Gieske, A. Sturm, On deriving conceptual models from user requirements:
An empirical study, Information and Software Technology 131 (2021) 106484.

[3] Y. Wautelet, S. Heng, M. Kolp, I. Mirbel, Unifying and extending user story models, in:
International conference on advanced information systems engineering, Springer, 2014,
pp. 211–225.

[4] Y. Wautelet, S. Heng, M. Kolp, I. Mirbel, S. Poelmans, Building a rationale diagram for
evaluating user story sets, in: 2016 IEEE Tenth International Conference on Research
Challenges in Information Science (RCIS), IEEE, 2016, pp. 1–12.

[5] Y. Wautelet, S. Heng, S. Kiv, M. Kolp, User-story driven development of multi-agent
systems: A process fragment for agile methods, COMLAN 50 (2017) 159–176.

[6] E. Yu, Modeling strategic relationships for process reengineering., Social Modeling for
Requirements Engineering 11 (2011) 66–87.

[7] Y. Wautelet, M. Velghe, S. Heng, S. Poelmans, M. Kolp, On modelers ability to build a
visual diagram from a user story set: a goal-oriented approach, in: International Working
Conference on Requirements Engineering: Foundation for Software Quality, Springer,
2018, pp. 209–226.

[8] Y. Wautelet, D. Gielis, S. Poelmans, S. Heng, Evaluating the impact of user stories quality
on the ability to understand and structure requirements, in: IFIP Working Conference on
The Practice of Enterprise Modeling, Springer, 2019, pp. 3–19.

[9] G. Lucassen, F. Dalpiaz, J. M. E. van der Werf, S. Brinkkemper, Improving agile requirements:
the quality user story framework and tool, Req. Eng. 21 (2016) 383–403.

[10] K. Tsilionis, J. Maene, S. Heng, Y. Wautelet, S. Poelmans, Evaluating the software problem
representation on the basis of rationale trees and user story maps: premises of an experi-
ment, in: International Conference on Software Business, Springer, 2020, pp. 219–227.

[11] K. Tsilionis, J. Maene, S. Heng, Y. Wautelet, S. Poelmans, Conceptual modeling versus
user story mapping: Which is the best approach to agile requirements engineering?, in:
RCIS2021, Springer, 2021, pp. 356–373.

[12] J. Patton, P. Economy, User story mapping: discover the whole story, build the right
product, O’Reilly Media, Inc., 2014.

[13] A. R. Amna, G. Poels, Ambiguity in user stories: A systematic literature review, Information
and Software Technology 145 (2022) 106824.

[14] M. Urbieta, L. Antonelli, G. Rossi, J. C. S. do Prado Leite, The impact of using a domain
language for an agile requirements management, Information and Software Technology
127 (2020) 106375.

[15] J. Jia, X. Yang, R. Zhang, X. Liu, Understanding software developers’ cognition in agile
requirements engineering, Sci. Comput. Program. 178 (2019) 1–19.

[16] M. Elallaoui, K. Nafil, R. Touahni, Automatic transformation of user stories into uml use
case diagrams using nlp techniques, Procedia Computer Science 130 (2018) 42–49.

[17] T. Rocha Silva, M. Winckler, C. Bach, Evaluating the usage of predefined interactive
behaviors for writing user stories: An empirical study with potential product owners,
Cognition, Technology, and Work 22 (2020) 437–457.

[18] P. Heck, A. Zaidman, A quality framework for agile requirements: A practitioner’s
perspective (2014).

32

	1 Introduction
	2 Past Controlled Experiments
	3 Ambiguity in User Stories - A Planned Experiment
	4 Conclusion and Future Work

