
33

The Effectiveness of Conceptual Models Auto-Generated from a
Set of User Stories Written as BDD Scenarios: A Proposed Study

Abhimanyu Gupta1 and Geert Poels 1,2

1 Department of Business Informatics and Operations Management, Faculty of Economics and Business

Administration, Ghent University, Ghent, Belgium
2 FlandersMake@UGent – core lab CVAMO, Ghent, Belgium

Abstract
While agile methodologies are commonly used in software development, researchers have

identified many issues related to requirements elicitation in agile projects. Some of these issues

relate to the complexity of managing and understanding user stories, which is a widely used

requirements specification mechanism in Agile methodologies. This research proposes the

automatic generation of conceptual models from the user stories and the corresponding

Behavior-Driven Development acceptance criteria to help managing and understanding user

stories. This paper discusses a proposed study to evaluate the usefulness of the auto-generated

conceptual models from the user stories.

Keywords 1
user stories, agile methodologies, conceptual models, NLP, model generation

1. Introduction

In Agile software development, requirements documentation is mainly limited to user stories [1]. A

user story is a simple description of a feature of the working software as it is expected by a user [2, 3].

Because of the substantial number of user stories that are written in Agile software development

projects, the project team may encounter difficulties in maintaining, tracing, and managing user stories

[4]. Thus, for moderately complex software, the number of user stories easily exceeds human capacity

of overview and understanding. Considering that user stories might be the only documentation available

to the project team, acquiring an overall understanding of the system’s required features and their

dependencies might be challenging. One way to address this problem is to use conceptual models in

agile software development. Conceptual models describe specific perspectives on reality for the purpose

of understanding and communication [5]. However, creation and maintenance of conceptual models in

each iteration in agile development might be not feasible. Thus, a proposed solution is to automatically

generate conceptual models from sets of user stories. When the user stories change, the models are

automatically updated by generating them again.

With the current popular format of user stories (Connextra template [2]), it is difficult to develop

some types of conceptual models (e.g., process models, state machines) as the information to generate

conceptual models that allows analyzing interactions or dependencies between related user stories is

simply not present in the user stories. With the use of Behavior-Driven Development (BDD) scenarios,

more information about interactions and dependencies between user stories can be used in the model

generation process. So, we developed an NLP based algorithm to generate several types of conceptual

model (i.e., domain model, use case model, process model and state machine) automatically from BDD

scenarios – which we refer to as ‘extended’ user stories. In this paper, we propose for discussion initial

ideas of a study for testing how the auto-generated conceptual models from a set of extended user stories

can be useful in the comprehension of the requirements and in the reduction of requirements

ambiguities.

Agil-ISE 2022: Intl. Workshop on Agile Methods for Information Systems Engineering, June 06, 2022, Leuven, Belgium

EMAIL: Abhimanyu.Gupta@UGent.be (A. Gupta); Geert.Poels@UGent.be (G. Poels)
ORCID: 0000-0001-9247-6150 (G. Poels 2)

©️ 2022 Copyright for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

34

In the next section, we briefly outline the approach and the framework that we used to develop the

algorithm that generates multiple conceptual models from a set of related extended user stories. This is

followed by a demonstration of the inputs and outputs of a tool we developed by implementing the

algorithm. Then in the next section we propose how to evaluate the usefulness of the models generated

by the tool in terms of ensuring better comprehension of the requirements. The last section presents

some further reflections.

2. Approach and framework

As stated in the Introduction, we define extended user stories as user stories that are supplemented by

the acceptance criteria in BDD scenarios. A BDD scenario consists of a feature title, an associated user

story and the scenario proper which is defined by three keywords – “Given”, “When”, and “Then” [6],

for three distinct parts of the scenario – precondition, trigger and postcondition – which are the three

components of the acceptance criteria for user stories. The “Given” indicator marks the precondition

part in the scenario, in which the context is described that is assumed by the user story. The action to

be performed on the object as described in the means part of the user story, can only be triggered in this

context, which is expressed in terms of one or more system objects and their states, where object states

can be the result of actions described in other user stories (i.e., thus indicating dependencies between

user stories). The trigger part, with indicator “When”, describes one or more events that trigger the

action described in the user story to be performed. Finally, the “Then” indicator marks the postcondition

part of the scenario that describes the outcome(s) of the user story in terms of object states achieved.

The BDD scenario template that is recommended by the Agile community [6] is presented in Table 1.

Table 1
The BDD Scenario Template [2]

BDD Scenario

Feature: [title]

User story: As a [role] I want to [means] so that [ends].

Scenario: [title]

Given [context] And [some more context],

When [some event occurs] And [some other event occurs],

Then [outcome] And [some other outcome].

Using the above template, an example of an extended user story is: As a customer, I want to cancel

a service request so that the team can focus on other active requests. Given a service request is submitted

or open, when the customer decides to cancel the service request, then the service request will be

canceled.

Our proposed framework (Figure 1) on developing multiple conceptual models is based on the

generic framework proposed by [7] as similar stages related to NLP analysis and creation of

intermediate data are followed. The inputs are a set of related extended user stories and thus the input

has richer information than a set of standard user stories and more structure than textual requirements.

Also, our framework generates multiple related conceptual models simultaneously unlike previous

research where the focus is to generate one type of conceptual model.

35

Figure 1: Framework of developing multiple conceptual models from extended user stories

Using the algorithm, we generate from the set of related extended user stories, four different types

of models: use case models (for what purposes systems are used by users), process models (what actions

are performed by/for which users and in what order), domain models (what objects the system needs to

store data about, how these objects are related, and which actions changes their data), and state machines

(how the state of objects, as represented by their data, changes through actions). The models we generate

are stylized versions of these model types, which capture the most essential information as found in, for

instance, their UML counterparts. Some model constructs are not used in the stylized versions because

the information to generate the models is not present in the extended user stories.

3. NLP Based tool and Outputs

We demonstrate the creation of the multiple conceptual models using our NLP based tool. We consider

an example set of user stories whose objective is to create an application for handling service requests

of the IT users in an organization. There are two defined roles who can use the application – customer

(i.e., IT users as customers of the IT support team) and support assistant. A customer can create and

cancel a service request and approve or reject the work done by the support assistants in response to the

service request. A support assistant can accept a service request, after which he or another support

assistant can resolve the service request. The set of six extended user stories is shown below in Table

2. This set is then used as input file for the tool.

Table 2: A sample set of extended user stories
1. As a customer, I want to create a service request so that I can have my problem solved. Given that the customer is active, when he

submits a service request then the service request should be submitted.

2. As a support assistant, I want to accept so that I can start working on it. Given it is submitted, when the team starts working on it
then it is open.

3. As a support assistant I need to resolve so that the customer can close the ticket. Given a service request is open, when the team
resolves it, then it is fixed.

4. As a customer I need to approve the service request so that it can be closed. Given a service request is fixed, when I approve it,
then the service request becomes closed.

5. As a customer I need to reject the service request so that it can be reopened. Given a service request is fixed, when I reject it, then
the service request is open.

6. As a customer I want to cancel a service request so that the team can focus on other active requests. Given a service request is
submitted or closed when customer cancels it then it will be canceled.

After inputting, this sample set of extended user stories is processed by the tool to create multiple

conceptual models. For preservation of space, we are showing the use case (model), state machine for

the service request, and the process model in Figure 2. The domain model (showing relationships

between concepts) is not included in Figure 2. Also, note that as we currently use our tool as a research

tool, some features of the models are not shown as in their UML counterparts, although the information

is present. For example, non-sequential sequence flow in processes is shown using symbols inside the

36

activities – the process model in Figure 2 indicates that “cancel service request” can follow after “create

service request” or “approve service request.”

Figure 2: Multiple conceptual models generated from Table 2

4. Evaluating the usefulness of the generated models

In the current stage of the research, we intend to conduct a qualitative study to evaluate the usefulness

of the auto-generated conceptual models from a set of extended user stories. Our primary objective is

to identify the value that automatically generated conceptual models can bring to Agile practitioners.

We will conduct in-depth semi-structured interviews with ten agile practitioners. We prefer to conduct

a qualitative study rather than a quantitative study (e.g. an experiment), as qualitative studies help to

achieve depth of understanding of a phenomenon rather than breadth of understanding [8]. The Agile

practitioners will be selected based on their experience (i.e., at least five years of experience in

practicing Agile software development). Because of the small sample size and specific experience

required to participate in the study, we will use a purposeful sampling strategy [8].

Research suggests that some organizations use high level conceptual models such as domain models

and mind maps [9, 10] in Agile development but the use of multiple conceptual models (as described

in this paper) is not common. Therefore, we plan to gradually introduce and engage our interviewees

with the auto-generated conceptual models created by our tool. We will conduct the interviews in three

stages.

In the first stage, the goal is to identify the perceived benefits of using conceptual models in Agile

software development. In this stage, we will not disclose the tool to create auto-generated conceptual

models from user stories. The interview questions that guide this stage of the interview are: (1) what

37

are the potential benefits of using conceptual models when using an Agile methodology? (2) what are

the potential pitfalls in using conceptual models using an Agile methodology? (3) what specific

conceptual models will you use and for what task? At this stage, we do not anticipate in-depth responses

to these questions. This could be because our interviewees may not be familiar with multiple conceptual

models. However, we wish to find out their prior expectations regarding the use of conceptual models

even if they do not have much experience in using models.

In the second stage, we will introduce the tool to create auto-generated conceptual models from user

stories. We will first show the practitioners the BDD template (Table 1) and then demonstrate with the

tool how a set of extended user stories (Table 2) generates conceptual models (Figure 2). We will then

continue the interview by revisiting the same questions as in stage 1. We now anticipate different

responses as the interviewees might now have more concrete ideas about the use of conceptual models

and that they can be generated automatically from a requirements artifact (i.e., user stories) that they

are used working with.

In the third stage, we will actively engage the interviewees with the tool such that they can experience

using auto-generated models. The motivation for this step is to demonstrate to the participant how minor

changes in a set of user stories can drastically modify the corresponding conceptual models, making the

changes visible. We will delete a user story from the set of six without the participant knowing which

user story is deleted. We will then ask the participant to find out which one of them was deleted. Next,

we will use the tool to automatically generate the conceptual models from the modified set and show to

the participant. Then we will ask the participant whether the models help identify the deleted user story.

Then we will make minor modification to a user story (from the original set), which can bring large

effect of the conceptual models, without the participant knowing what is modified. Next, we will use

the tool to automatically generate the conceptual models from the modified set and show to the

participant. Then we will ask the participant whether the models help identify the modified user story.

For example, we will change the word “closed” to “fixed” in user story 6. The revised user story is “As

a customer, I want to cancel a service request so that the team can focus on other active requests. Given

a service request is submitted or fixed, when customer cancels it then it will be canceled.” After the

change in the user story, we will ask the practitioners to identify what was changed in the user story.

We will then show the modified conceptual models. (e.g., Figure 3). In this Figure, we note that the

sequence flow from “approve service request” to “cancel service request” is removed and the sequence

flow from “resolve service request” to “cancel service request” is introduced from the previously

generated process model (Figure 2). This change also identifies “approve service request” as an end

event.

Figure 3: Revised Process Model after changing one word in the sixth user story

38

After engaging with the practitioners with the tool, we will repeat the questions asked in the previous

two stages. We will also ask specific questions such as “how automatic generation of conceptual models

can benefit management of user stories?” “What specific ways will you use the conceptual models in

managing the process of software development?”, and “what would you do differently in managing

user stories, if you had access to this tool?”

By demonstrating the functionality of the tool, we intend to engage the practitioners with the conceptual

models. As the tool automatically recreates conceptual models with whatever input is provided, we

indirectly demonstrate that users need not maintain the versioning of the conceptual models as these

models are automatically updated after each iteration in the user stories. Conceptual models are used

primarily for overall domain understanding and communication [5] but in this research we would like

to identify what agile practitioners can do specifically with the conceptual models. For example, when

the process model generated from the user stories is clearly incomplete (e.g., no path from the start

event to the end event), we wish to find out whether practitioners can infer what this means for the user

stories (e.g., based on the models, can they detect that the set of user stories is incomplete)?

We will record the interviews and create transcripts. At the end of all the interviews, we will identify

ideas or concepts from the transcripts by tagging codes that summarizes those ideas or concepts. Then

we will perform a qualitative analysis using those ideas and concepts to understand the practitioners’

opinions about how useful the auto generated conceptual models are. We will repeat the analysis in

each stage of interview of practitioners. We anticipate that practitioners will demonstrate high

engagement level in the last stage of interview and will come up with responses on creative use of

conceptual models in agile methods.

5. Reflection

In practice, even if the use of conceptual models would have value in Agile software development,

developing multiple conceptual models from user stories would require knowledge and skills that may

not be present. Thus, a key advantage of our approach is that the developers need not know how to

create conceptual models. If the user stories that are used as input to the tool are consistent and accurate,

then the conceptual models that are automatically generated are also consistent and accurate. Similarly,

users do not have to maintain the conceptual models when the user stories change. Version controlling

of the set of the user stories will generate different versions of the conceptual models and therefore

maintenance of the models will be easy. To identify the usefulness of the generated models in practice,

we propose to do a study with practitioners where we will engage the practitioners to interact with the

user stories and the conceptual models generated from them. The intention of this study is to understand

the benefits of automatically generation of conceptual models from the user stories.

6. Acknowledgements

This work was supported by the Fund for Scientific Research – Flanders (FWO) (Research Project

Grant G.0101.16N-39515). We also acknowledge the guidance of Dr. Palash Bera in this research.

7. References

[1] I. Inayat and S. S. Salim, "A framework to study requirements-driven collaboration among agile

teams: Findings from two case studies," Computers in Human Behavior, Article vol. 51, no.

Part B, pp. 1367-1379, 10/1/October 2015 2015.

[2] M. Cohn, User Stories Applied: For Agile Software Development. Boston: Addison-Wesley,

2004.

[3] D. Leffingwell, Agile Software Requirements: lean requirements practices for teams,

programs, and the enterprise (Agile Software Development Series). Boston: Addision-Wesley,

2011.

39

[4] B. Ramesh, C. Lan, and R. Baskerville, "Agile requirements engineering practices and

challenges: an empirical study," Information Systems Journal, Article vol. 20, no. 5, pp. 449-

480, 2010.

[5] J. Mylopoulos, "Conceptual modeling and telos," in Conceptual modeling, Databases and

Cases, P. a. Z. Locuopoulos, R., Ed. New York: John Wiley and Sons Inc, 1992.

[6] J. F. Smart, BDD in action: Behavior-Driven development for the whole software lifecycle.

New York: Manning Publications Company, 2014.

[7] F. Bozyig, O. Aktas, and D. Kılınc, "Linking software requirements and conceptual models: A

systematic literature review," Engineering Science and Technology, an International Journal,

vol. 24, no. 1, pp. 71-82, 2021.

[8] M. Patton, Qualitative research and evaluation methods. Thousand Oaks, CA: 3rd Sage

Publications, 2002.

[9] E.-M. Schön, J. Thomaschewski, and M. J. Escalona, "Agile Requirements Engineering: A

systematic literature review," Computer Standards & Interfaces, Article vol. 49, pp. 79-91,

1/1/January 2017 2017.

[10] W. Helmy, A. Kamel, and O. Hegazy, "Requirements Engineering Methodology in Agile

Environment," International Journal of Computer Science, vol. 9, no. 5, pp. 293-300, 2012.

