
Building a Software Architecture out of User Stories
and BDD Scenarios: Research Agenda
Samedi Heng1, Monique Snoeck2 and Konstantinos Tsilionis2

1HEC Liège, Université de Liège, Liège, Belgium
2KU Leuven, Leuven, Belgium

Abstract
User stories (US) are classically used as requirements engineering artifacts in agile methods like Scrum,
these are sometimes associated with Behavior Driven Design (BDD) scenarios. Previous research al-
lowed to unify US and BDD scenarios templates through the definition of a set of concepts from different
nature traditionally used in instances of both of these concepts. When associated to these concepts, infor-
mation is given on the nature of the US and BDD instances. So called high-level development languages
provide strong abstractions on the basis of which software can be developed. These abstractions mimic
human behavior at software runtime making the development process easier and understandable by
human beings. Research has shown that functions of different nature defined in US and BDD instances
do represent an interesting input to define a software architecture within Agent- and Object-Oriented
(AO and OO) languages. While the mapping to AO is quite intuitive, the mapping to OO concepts is less
one-on-one and requires a more in-depth analysis of the sentences that make part of the US and BDD
definition. This can be done manually, but support by means of intermediate transformations or NLP is
possible as well. This article summarizes the state of the art in the field and points to future work.

Keywords
User Stories, Behavior Driven Development, Acceptance Test, Software Architecture.

1. Introduction and Background

User Stories (US) are used to express requirements in structured natural language when devel-
oping software with the agile methods like Scrum. They document what functions or features
a user wants the system to satisfy and are built around three complementary dimensions, i.e.
WHO requires the functionality, WHAT the functionality is and WHY it is required/desired.
Their main advantage is that they are easy to write and understand but lack the necessary details
for designers and developers to effectively build the supporting software. Behavior Driven
Design (BDD) scenarios can be associated with US to further document the concrete way a US
should be realized by the software system. With the scenario, the development team gets the
details on how the system should behave at runtime before, during at after the functionality is
executed. In fact, the BDD scenario thus allows to validate the requirement. BDD scenarios are
structured following three complementary dimensions, i.e. GIVEN a specific context, WHEN
the functionality is executed, THEN the system is in a resulting state.

Agil-ISE 2022: Intl. Workshop on Agile Methods for Information Systems Engineering, June 06, 2022, Leuven, Belgium
 samedi.heng@uliege.be (S. Heng); monique.snoeck@kuleuven.be (M. Snoeck);
konstantinos.tsilionis@kuleuven.be (K. Tsilionis)
� 0000-0002-6037-0914 (S. Heng); 0000-0002-3824-3214 (M. Snoeck); 0000-0001-9702-6941 (K. Tsilionis)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

40

mailto:samedi.heng@uliege.be
mailto:monique.snoeck@kuleuven.be
mailto:konstantinos.tsilionis@kuleuven.be
https://orcid.org/0000-0002-6037-0914
https://orcid.org/0000-0002-3824-3214
https://orcid.org/0000-0001-9702-6941
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


Both US and BDD scenarios contain relevant data and domain vocabulary useful for designing
the software system. Indeed, Agent- and Object-Oriented (AO and OO) software mimic real life
organizational behavior at application runtime to ease the implementation. Indeed, the intrinsic
attributes and behavioral characteristics of AO and OO can partly be found in the expression of
US/BDD. Also, meta-data furnished at modeling time on the type of element depicted in the US
and the BDD scenarios furnish relevant information to map the requirement-level element with
a design-level one.

Wautelet et al. [1] have investigated the US templates that are the most used in practice.
Out of them they selected the keywords that were the most relevant and associated them to a
particular semantic. Ultimately, a conceptual model made out of the most used concepts found
in US templates has been built supporting the creation and furnishing useful meta-data on the
nature of the depicted element when followed at modeling-time. This model is represented in
Fig. 1; the definitions of each concept can be found in [1]. A similar investigation has been
performed in Tsilionis et al. [2] out of the BDD templates and lead to the unified conceptual
model presented in Fig. 2.

Soft_Goal

dimension : Enum{WHAT,WHY}

name : String

Hard_Goal

dimension : Enum{WHAT,WHY}

name : String
0..n0..n 0..n0..n

so that

Capability

name : String

dimension : String = WHAT

Role

name : String

dimension : String = WHO

0..n

1..n

0..n

1..n

wants/wants to/needs/can/would like

Task

name : String

dimension : Enum{WHAT,WHY}
0..n1..n 0..n1..n

wants/wants to/needs/can/would like

0..n

0..n

0..n

0..n

so that

0..n
0..n

0..n so that
0..n

Goal

0..n

0..n

0..n

0..n

so that

0..n

1..n

0..n

1..n

wants/wants to/needs/can/would like

0..n0..n 0..n0..n

so that

Figure 1: Unified Model for User Stories (from [1]).

Outcome

User_Behavior

Context
GIVEN_Dimension

WHEN_Dimension

1..n

0..n

THEN_Dimension

1..n

0..n

PostCondition

State

PreCondition

induces

leads to

name : String

name : String

name : String

User-driven scenario System-driven scenario

System_Behavior

Figure 2: Unified Model for BDD Test Scenarios.

41



2. Building a Software Architecture From User Stories and BDD
Scenarios

This section overviews how to transform the concepts presented in both US and BDD scenarios
to an AO architecture (Sect. 2.1) as well as OO software (Sect. 2.2). For the agent architecture, we
provided the tranformation for both Belief-Desire-Intention (BDI [3]) agent (using JaCaMo [4])
and none-BDI agent (using JADE [5]). We have chosen these high-level programming paradigms
because the OO paradigm is the most used paradigm by many programming language such
as Java, Python, etc., while, the AO paradigm is a new paradigm and it provides higher level
abstraction compared to the OO paradigm. It allows to design software be more autonomous
and social [6]. We focus on transforming the BDD System-Behavior scenarios to both AO and
OO architecture. Sect.2.3 illustrates the transformation examples.

2.1. Agent-Oriented Architecture Transformation

2.1.1. Transforming to a None-BDI Agent Architecture (JADE framework)

Figure 3: The mapping from user story and BDD to None-BDI Agent (JADE framework).

A JADE agent is composed of Behaviour and MessageQueue properties. The MessageQueue

42



is used to store the communication message from others agents. The Behaviour is a task
that an agent can carry out so it implements its possible actions. There are two types of
Behaviour: SimpleBehaviour and CompositeBehaviour. The SimpleBehaviour is atomic, while
the CompositeBehaviour can be composed of other behaviours (see Fig. 3).

With respect to US concepts, previous work [7] showed that the concept of Role in the
WHO-dimension of a US can be mapped to an Agent in JADE. The concept of Task presented
in both WHAT- and WHY-dimensions of the US are mapped into CompositeBehaviours. Fi-
nally, the concepts of Capability presented in the WHAT-dimension of US can be mapped to
SimpleBehaviours.

With respect to the BDD concepts, the GIVEN- and THEN-dimensions do refer to states.
They indeed describe state of a system or an agent rather then an action. Therefore, these
concepts can be mapped to the Property characteristic of an agent which is a JAVA object. Since
it is a state, it could represent the received message from another agent as well; hence, they
could be transformed to an ACLMessage. In turn, the WHEN-dimension represents an action
potentially performed by an agent. This concept can then be transformed to a Behaviour in
JADE. The latter BDD dimension operationalizes the WHAT-dimension of a US, therefore, we
argue that it should be implemented within the Behaviour of the US it operationalizes. Fig. 3
shows the mapping of US and BDD scenarios concepts to the architectural ones of JADE.

2.1.2. Transforming to a BDI Agent Architecture (JaCaMo framework)

Figure 4: The mapping from user story and BDD to BDI Agent (JaCaMo framework).

43



A BDI agent in JaCaMo is composed of the concepts of Belief, Goal, Plan and Event. A Belief
describes a piece of knowledge that an agent has about itself and its environment. Events
describe stimuli, emitted by agents or automatically generated in response to which other or
the same agents must take action. A Goal “represents future states of the environment that are
desirable to the agent” [4]. A Plan describes a sequence of actions that an agent can take when
an event occurs. In JaCaMo, a Plan is composed of an Action (see Fig. 4).

In the work of Wautelet et al. [8], the authors demonstrated that the concept of Role in the
WHO-dimension of the US can be transformed into a BDI Agent. The concept of Task presented
in both WHAT- and WHY-dimensions of a US are transformed into a Plan. The concept of
Capability presented in the WHAT-dimension of a US can be transformed into an Event but
with the JaCaMo framework the Capability can be mapped to a Plan which should, however, be
composed of one Action only.

Hard- and soft-goals found in US can be mapped to the Goal part of the Agent. The BDD
GIVEN- and THEN-dimensions of the BDD scenario can be mapped to the Beliefs and Events of
an Agent. Lastly, the BDD WHEN-dimension can be mapped to the Action belonging to the Plan
of mapped from the US it operationalizes. Fig. 4 shows the mapping of US and BDD scenarios
to the Agent architecture in JaCaMo.

2.2. Object-Oriented Architecture Transformation

Mapping the elements of a US directly to elements of an OO design of an application is not
straightforward: the US is formulated at a too high level to directly retrieve the necessary
elements from it. The BDD scenarios corresponding to a US provide a more detailed and
concrete specification. But even the mapping of BDDs to elements of an OO design is not
straigthforward. More explanation could be found in [9]. Tab. 2 exemplifies the object types,
attributes, and object type states that can be derived from each element of a BDD scenario.
Object types and attributes can be used to defined the class diagram defining the persistent
objects, while the states will be used for defining state charts per object type. Input and output
services will be used to defined getters and setters for object types, and for defining user
interfaces required for the interaction with the user.

Given the required expertise for deriving the elements needed for the application design from
US, many researchers have already investigated possible forms of automated support for the
business analys. An example is the work of [10], where US are translated to an intermediate
formal language, that is subsequently used to generate UML diagrams from, making use of NLP
techniques. This is by far not the only work that uses NLP to assist the analysis of US. Raharjana
et al. [11] identified through an SLR a broad range of purposes of using NLP to extract some
aspects of US, but conclude that it remains a significant challenge to understand a sentence’s
context. While the difficulties associated with NLP persist, such support can nevertheless help
e.g. to improve the completeness and conciness of extracted domain models by providing
traceability, as in DoMoBOT [12].

44



2.3. Illustration examples

Our illustration is based on a US and BDD scenarios taken from an opensource project (Simple
online shop1). The example US is related to buying product online. The transformations to AO
and OO architecture are presented in Tabs. 1 and 2 respectively.

Table 1
The illustration of transforming US and BDD scenarios to Agent architecture.

User Story and BDD Concepts None-BDI Agent BDI
Agent

User Story:
1: As a web user 1: User 1: Agent 1: Agent
2: I want to add products to cart 2: AddToCart 2: SimpleBehaviour 2: Plan
3: so that I can buy cool products 3: BuyProduct 3: CompositeBehavior 3: Plan
BDD Scenario 1: Adding new product to cart
1: Given I am viewing product with Name “Super Random
Product"

1: Products 1: Java Object 1: Belief

2: When I press “Add to Cart” 2: CreateItemInCart 2: part of SimpleBe-
haviour

2: Action

3: Then I should see “Product added to Cart” 3: Cart 3: Java Object 3: Belief
4: And I should see one extra item in cart 4: Cart 4: Java Object 4: Belief
BDD Scenario 2: Adding extra already selected product to
cart
1: Given I am viewing the content of my cart 1: Cart 1: Java Object 1: Belief
2: And my cart already contains the product with Name
“Super Random Product”

2: Cart 2: Java Object 2: Belief

3: When I press “+” 3: AddToCart 3: SimpleBehaviour 3: Action
4: Then I should see “Product added to Cart” 4: Cart 4: Java Object 4: Belief
5: And I should see one extra item for “Super Random Prod-
uct” in my cart

5: Cart 5: Java Object 5: Belief

Table 2
The illustration of transforming BDD scenarios to Object-Oriented architecture.

BDD Scenario Business Object
Type referenced

Attribute Refer-
enced

BOT state refer-
enced

Input Service ref-
erenced

Output Service
referenced

BDD Scenario 1:
1: 1: Product 1: Product Name 1: Product Exits 1: 1: View Product
2: 2: Cart 2: 2: Cart Exits 2: Create Item-

InCart
2:

3: 3: Cart 3: 3: 3: Response Suc-
cess/fail

3:

4: 4: ItemInCart 4: 4: ItemInCart ex-
ists

4: 4 View Cart, View
ItemInCart

BDD Scenario 2:
1: 1: Cart 1: 1: Cart Exists 1: 1: ViewCart
2: 2: ItemInCart 2: 2: ItemInCart Ex-

ists
2: 2: View Item-

InCart
3: 3: 3: 3: 3: modifyItem-

InCart
3:

4: 4: 4: 4: 4: Reponse Suc-
cess/Fail

4:

5: 5: CartItemInCart 5: 5: Cart Exists, Item-
InCart Exists

5: 5: View Cart, View
ItemInCart

1https://github.com/kunicmarko20/Simple-Shop/tree/master/features

45



3. Conclusion

Our research aims at using US and BDD scenarios as a basis for building AO and OO software
architecture. This paper reports the primary results of the research. We argue that some
concepts presented in both US and BDD scenarios can be mapped intuitively to agent concepts.
However, the mapping to object oriented models requires more in-depth analysis. This can be
improved with the help of NLP which is our plan for future work as the works of [12, 13, 14, 15].

References

[1] Y. Wautelet, S. Heng, M. Kolp, I. Mirbel, Unifying and extending user story models, in:
CAiSE2014, Springer, 2014, pp. 211–225.

[2] K. Tsilionis, Y. Wautelet, C. Faut, S. Heng, Unifying behavior driven development templates,
in: RE2021, IEEE, 2021, pp. 454–455.

[3] Y. Wautelet, M. Kolp, Business and model-driven development of bdi multi-agent systems,
Neurocomputing 182 (2016) 304–321.

[4] O. Boissier, R. H. Bordini, J. F. Hübner, A. Ricci, A. Santi, Multi-agent oriented programming
with jacamo, Science of Computer Programming 78 (2013) 747–761.

[5] F. L. Bellifemine, G. Caire, D. Greenwood, Developing multi-agent systems with JADE,
John Wiley & Sons, 2007.

[6] E. Yu, Agent-oriented modelling: software versus the world, in: International Workshop
on Agent-Oriented Software Engineering, Springer, 2001, pp. 206–225.

[7] Y. Wautelet, S. Heng, S. Kiv, M. Kolp, User-story driven development of multi-agent
systems: A process fragment for agile methods, COMLAN 50 (2017) 159–176.

[8] Y. Wautelet, S. Heng, M. Kolp, C. Scharff, Towards an agent-driven software architecture
aligned with user stories., in: ICAART (2), 2016, pp. 337–345.

[9] M. Snoeck, Y. Wautelet, Agile MERODE: A Model-Driven Software Engineering Method
for User-Centric and Value-Based Development, Software and Systems Modeling (accepted
for publication).

[10] T. Yue, L. C. Briand, Y. Labiche, Atoucan: An automated framework to derive uml analysis
models from use case models, ACM Trans. Softw. Eng. Methodol. 24 (2015).

[11] I. K. Raharjana, D. Siahaan, C. Fatichah, User stories and natural language processing: A
systematic literature review, IEEE Access 9 (2021) 53811–53826.

[12] R. Saini, G. Mussbacher, J. L. Guo, J. Kienzle, Domobot: A modelling bot for automated
and traceable domain modelling, in: RE2021, IEEE, 2021, pp. 428–429.

[13] F. Gilson, M. Galster, F. Georis, Generating use case scenarios from user stories, in:
Proceedings of the International Conference on Software and System Processes, 2020, pp.
31–40.

[14] T. Kochbati, S. Li, S. Gérard, C. Mraidha, From user stories to models: A machine learning
empowered automation., in: MODELSWARD, 2021, pp. 28–40.

[15] M. Soeken, R. Wille, R. Drechsler, Assisted behavior driven development using natural
language processing, in: International Conference on Modelling Techniques and Tools for
Computer Performance Evaluation, Springer, 2012, pp. 269–287.

46


	1 Introduction and Background
	2 Building a Software Architecture From User Stories and BDD Scenarios
	2.1 Agent-Oriented Architecture Transformation
	2.1.1 Transforming to a None-BDI Agent Architecture (JADE framework)
	2.1.2 Transforming to a BDI Agent Architecture (JaCaMo framework)

	2.2 Object-Oriented Architecture Transformation
	2.3 Illustration examples

	3 Conclusion

