
Reasoning in Financial Settings with Harmful Joins
Teodoro Baldazzi

1
, Paolo Atzeni

1

1Università Roma Tre, Department of Computer Science and Engineering, Rome, Italy

Abstract
Warded Datalog+/- has recently emerged as a powerful logic language for ontological reasoning on large knowledge graphs,

offering a very good trade-off between expressive power and data complexity. Achieving decidability and data tractability in

practice, over complex recursive settings with existential quantification, requires reasoners to adopt specialized strategies

that control the effects of recursion and ensure reasoning termination with small memory footprint. However, to enable these

strategies, the Warded Datalog+/- settings must be in a “harmless” form, i.e., without joins on variables affected by existential

quantification. We provide an algorithm to remove such “harmful” joins, supporting reasoning decidability and the full

expressive power of the language while preserving the correctness of the task. The algorithm is integrated into the Vadalog

system, a state-of-the-art Warded Datalog+/- -based reasoner. We employ it to solve the Strong Link problem, a relevant

financial task to find possible links between pairs of companies, based on the existence of a person who owns a significant

share of both their stocks. Solving this problem allows to investigate possibly malevolent shareholdings and ownerships.

Keywords
Datalog, Vadalog, ontological reasoning, existential quantification, harmful joins, financial scenarios

1. Introduction
Recent years have witnessed a growing interest, among

companies of distinct size and scope, towards building

and exploiting private corporate knowledge in the form

of financial Knowledge Graphs (KG). This led to the ris-

ing adoption of intelligent systems that allow to manage

such extensional knowledge and enrich it with new infor-

mation, inferred via efficient ontological reasoning mech-

anisms and modeled by logical rules and ontologies in

specific formalisms [1, 2]. Employing modern languages

for Knowledge Representation and Reasoning (KRR) [3]

enabled companies to solve relevant problems and tasks

in distinct business domains, such as investment analysis,
company ownership, shock propagation, fraud detection,

anti-money laundering, etc.

A Formalism for Ontological Reasoning. As main re-

quirements, KRR languages must exhibit full support for

recursion and joins as well as existential quantification,

all aspects essential to guarantee the expressive power

needed for ontological reasoning and KG traversal. At the

same time, decidability and tractability of the reasoning

must be sustained, basically limiting the data complexity

to a polynomial degree [4]. Warded Datalog
±

[2] is a

member (technically, a fragment) of the Datalog
±

fam-

ily [5] that recently rose among the logic languages for

ontological reasoning on KGs. It covers these require-

ments, offering a very good trade-off between expres-

sive power and computational complexity and capturing

Published in the Workshop Proceedings of the EDBT/ICDT 2022 Joint
Conference (March 29-April 1, 2022), Edinburgh, UK
$ teodoro.baldazzi@uniroma3.it (T. Baldazzi);

paolo.atzeni@uniroma3.it (P. Atzeni)

© 2022 Copyright for this paper by its authors. Use permitted under Creative

Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

PTIME data complexity for the reasoning. The semantics

of a set Σ of Warded rules over a database instance 𝐷 is

defined via the chase procedure [6]. Intuitively, it adds

new facts to 𝐷, possibly containing freshly generated

symbols 𝜈 (technically, labelled nulls) [7] that act as place-

holders for the existentially quantified variables, until

Σ is satisfied. Warded Datalog
±

is implemented in the

Vadalog system [3], a state-of-the-art reasoner that allows

to perform ontological reasoning in complex scenarios.

Critical Aspects in Reasoning. When reasoning on

Datalog
±

settings, in the presence of recursion and ex-

istential quantification, infinite labelled nulls could be

generated in the chase, causing the procedure not to ter-

minate and inhibiting the decidability of the task [8]. In

this work, we tackle such issue in the context of Warded

Datalog
±

scenarios. Indeed, while the computational

properties of the Warded fragment bode well for efficient

implementations, it is still required to apply specific tech-

niques (namely, termination strategies) that properly con-

trol the interactions between recursion and existentials

in the chase. Consider the following example.

Example 1. Scenario modeled with a Warded set Σ.

Bank(x) → ∃d Manager(x, d) (𝛼)

Acquires(x, y),Manager(x, d) → Manager(y, d) (𝛽)

BankGroup(x, y) → ∃d Manager(x, d) (𝛾)

Manager(x, d),Manager(y, d) → BankGroup(x, y) (𝜌)

Σ represents a bank acquisition scenario. For each bank 𝑥
there exists a manager 𝑑 (rule 𝛼). If 𝑥 acquires a bank 𝑦,
𝑑 also becomes manager of 𝑦 (rule 𝛽). If 𝑥 and 𝑦 have a
common manager, they are in the same bank group (rule 𝜌)
and vice versa (rule 𝛾).

mailto:teodoro.baldazzi@uniroma3.it
mailto:paolo.atzeni@uniroma3.it
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

Consider the database instance 𝐷 = {Bank(Unicredit),
Bank(MPS), Acquires(Unicredit, MPS)} and the query 𝑄:

“what are all the BankGroups?” as ontological reasoning

task. It can be observed that the set of such bank groups

is finite, whereas the chase does not terminate. First,

we generate Manager(Unicredit,𝜈0) and Manager(MPS,𝜈1)

by activating 𝛼 from the facts Bank(Unicredit) and

Bank(MPS), respectively. Then, we obtain Man-
ager(MPS,𝜈0) via 𝛽, BankGroup(Unicredit,MPS) via the

join on 𝜈0 in 𝜌, Manager(Unicredit,𝜈2), Manager(MPS,𝜈2)

by activating 𝛾 and so on. Indeed, the recursion involv-

ing 𝛽, 𝛾 and 𝜌 causes the generation of an infinite set⋃︀
𝑖=3,...{Manager(Unicredit, 𝜈𝑖), Manager(MPS, 𝜈𝑖)}.

Enabling Reasoning Termination in Vadalog. To

achieve reasoning termination in practice, while uphold-

ing the correctness of the task, the Vadalog system applies

the isomorphism termination strategy in the chase: iso-

morphic copies of previously generated facts (i.e., same

name, same constants in same position and bijection be-

tween labelled nulls) are not explored, i.e., the chase steps

starting from them are not performed and the derived

facts are not generated. This strategy exploits the the-

oretical underpinning of Warded Datalog
±

known as

reasoning boundedness, which states that facts derived

from isomorphic origins would be in turn isomorphic,

thus uninformative for query answering [9].

However, as a necessary condition for such exploita-

tion, the set of rules is required to be in a “harmless”

form, i.e., without a “harmful” type of joins between

variables affected by existential quantification (namely,

in Harmless Warded Datalog
±

). This is due to the fact

that rules with these harmful joins could activate on

labelled nulls, propagated from the existentials: there-

fore, the suppression of isomorphic facts carrying such

nulls could hamper their activation and, consequently,

undermine the correctness of the reasoning task. For

instance, in Example 1 Manager(MPS,𝜈0) is isomorphic

to Manager(MPS,𝜈1), yet its suppression would prevent

the join in 𝜌 with Manager(Unicredit,𝜈0) from generat-

ing BankGroup(Unicredit,MPS) and the query from being

answered correctly. On the other hand, it is intuitive to

observe that precluding the use of harmful joins when

modeling reasoning settings would affect the expressive

power of the adopted KRR language.

In this work, we investigate the role of harmful joins

in Warded Datalog
±

settings and we enable reasoning

termination in their presence by applying the Harmful
Join Elimination (HJE) algorithm [10], a technique to

rewrite a set of Warded rules with harmful joins into an

equivalent Harmless Warded form.

A Financial Use Case. As a powerful Warded Datalog
±

-

based reasoner, the Vadalog system is employed to ef-

ficiently solve relevant tasks in real-world scenarios,

mainly related to the financial and business realm [11].

The applicability of the isomorphism termination strat-

egy, to achieve reasoning decidability while preserving

correctness of query answering, is essential in such com-

plex domains. Therefore, reasoning settings that feature

harmful joins and recursion require to be treated properly.

Such is the case of the Strong Link problem [9], a high-

interest scenario in the context of company ownership.

It consists in determining possible links between pairs of

companies, based on the existence of a person who owns

a significant share of both their stocks. Solving this task

allows to investigate and monitor (possibly malevolent)

company shareholdings and ownerships.

Motivated by this, we apply our HJE algorithm to the

Warded Datalog
±

scenario of Strong Link, rewriting it

into its Harmless Warded equivalent and enabling the

Vadalog system to solve the task in an efficient fashion,

while preserving correctness.

In detail, the main contributions of this paper are:

• An integration of the theoretical bases for the

Warded fragment. We introduce Harmless Warded

Datalog
±

and we discuss the role of harmful joins in

Warded settings, with reference to expressive power

and reasoning termination. We define and solve the

disarmament problem, which consists in rewriting a

set of Warded rules with harmful joins into a Harmless

Warded version, equivalent with respect to the chase.

• The Harmful Join Elimination algorithm, our rewrit-
ing technique that exploits such bases to solve the

disarmament problem and enable Vadalog’s termina-

tion strategy in practice on recursive reasoning set-

tings with harmful joins. We illustrate the procedure

and we apply it to the program in Example 1.

• A real-world application of the HJE algorithm on the

Strong Link problem. We discuss the financial task and

rewrite the corresponding setting with harmful joins

into its Harmless Warded equivalent. We provide an

experimental evaluation of the now enabled reasoning

via the Vadalog system, extracting input data from the

open KG provided by DBpedia [12].

Related Work. Harmful Join Elimination belongs to the

class of methodologies for Datalog rewriting. Among

them, we mention its conversion into specific fragments,

such as Guarded [13], Linear [14], and Disjunctive [15].

Similarly, by interpreting the rules as queries, several

methods have been devised to rewrite Datalog
±

pro-

grams with existential rules [16, 17] and from distinct

formalisms, such as Regular Path Queries [18] and De-
scription Logics [19, 20]. The importance of achieving de-

cidability of Datalog
±

reasoning settings, in the presence

of recursion and existential quantification, determined

the research and the development of novel approaches

to sustain termination of reasoning tasks [21, 5, 7]. Yet,

the HJE algorithm is, to the best of our knowledge, the

first technique to rewrite Warded Datalog
±

rules into

an equivalent Harmless Warded version, that allows to

achieve reasoning termination and decidability.

Overview. This paper is organized as follows. In Sec-

tion 2, we recall relevant background notions. In Sec-

tion 3, we discuss the disarmament problem and we illus-

trate the HJE algorithm in action. In Section 4, we provide

the application of HJE on the Strong Link problem and

we present the experimental evaluation. We draw our

conclusions in Section 5.

2. Reasoning with Vadalog
In this section, we briefly recall some relevant notions to

guide our discussion. Let 𝐶 , 𝑁 , and 𝑉 be disjoint count-

ably infinite sets of constants, (labelled) nulls and (regular)

variables, respectively. A (relational) schema S is a finite

set of relation symbols (or predicates) with associated

arity. A term is a either a constant or variable. An atom
over S is an expression of the form 𝑅(𝑣), where 𝑅 ∈ S
is of arity 𝑛 > 0 and 𝑣 is an 𝑛-tuple of terms. A database
(instance) over S associates to each relation symbol in

S a relation of the respective arity over the domain of

constants and nulls. The members of the relations are

called tuples or facts [9].

Existentials and Affectedness. The Vadalog system

employs vadalog, a KRR language that implements

Warded Datalog
±

as its logical core. A Warded Datalog
±

program consists of a set of facts and rules. An existential
rule is a first-order sentence ∀�̄�∀𝑦(𝜙(�̄�, 𝑦)→∃𝑧 𝜓(�̄�, 𝑧)),
where 𝜙 (the body) and 𝜓 (the head) are conjunctions

of atoms, over the respective predicates, with constants

and variables. For brevity, we may omit quantifiers and

denote conjunction by comma. Let Σ be a set of rules

and 𝑝[𝑖] a position (i.e., the 𝑖-th term of a predicate 𝑝with

arity 𝑘, where 𝑖 = 1, . . . , 𝑘). We define 𝑝[𝑖] as affected if

(i) 𝑝 appears in a rule in Σ with the 𝑖-th term that con-

tains an existentially quantified variable or, (ii) there is

a rule 𝜌 of Σ such that a universally quantified variable

is only in affected body positions and in position 𝑝[𝑖] in

the head of 𝜌. A variable 𝑥 is harmful, with respect to a

rule, if 𝑥 appears only in affected positions, otherwise it

is harmless. A rule that contains a harmful variable is a

harmful rule. In Example 1, 𝛼 and 𝛾 are existential rules,

𝛽 propagates the affected position Manager[2] and 𝜌 is a

harmful join rule, i.e., a rule such that a harmful variable

is involved in a join (namely, harmful join). If the harmful

variable appears in the head of the rule, it is dangerous.
A rule with a dangerous variable is a dangerous rule.

Chase and Reasoning. Let 𝐷 be a database and Σ
a set of rules. The chase procedure is a fundamental

algorithmic tool that enforces the satisfaction of Σ by

expanding 𝐷 into a new instance chase(𝐷,Σ) with facts

generated from the application of the rules in Σ over

𝐷 [6]. We denote chase graph 𝒢(𝐷,Σ) as the directed

graph with the facts from chase(𝐷,Σ) as nodes and an

edge from a node 𝑛 to a node 𝑚 if 𝑚 is obtained from

𝑛 (and possibly other facts) via a chase step, i.e., a rule

in Σ [5]. Given a pair 𝑄 = (Σ,Ans), where Ans is an

n-ary predicate, we define the evaluation of 𝑄 over 𝐷 as

the set of tuples 𝑄(𝐷,Σ) = {�̄� ∈ dom(𝐷)𝑛 |Ans(�̄�) ∈
chase(𝐷,Σ)}, where �̄� is a tuple of constants. We denote

reasoning task as the task of finding a database instance

𝐽 such that: (i) �̄� ∈ 𝐽 iff Ans(�̄�) ∈ 𝑄(𝐷,Σ) and (ii) for

every other instance 𝐽 ′
such that �̄� ∈ 𝐽 ′

iff �̄� ∈ 𝑄(𝐷,Σ),
there is a homomorphism from 𝐽 to 𝐽 ′

[3].

3. Harmful Join Elimination
In this section, we present our rewriting technique and

we apply it to Example 1. As the goal of this paper is to

enable reasoning with the Vadalog system on a real-world

scenario with harmful joins, we refer to the extended

versions of the work [10, 22] for an in-depth discussion

of the algorithm and the theory behind.

Without loss of generality (as more complex joins can

be broken into multiple steps [3]), we define a harmful
join rule as a rule of the form:

𝐴(𝑥1, 𝑦1, ℎ), 𝐵(𝑥2, 𝑦2, ℎ) → ∃𝑧 𝐶(𝑥, 𝑧) (𝜌)

where 𝐴, 𝐵 and 𝐶 are atoms, 𝐴[3] and 𝐵[3] are affected

positions, 𝑥1, 𝑥2 ⊆ 𝑥, 𝑦1, 𝑦2 ⊆ 𝑦 are disjoint tuples of

harmless variables or constants, ℎ is a harmful variable.

Harmless Warded Datalog±. As we have introduced,

in order to exploit the reasoning boundedness property,

Warded programs with recursion and existentials must

not contain harmful joins, that is, they belong to the

Harmless Warded fragment. A set of rules ∈ Harmless
Warded Datalog

±
if the following conditions hold: (1) it is

Warded, i.e., all the dangerous variables in its rules appear
in a single body atom (the ward), which only shares harm-
less variables with the rest of the body; and (2) it does not
contain harmful join rules. Indeed, while the chase pro-

cedure remains potentially infinite in Harmless Warded

settings due to the generation of infinite labelled nulls,

the absence of joins activating on such nulls renders their

identity irrelevant in the evaluation [9].

The Disarmament Problem. In presence of Harmless

Warded programs, the isomorphism termination strat-

egy can thus be applied without affecting the correct-

ness of the reasoning task: given two isomorphic facts

𝑡 and 𝑡′, only 𝑡 is explored in the chase, whereas the

descending portions of the chase graph rooted in 𝑡′ are

pruned. However, restricting vadalog to such fragment,

while it preserves the computational qualities of Warded

Datalog
±

, limits the expressiveness of the KRR language

to joins between harmless variables. To avoid such re-

strictions, we define the disarmament problem for a set

Σ of Warded Datalog
±

rules as the task of finding a set

Σ′
of Harmless Warded rules that is equivalent to Σ. In

this context, two sets of rules are equivalent if they have

the same meaning with respect to the chase [14], i.e.,

chase(𝐷,Σ) = chase(𝐷,Σ′) modulo fact isomorphism

for each database 𝐷. It can be proved that the disarma-

ment problem is always solvable, that is, for each Warded

set Σ there is an equivalent Harmless Warded set Σ′
[22].

Disarming Warded Datalog±. Let Σ be a Warded set

with one or more harmful join rules. With the goal of

enabling the isomorphism termination strategy, while

preserving vadalog’s expressive power, we propose a

technique to rewrite Σ into an equivalent Harmless form,

i.e., to solve the disarmament problem.

We first provide some theoretical bases. By definition

of harmful variables, we observe that Σ always contains

one or more rules that propagate the affectedness of such

variables (i.e., the nulls in the chase), from the existen-

tials to the harmful join. We define them as follows.

Definition 1 (Causes of Affectedness). Let 𝜌 ∈ Σ be a
harmful join rule and let𝐻 ∈ {A,B} be an atom in the body
of 𝜌. We define causes of affectedness as the sequences of
rules Γ𝐻𝑖 = [𝜎𝑠, . . . , 𝜎1] (𝑠 < |Σ|, 𝑖 ≥ 1) ∈ Σ, where:
(i)𝜎1:𝐻1(𝑥, 𝑦), 𝑅1→∃ℎ𝐻2(𝑥, 𝑦, ℎ) is a direct cause, i.e.,
an existential rule that causes a position to be affected; and
(ii) 𝜎𝑘 : 𝐻𝑘(𝑥, 𝑦, ℎ), 𝑅𝑘→𝐻𝑘+1(𝑥, 𝑦, ℎ), 1 < 𝑘 ≤ 𝑠, are
indirect causes, i.e., rules that propagate the affectedness
from 𝜎1 to 𝜌, such that𝐻𝑠+1 =𝐻 . 𝐻1, . . . , 𝐻𝑠 are atoms,
𝑅1, . . . , 𝑅𝑠 are (conjunctions of) atoms not containing ℎ
(as the rules are Warded).

With reference to Example 1, the rules 𝛼 and 𝛾 are direct

causes of affectedness, whereas 𝛽 is an indirect one. The

sequences of causes for the atom𝑀𝑎𝑛𝑎𝑔𝑒𝑟𝑀𝑎𝑛1 (resp.,

𝑀𝑎𝑛2 in order of appearance in 𝜌) are: Γ𝑀𝑎𝑛11 = [𝛼],
Γ𝑀𝑎𝑛12 = [𝛽, 𝛼], Γ𝑀𝑎𝑛13 = [𝛾], Γ𝑀𝑎𝑛14 = [𝛽, 𝛾]. Let

𝑋𝑖𝑗 = Γ𝐴𝑖
⌢Γ𝐵𝑗 be the concatenation of the sequences

Γ𝐴𝑖 and Γ𝐵𝑗 for the atoms 𝐴,𝐵 in 𝜌: the causes in 𝑋𝑖𝑗

are labelled after the sequence they belong to. In our

example 𝑋21 = [𝛽Γ𝑀𝑎𝑛12 , 𝛼Γ𝑀𝑎𝑛12 , 𝛼Γ𝑀𝑎𝑛21]. Intu-

itively, our goal is to replace each 𝜌 with harmless rules

that cover the generation of all the facts derived in the

chase from the activation of 𝜌. To learn how the propa-

gated nulls that activate the harmful join affect the mean-

ing, and to consequently build proper harmless rules, we

compose 𝜌 along all 𝑋𝑖𝑗 . Such composition is performed

via the unfolding operation [14], defined as follows.

Definition 2 (Unfolding). Let 𝜌 be a rule 𝐴,𝐵→𝐶 ,
where 𝐴 and 𝐶 are atoms and 𝐵 is an atom or a con-
junction of atoms, and let 𝜎 be a rule 𝑅→𝐴′, where 𝐴′

is an atom and 𝑅 an atom or a conjunction of atoms. Let

𝐴′ be unifiable with 𝐴 by substitution 𝜃. The result of
unfolding 𝜌 at 𝐴 with 𝜎 is the rule 𝜏 : (𝐵,𝑅→𝐶)𝜃. If
the head of 𝜎 contains an existentially quantified variable
ℎ, it replaces ℎ with a Skolem atom 𝑓ℎ𝜎 in 𝜏 , where 𝑓 is
an injective, deterministic and range disjoint function that
calculates the values for existentially quantified variables,
to control the identity of labelled nulls.

Moreover, to cover the activation of the harmful join in 𝜌
on nulls that are propagated from causes involved in a

recursion, the following folding operation [14] is applied.

Definition 3 (Folding). Let 𝜌 be a rule 𝐴,𝐵→𝐶 , where
𝐶 is an atom and 𝐴 and 𝐵 are (conjunctions of) atoms,
and let 𝜎 be a rule 𝐴′→𝑅, where 𝑅 is an atom and 𝐴′

is an atom or a conjunction of atoms. Let 𝐴′ be unifiable
with 𝐴 by substitution 𝜃. The result of folding 𝜌 into 𝜎 is
the rule 𝜏 : (𝐵,𝑅→𝐶)𝜃.

To keep track of the composition for each harmful join

rule, we employ the harmful unfolding tree (hu-tree).

Apart from the more technical side [10], the hu-tree 𝑇 for⟨︀
Σ, 𝜌

⟩︀
can be defined as a rule-labelled tree-like structure

where: (i) the root is labelled by 𝜌; (ii) for each 𝑋𝑖𝑗 , there
exists a root-to-leaf path 𝑇𝑖𝑗 whose nodes are labelled by
the result of unfolding their parent nodes with the causes
in 𝑋𝑖𝑗 (in order of appearance); (iii) for each 𝜎𝑘 ∈ 𝑋𝑖𝑗

involved in a recursion, there exists a node labelled by the
result of folding its parent node into 𝜎𝑘 . By definition of

unfolding and folding, it can be proved that the leaves

of 𝑇 are harmless rules that cover the generation of all

the facts derived in the chase from the activation of 𝜌 on

labelled nulls [22]. With reference to Example 1, Figure 1

shows the path 𝑇21, built by unfolding 𝜌 with the causes

in 𝑋21 (atoms are renamed for space reasons).

Man(x,d),Man(y,d)→BGroup(x,y)

Acq(v1,v2),Man(v1,d),
Man(y,d)→BGroup(v2,y)

Acq(v1,v2),Bank(v1),Man(y,d),
fdα(v1)→BGroup(v2,y)

Acq(v1,v2),Bank(v1),Bank(v3),
fdα(v1),fdα(v3)→BGroup(v2,v3)

βГMan12

αГMan12

αГMan21

Figure 1: Path 𝑇21 of hu-tree 𝑇 for
⟨︀
Σ, 𝜌

⟩︀
of Example 1.

Harmful Join Elimination. By exploiting these theo-

retical bases, we now present our rewriting algorithm,

which we named Harmful Join Elimination. Given a

Warded set Σ with one or more harmful join rules 𝜌,

HJE(Σ) = Σ′ ∈ Harmless Warded Datalog
±

such that

chase(𝐷,Σ) = chase(𝐷,Σ′) modulo fact isomorphism

for each 𝐷. HJE can be divided into two main phases,

which we describe by applying them to Example 1.

In the back-composition phase, first HJE identifies the

sets𝑋𝑖𝑗 of causes of affectedness for 𝜌. Then, it builds the

hu-tree 𝑇 by composing back, via unfolding and folding,

along each 𝑋𝑖𝑗 . With reference to Example 1, Figure 2

shows some of the sequences of unfolded causes (here

not labelled) and the resulting leaves.

Man(x,d),Man(y,d)→BGroup(x,y)

β

β α γ β

βτ1

τ2 τ3

τ4 τ5

τ6 τ7

τ8α

α

β

γ

γ

γ

γ

γα

α

α

Figure 2: Unfolded causes in 𝑇 for
⟨︀
Σ, 𝜌

⟩︀
of Example 1.

The rules labelling the resulting leaves are subject to an

overall cleanup and deduplication. Rules that never acti-

vate are dropped. If the functions of the Skolem atoms in

a rule (derived from unfolding a direct cause in 𝑇) respect

injectivity and range disjointness, they are unified and

removed, otherwise the rule is dropped. With reference

to our running example, the following rules are added

to Σ′
. Specifically, 𝜏s derive from unfolding, whereas

𝜐s derive from folding: 𝜏3 labels the leaf of 𝑇21 from

Figure 1, after skolem unification during cleanup.

Bank(x) → BGroup(x, x) (𝜏1)

Bank(x),Acq(x, y) → BGroup(x, y) (𝜏2)

Bank(x),Acq(x, y) → BGroup(y, x) (𝜏3)

Bank(x),Acq(x, y),Acq(x, z) → BGroup(y, z) (𝜏4)

BGroup(x, y),Acq(x,w),Acq(x, z) → BGroup(w, z) (𝜏5)

BGroup(x, y),Acq(x, z) → BGroup(x, z) (𝜏6)

BGroup(x, y),Acq(x, z) → BGroup(z, x) (𝜏7)

BGroup(x, y) → BGroup(x, x) (𝜏8)

BGroup(x, y),Acq(x, z) → BGroup(y, z) (𝜐1)

BGroup(x, y),Acq(x, z) → BGroup(z, y) (𝜐2)

BGroup(x, y),Acq(y, z) → BGroup(x, z) (𝜐3)

BGroup(x, y),Acq(y, z) → BGroup(z, x) (𝜐4)

In the grounding phase, HJE adds new harmless rules

to cover the activation of 𝜌 on ground values, propagated

from the database. It employs the Dom(ℎ) [9] atom, to

ensure that the harmful join variables bind only to con-

stants in the domain, and an artificial atom 𝐻 ′
, where 𝐻

∈ {𝐴,𝐵} of 𝜌. With reference to Example 1, the following

rules (namely, dom rules) are added to Σ′
.

Dom(d),Man(x, d) → Man′(x, d) (𝛿1)

Man′(x, d) → Man(x, d) (𝛿2)

Man′(x, d),Man′(y, d) → BGroup(x, y) (𝛿3)

Additionally, to preserve the propagation of ground facts

from rules 𝜋 ∈ Σ that are not causes of affectedness, if

the head of 𝜋 unifies with: (i) the atom 𝐻 in 𝜌, a rule

𝜋′
is added, which results from renaming 𝐻 with 𝐻 ′

;

(ii) the atom𝐻𝑘 in the cause 𝜎𝑘 , a rule 𝜋′
is added, which

results from unfolding 𝜎𝑘 with 𝜋. Finally, 𝜌 is removed

from Σ′
and the procedure terminates.

The resulting Σ′
is a set of Harmless Warded

rules. Its equivalence to the original set Σ can be

easily derived as a generalization of proofs in the

Datalog context [23]. The output facts of the rea-

soning task on Example 1, via isomorphism termi-

nation strategy, are: BankGroup(Unicredit,Unicredit),
BankGroup(MPS,MPS), BankGroup(Unicredit,MPS) and

BankGroup(MPS,Unicredit). HJE shows an exponential

behaviour with respect to the number of causes, due to

the worst-case generation of a distinct path in the hu-tree

for each 𝑋𝑖𝑗 . Yet, such blowup is data independent and

it does not affect reasoning performance [22].

4. Financial Use Case
In this section, we provide a real-world application of the

HJE algorithm. We employ it to enable reasoning with

the Vadalog system on the Strong Link problem, which

we then solve and empirically evaluate.

The Strong Link Problem. Being able to determine

and monitor the connections between companies and

shareholders, as well as to investigate possible felonious

activities in company ownership scenarios, is of high-

interest in the financial and corporate realm. With such

goal in mind, we consider the Strong Link problem over

“significantly controlled companies”, that is, companies

for which there exist “significant shareholders” who own

more than 20% of their stocks [9]. Two distinct compa-

nies 𝑥 and 𝑦 are involved in a strong link if they share

(at least) one significant shareholder. The Strong Link

scenario can be modeled in Warded Datalog
±

as follows.

Example 2. Strong Link modeled with Warded rules.

Company(x) → ∃p∃s Owns(p, s, x) (1)

Owns(p, s, x) → Stock(x, s) (2)

Owns(p, s, x) → PSC(x, p) (3)

PSC(x, p),Controls(x, y) → ∃s Owns(p, s, y) (4)

PSC(x, p), PSC(y, p), x ̸= y → StrongLink(x, y) (5)

StrongLink(x, y) → ∃p∃s Owns(p, s, x) (6)

StrongLink(x, y) → ∃p∃s Owns(p, s, y) (7)

Stock(x, s) → Company(x) (8)

(a) Reasoning times of Spec and All scenarios. (b) Strong Links discovered in All scenario.

Figure 3: Results of the experiments performed for Spec and All scenarios, to vary the number of companies.

1K 5K 10K 15K 20K 25K 30K

Spec Times 7993 9187 10156 10795 11473 12313 13186
All Times 3158 5519 8751 9334 10437 13501 15749
Spec Links 3 3 7 8 9 9 10
All Links 716 2917 5935 8434 11050 13857 16390

Figure 4: Times in msecs and # strong links collected in Spec and All scenarios, to vary the number of companies.

For each company 𝑥 there exists a person 𝑝 who owns
a certain share 𝑠 (rule 1), which is part of the company
stock (rule 2). If 𝑝 owns a share 𝑠 (rule 3), 𝑝 is a “person
with significant control” (psc) for 𝑥. For each company 𝑦
controlled by 𝑥, 𝑝 owns a certain share 𝑠 of 𝑦 (rule 4). If
two distinct companies 𝑥 and 𝑦 share a common psc, they
are involved in a strong link (rule 5). Vice versa, if there is
a strong link between 𝑥 and 𝑦, there exists a person 𝑝 who
owns a share of 𝑥 (rule 6) and 𝑦 (rule 7). If 𝑠 is a share of
a stock for 𝑥, then 𝑥 is a company (rule 8).

Indeed, reasoning on the Strong Link program does not

terminate, as the existential quantification in rule 4, rule 6
and rule 7, and their recursion with rule 3 and rule 5,

cause the generation of an infinite set of𝑃𝑆𝐶 facts in the

chase. Moreover, the isomorphism termination strategy

cannot be applied, due to the presence of the harmful join

rule 5 that hampers the reasoning boundedness of the pro-

gram. Therefore, we apply HJE to enable reasoning with

the Vadalog system. Note that rule 1, rule 6 and rule 7
are direct causes of affectedness for the 𝑃𝑆𝐶 atoms in

rule 5, whereas rule 3 and rule 4 are indirect ones. Due

to the recursion on such causes, the back-composition

phase builds a hu-tree which consists of both unfolding

and folding leaves. The harmless rules that replace rule 5
in Example 2 are provided below (atoms are renamed

and some rules are merged for space reasons). As in Ex-

ample 1, 𝛿s are added via grounding, whereas 𝜏s and 𝜐s

label hu-tree leaves deriving from unfolding and folding,

respectively. Note that some rules were dropped during

cleanup, as they would have never activated.

Dom(p), PSC(x, p) → PSC′(x, p) (𝛿1)

PSC′(x, p) → PSC(x, p) (𝛿2)

PSC′(x, p), PSC′(y, p), x ̸= y → SLink(x, y) (𝛿3)

Comp(x),Contr(x, y) → SLink(x, y), SLink(y, x) (𝜏1,2)

Comp(x),Contr(x, y),Contr(x, z) → SLink(y, z) (𝜏3)

SLink(x, y),Contr(x,w),Contr(x, z) → SLink(w, z) (𝜏4)

SLink(x, y),Contr(x,w),Contr(x, z) → SLink(z,w) (𝜏5)

SLink(x, y),Contr(x, z) → SLink(x, z), SLink(z, x) (𝜏6,7)

SLink(x, y),Contr(x, z) → SLink(y, z) (𝜐1)

SLink(x, y),Contr(x, z) → SLink(z, y) (𝜐2)

Experiments and Results. We extracted input data for

companies and ownership relations from the open KG

provided by DBpedia [12], which publishes information

for around 67K companies. We adopted datasets of in-

creasing complexity, with 1K, 5K, 10K, 15K, 20K, 25K and

30K companies, respectively. The Vadalog system, with

HJE integrated as part of its logic optimizer [3], was used

as a “library” and invoked from specific Java test classes

for end-to-end executions of the reasoning. We run the

experiments on a local installation of the Vadalog system,

with a MacBook Pro i7 with 2.5 GHz and 8 GB of RAM.

We first applied HJE to the program, with average time of

under 1 second. Then, we built two reasoning scenarios:

• SpecStrongLinks (Spec), to obtain all the strong links of

the company BBC, to vary the number of companies;

• AllStrongLinks (All), to obtain all the possible pairs of

strong links, to vary the number of companies.

The tasks were analyzed both in terms of time required

for the reasoning to terminate and of number of strong

links detected. Figure 3(a) illustrates the former perspec-

tive. The results prove the very good performance of

the Vadalog system, even if tested on a local installation.

Indeed, the Spec scenario requires more time than the All

one for smaller datasets; when the number of companies

increases, All tends to a steeper curve. On the other hand,

Figure 3(b) shows the strong links founds between pairs

of distinct companies in the All scenario. Finally, Figure 4

provides all the numerical results of the experiments.

5. Conclusion
Employing powerful reasoning engines such as Warded

Datalog
±

-based Vadalog system allows companies to

solve relevant tasks in the financial and corporate realm.

Among them, the Strong Link problem proved to be prob-

lematic to tackle, due to the presence of harmful joins and

recursion that hampered termination and decidability of

the reasoning in vadalog. In this work, we discussed

the disarmament problem of rewriting Warded settings

with such problematic joins into an equivalent Harmless

Warded form, while upholding the correctness of the task.

We contributed the Harmful Join Elimination, a disarma-

ment algorithm integrated into the Vadalog system, and

we applied it to enable reasoning on Strong Link.

References
[1] M. Krötzsch, V. Thost, Ontologies for knowledge

graphs: Breaking the rules, in: International Se-

mantic Web Conference (1), volume 9981 of Lecture
Notes in Computer Science, 2016, pp. 376–392.

[2] G. Gottlob, A. Pieris, Beyond SPARQL under OWL

2 QL entailment regime: Rules to the rescue, in:

IJCAI, 2015.

[3] L. Bellomarini, D. Benedetto, G. Gottlob, E. Sallinger,

Vadalog: A modern architecture for automated rea-

soning with large knowledge graphs, Information

Systems (2020) 101528.

[4] L. Bellomarini, G. Gottlob, A. Pieris, E. Sallinger,

Swift logic for big data and knowledge graphs, in:

IJCAI, Springer, 2017, pp. 2–10.

[5] A. Calì, G. Gottlob, T. Lukasiewicz, A general

datalog-based framework for tractable query an-

swering over ontologies, in: PODS, 2009, pp. 77–86.

[6] D. Maier, A. O. Mendelzon, Y. Sagiv, Testing impli-

cations of data dependencies, ACM Transactions

on Database Systems 4 (1979) 455–468.

[7] A. Calì, G. Gottlob, T. Lukasiewicz, B. Marnette,

A. Pieris, Datalog+/-: A family of logical knowl-

edge representation and query languages for new

applications, in: 2010 25th Annual IEEE LICS, IEEE,

2010, pp. 228–242.

[8] A. Calì, G. Gottlob, M. Kifer, Taming the infinite

chase: Query answering under expressive relational

constraints, Journal of Artificial Intelligence Re-

search 48 (2013) 115–174.

[9] L. Bellomarini, E. Sallinger, G. Gottlob, The Vadalog

System: Datalog-based reasoning for knowledge

graphs, VLDB 11 (2018).

[10] T. Baldazzi, L. Bellomarini, E. Sallinger, P. Atzeni,

Eliminating harmful joins in warded datalog+/-,

in: International Joint Conference on Rules and

Reasoning, Springer, 2021, pp. 267–275.

[11] P. Atzeni, L. Bellomarini, M. Iezzi, E. Sallinger,

A. Vlad, Weaving enterprise knowledge graphs:

The case of company ownership graphs., in: EDBT,

2020, pp. 555–566.

[12] DBpedia, 2018. URL: http://wiki.dbpedia.org/

services-resources/downloads/dbpedia-tables.

[13] G. Gottlob, S. Rudolph, M. Simkus, Expressiveness

of guarded existential rule languages, in: PODS,

2014, pp. 27–38.

[14] F. Afrati, M. Gergatsoulis, F. Toni, Linearisability on

datalog programs, Theoretical Computer Science

308 (2003) 199–226.

[15] M. Kaminski, Y. Nenov, B. C. Grau, Datalog

rewritability of disjunctive datalog programs and

non-Horn ontologies, Artificial Intelligence 236

(2016) 90–118.

[16] M. Kónig, M. Leclere, M.-L. Mugnier, Query rewrit-

ing for existential rules with compiled preorder, in:

IJCAI, 2015, pp. 3006–3112.

[17] Z. Wang, P. Xiao, K. Wang, Z. Zhuang, H. Wan,

Query answering for existential rules via efficient

datalog rewriting., in: IJCAI, 2020, pp. 1933–1939.

[18] N. Francis, L. Segoufin, C. Sirangelo, Datalog rewrit-

ings of regular path queries using views, arXiv

preprint arXiv:1511.00938 (2015).

[19] G. Stefanoni, B. Motik, I. Horrocks, Small datalog

query rewritings for el*, in: Proc. 25th Int’l Work-

shop on Description Logics, Citeseer, 2012.

[20] S. Ahmetaj, M. Ortiz, M. Simkus, Polynomial data-

log rewritings for expressive description logics with

closed predicates., in: IJCAI, 2016, pp. 878–885.

[21] G. Berger, G. Gottlob, A. Pieris, E. Sallinger, The

space-efficient core of Vadalog, in: PODS, 2019, pp.

270–284.

[22] T. Baldazzi, L. Bellomarini, E. Sallinger, P. Atzeni,

iwarded: A system for benchmarking datalog+/-

reasoning (technical report), arXiv preprint

arXiv:2103.08588 (2021).

[23] H. Tamaki, T. Sato, Unfold/fold transformation of

logic programs, in: ICLP, Uppsala University, 1984,

pp. 127–138.

http://wiki.dbpedia.org/services-resources/downloads/dbpedia-tables
http://wiki.dbpedia.org/services-resources/downloads/dbpedia-tables

	1 Introduction
	2 Reasoning with Vadalog
	3 Harmful Join Elimination
	4 Financial Use Case
	5 Conclusion

