
Neurosymbolic Reasoning:
Building Neural Networks using Datalog±

Mattia Scaccia1, Ilaria Stocchi1 and Luigi Bellomarini2

1Department of Engineering, Roma Tre University, Via Vito Volterra 62, 00146 Roma, Italy
2IT department, Banca d’Italia, Centro Donato Menichella, Largo Guido Carli 1, 00044 Frascati, Italy

Abstract
Neurosymbolic reasoning has become an active research area for both academic and industrial context to handle today’s
complex knowledge-based problems, such as reasoning on Knowledge Graphs (KGs). Reasoning on KGs can effectively leverage
the symbolic reasoning techniques, such as Datalog±-based techniques, but the discrete nature of these representations
makes them insufficient to capture all the intrinsic relationships among data. On the other hand, neural networks have been
widely used to enrich KGs, thanks to their subsymbolic capabilities, but the need for better explainability, interpretability
and trust of machine learning systems demands the addition of a symbolic representation. We present the Chase Graph
Neural Network (CGNN), a neural network that mirrors the symbolic reasoning process and is able to compute a vector
representation of facts produced by the reasoning process. We show, in the context of a real-world economic domain, that the
CGNN enriches KGs with new knowledge beyond what it is achievable using only symbolic reasoning.

Keywords
Neurosymbolic Reasoning, Datalog, Vadalog, Knowledge Graph, Neural Network, Machine Learning, Artificial Intelligence

1. Introduction
Reasoning on KGs is a suitable setting for the query an-
swering problem [1]. In real-world applications, how-
ever, query answering is particularly challenging: the
language to express the reasoning rules must be chosen
in such a way that it is able to represent complex domains
(high expressive power) and, at the same time, guaran-
tees tractability and decidability of the query answering
task, in order to support high performance and scalability
with large volumes of data.
We adopt the Vadalog engine [2] as the basis of our work,
a highly optimized Knowledge Graph Management Sys-
tem, which performs reasoning over KGs and is able to
meet the above query answering requirements by us-
ing a fragment of Datalog± [3], a family of logic query
languages. Our goal is to enrich the domain knowledge
that can be discovered by Vadalog during the reason-
ing process. We intend to demonstrate that introducing
the subsymbolic reasoning paradigm, typical of machine
learning, as a support of the Vadalog logic reasoning pro-
cess, we can derive additional information w.r.t. what
Vadalog is able to obtain, given a specific query answer-
ing problem. In fact the knowledge obtained by Vada-
log is solid and explainable but, at the same time, also
lacking of what can be derived from observing the raw
data itself. We aim to develop a Symbolic-Driven Neural

Published in the Workshop Proceedings of the EDBT/ICDT 2022 Joint
Conference (March 29-April 1, 2022), Edinburgh, UK
$ mat.scaccia@stud.uniroma3.it (M. Scaccia);
ila.stocchi@stud.uniroma3.it (I. Stocchi);
luigi.bellomarini@bancaditalia.it (L. Bellomarini)

© 2022 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

Reasoning [4] model, in which the rules that state the
reasoning task are mapped into a subsymbolic represen-
tation in order to benefit both from logic and from the
ability of machine learning to derive information from
patterns hidden in data. According to the classification
provided by Vardi et al. [5] this neurosymbolic computa-
tion model would fall in the type 5, in which logic acts
as a regularizer of the neural network’s loss function.
We present the Chase Graph Neural Network (CGNN), a
neural network able to compute a vector representations
(embeddings) of every fact produced by the reasoning
process. The CGNN has an innovative structure based on
the chase graph, the dependency graph representing the
Vadalog reasoning process produced by a chase based
procedure [6]. Each fact (symbol) represents a neuron
and the logical dependencies between facts produced
by specific rules represent the neural connections. The
CGNN computes an embedding for each fact generated
by Vadalog during the reasoning process and we exploit
these embeddings to perform link prediction tasks.
Overview. In Section 2 we describe the background
about Vadalog and its reasoning process, while we
present the main contributions of this paper in the re-
maining sections as follows:

• The structure of the CGNN. We describe the internal
structure of a single neuron and show how to derive
the structure of the CGNN from Vadalog chase graph.

• The handling of labelled nulls. We describe a novel
technique to compute embeddings of facts that contain
labelled nulls, fresh symbols standing for existentially
quantified objects. This technique is needed to com-
pute the loss function during training whenever a fact

mailto:mat.scaccia@stud.uniroma3.it
mailto:ila.stocchi@stud.uniroma3.it
mailto:luigi.bellomarini@bancaditalia.it
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

with labelled nulls is produced as output.

• The use of isomorphism to handle unseen data.
We describe a novel use of the state-of-the-art VF2
algorithm [7] to address the problem of handling new
unseen data with a fully instantiated trained neural
network such as the CGNN. In addition we describe
improvements of the algorithm, specific to our use
case, concerning performance in the average case.

• Experimental evaluation. There is a variety of appli-
cations for reasoning on KGs in the economic domain
[8, 9]. We provide a first evaluation of the CGNN on a
link prediction task for KGs in a financial domain and
we present it in the form of an ablation study.

2. Vadalog Reasoning
The Vadalog engine is built around Warded Datalog±

language, a fragment of Datalog± family of languages.
Datalog± languages consist of existential rules, or tuple-
generating dependencies (TGDs). A Datalog± rule is a
first-order sentence of the form ∀x∀y(𝜙(x,y) →∃z𝜓(x,z)),
where 𝜙 (the body) and 𝜓 (the head) are conjunctions of
atoms with constants and variables [2]. For brevity ∧ is
replaced with comma, to denote conjunction of atoms,
while → is replaced with :- in the form of 𝜓(x,z) :- 𝜙(x,y).
In addition universal and existential quantifiers are omit-
ted since they can be deduced: the variables in the body
are all universally quantified, while only the variables
that appear in the head, but not in the body, are existen-
tially quantified. By some abuse of notations, we often
use the terms atom, tuple and fact interchangeably.
Pattern-isomorphic facts. In Vadalog there is the con-
cept of pattern-isomorphic facts. Two facts are pattern-
isomorphic if they have the same predicate name, there
exists a bijection between the constant values and there
exists a bijection between the labelled nulls [2]. In our
representation of patterns we use progressive positive
integers for different constants and progressive negative
integers for different labelled nulls.
Chase procedure. Vadalog uses the chase procedure to
perform logic reasoning tasks. In the context of database
theory, the chase procedure is considered among the
fundamental algorithmic tools enabling a variety of ap-
plications [10]. The chase procedure takes as input a
database D and a set T of constraints which are TGDs
and, if it terminates, its result is a finite instance DT that
is a universal model of D and T, i.e., a model that can be
homomorphically embedded into every other model of
D and T [10]. According to this definition the chase adds
new tuples to the database D, that could potentially have
labelled nulls, as dictated by the rules of T, and it keeps
adding tuples until all the rules of T are satisfied.
Chase graph. The chase procedure produces as output

Figure 1: Chase Graph related to the reasoning task shown in
Example 1. The nodes of the chase graph represent facts while
edges represent the application of rules.

the chase graph. The chase graph for a database D and a
set of rules Σ is the directed graph(D, Σ) having as nodes
the facts obtained from chase(D, Σ) and having an edge
from a node a to b if b is obtained from a and possibly
from other facts by the application of one chase step,
i.e., of one rule of Σ [2]. Therefore the chase graph is a
structure that represents the entire reasoning process, as
illustrated in Example 1 and Figure 1.

D = { s e c t o r (Ferrari, Automotive) ,
s e c t o r (Toyota,Automotive) , t a r g e t (Ferrari,
LuxuryCars) , t a r g e t (Toyota, EconomyCars) }
Σ = {
1 . c o m p e t i t o r (x , y) : − s e c t o r (x , z) , s e c t o r (y , z) ,

x<>y
2 . d i r e c t C o m p e t i t o r (x , y) : − c o m p e t i t o r (x , y) ,

source Income (x , z) , source Income (y , z)
3 . i n d i r e c t C o m p e t i t o r (x , y) : − c o m p e t i t o r (x , y) ,

t a r g e t (x , z) , t a r g e t (y ,w) , z <>w}

Example 1: This reasoning task aims at determining if two
companies x and y are competitors (if they operate in the same
sector z, rule 1) and if x and y are direct competitors (if they have
the same source of income z, rule 2) or indirect competitors (if
they have different market segments z and w, rule 3).

3. Chase Graph Neural Network
In this section we describe the structure of our neurosym-
bolic computation model. We present the internal func-
tion of a single neuron and an overview of the overall
structure of the CGNN.

3.1. Neuron Structure
Each neuron of the CGNN produces the embedding for
a specific fact f generated during the chase procedure.
Each neuron is made up of different computation layers
as summarized in Fig. 2.
Input layer. Unlike in Feed-Forward Neural Net-
works [11], the CGNN does not have a specific input
layer that transfers the input to the first hidden layer,
instead it has at most as many input layers as the number
of facts in the input database instance.

Figure 2: Generic structure of a neuron of the CGNN.

Concat layer. The concat layer is the first layer of the
neuron and it receives the input embeddings. The input
consists in the embeddings of all facts that activate a
specific rule r to generate a fact f. The input embeddings
are concatenated columnwise, the result is a matrix that
is, then, multiplied by Wr,f, the weight matrix related to
rule r and fact f, as described as follows.

𝑊 r,f[J𝑔1K; ...; J𝑔NK] (1)

There are as many concat layers, inside a neuron, as (ri,
f) pairs, where ri is the i-th rule that can generate f. Each
ri represents a different way to generate f. For this reason
each concat layer carries a different weight matrix Wri , f

and therefore the CGNN can learn to distinguish these
different contributions.
Pooling layer. The pooling layer receives the result ma-
trix of all the concat layers of its neuron and it performs
the following operation on each result:

⊕
𝑔1,...,𝑔N

𝛽r 𝑊 r,f[J𝑔1K; ...; J𝑔nK] (2)

where the pooling operator is defined as:

⊕
𝑚

𝛽 𝑥m
.
= 𝑣−1

(︂∑︁
𝑚

𝑣(𝑥m)

)︂
. (3)

For each row of the input matrix the pooling sums up
the result of the function v applied to each component
xm of each column. The function v and its inverse v−1

are defined as:

𝑣(𝑥) = 𝑠𝑖𝑔𝑛(𝑥)|𝑥|𝛽 (4)

𝑣−1(𝑥) = 𝑠𝑖𝑔𝑛(𝑥)|𝑥|1/𝛽 (5)

Each element is raised to a 𝛽 power, where 𝛽 is a tunable
parameter, and then it is performed the 𝛽-root of the
result. In the end all the results produced by the pooling
operator applied to all the concat layers of the neuron
are summed together elementwise.
Activation Function. The resulting vector is passed to
the Rectified Linear Unit (ReLU) activation function. We
choose ReLU since it is easy to compute with respect to
other non linear activation functions and we work with
non-negative embeddings.

Figure 3: The structure of the CGNN built upon chase graph in
Figure 1. The JfactK notation is used to represent the embedding
of a specific fact.

3.2. CGNN Structure
The CGNN is built upon the chase graph topology. For
the purpose of this work, we only consider the subset
of directed acyclic chase graphs that can be generated
during the chase procedure. For this reason data flow
forward from input to output, in the CGNN, without any
feedback loop. The structure of the CGNN is made up of
neurons, each one represents a specific fact generated by
Vadalog. The procedure for creating each neuron n that
represents a fact f follows these steps: (i) we create as
many concat layers as the number of rules that contribute
to generate f in the reasoning process; (ii) we add a
pooling layer and establish the connections between this
layer and each concat layer created with the previous
step; (iii) we use the output embedding of f computed
by neuron n as input for all the neurons that takes f to
compute other embeddings.
In this way neurons are linked together in the same way
nodes of the chase graph are, that is according to the
logical dependencies between facts originated from the
application of the rules. Figure 3 reports, as an example,
the structure of the CGNN built upon the chase graph
shown in Figure 1.

4. Embeddings for Facts with
Labelled Nulls

In the context of this work we use data describing input
facts in the form of text documents, since it is the most
simple and adaptive form to a lot of domains. We create
an embedding for each of these documents and use them
as input for the CGNN. There are many state-of-the-art
techniques for word or document embedding [12, 13,
14, 15], but a challenging and unanswered task, to our
knowledge, is to compute an embedding for a fact with
labelled nulls. In fact, whenever a fact f with labelled
nulls is generated during the reasoning process, we need
a technique to produce the expected embedding for f in
order to compute the loss function during training.

Labelled nulls. A labelled null represents an identifier

for an unknown value and is produced as a result of
existential quantification, as illustrated in Example 2.

D = { employee (Jack) , c o n t r a c t (Jack) ,
employee (Al) , c o n t r a c t (Al) , employee (John) }
Σ = {
1 . manager (y , x) : − employee (x)
2 . h i r e d (y , x) : − manager (y , x) , c o n t r a c t (x)
3 . c o n t r a c t S i g n e d (x) : − h i r e d (y , x) , manager (y , z) }

Example 2: This set of rules states that every employee x has a
manager y (rule 1). If a manager y sees that there is a pending
contract for his employee x, then he hires x (rule 2). Once an
employee x has been hired by a manager y, then the respective
contract for x is signed, but if someone has been hired by an
employee who is not a manager, then the contract will not be
signed (rule 3).

Using the cosine similarity between two embeddings,
we claim that an embedding with one or more labelled
nulls should be similar to all the embeddings which rep-
resent that same predicate name. Moreover this sim-
ilarity should grow with the number of variables, at
a given position, that are equal to each other and are
not labelled nulls. For example the embedding for the
fact hired(z1,Al) should be most similar to the embed-
dings of hired(Kevin,Al) or hired(Helen,Al) since they
have the same predicate name and the same instantiated
variables in the same position (in this case Al at posi-
tion 2). It should also be less similar to the embedding
of hired(Bill, John) since only the predicate name is
the same. Lastly it should be completely different from
the embeddings of employee(Al) or manager(Tim,Jack)
since the predicate name is not the same and they repre-
sent entirely different entities.

Solution. Our novel technique to create embeddings
for facts with labelled nulls is to take all the embeddings
of the facts in the input database with the same pred-
icate name of the one needed to embed and with the
same instantiated variables at a given position except
for the labelled nulls. All this embeddings delimit a por-
tion in the embedding space and the centroid of this
space represents the embedding of the fact with the la-
belled nulls. In Figure 4 the respective embedding spaces
and embeddings for the two facts manager(z1,Jack) and
manager(z2,Al) of Example 2 are presented in a two di-
mensional overall embedding space. With this technique
we are able to compute embeddings for facts with la-
belled nulls without having a text document describing
them and, at the same time, we keep these embeddings
coherent with their semantic meaning. In order to in-
clude the relationship between nulls, in case of multiple
labelled nulls, the pattern of the nulls is considered as
well to create the embedding space. This means that if
a fact has two or more labelled nulls that are the same,
then only the facts that have a same constant value at
the same position of the nulls will be considered from

Figure 4: On the left (dark grey) the locations of the facts
manager, found in the input database, that have some constant
c at position 0 and Jack at position 1. On the right (light grey)
the locations with constant Al at position 1. It can be observed
that, for predicate name manager, the two centroids in black are
most similar to all the embeddings with same predicate name
and constant at a certain position found in the input database.

the input database. For example if the fact to embed is
manager(z1,z1) with pattern manager(-1,-1), then only
the facts that represent managers of themselves with pat-
tern manager(1,1) will be taken into account to create
the embedding space needed to find the centroid. In this
case facts manager(Jack,Jack) or manager(John,John)
are taken, while fact manager(Jack,John) is not.

5. Isomorphisms and Unseen Facts
The CGNN is fully instantiated during the training phase.
In fact it assumes a configuration that mirrors the chase
graph Gtrain built during a chase procedure that has, as
input, the database instance Dtrain and the set of rules
Σtrain. As can be easily deduced, even though the domain
is the same and Σtrain = Σtest, Dtrain is always different
from Dtest, therefore we have to address the problem of
which input layers of the CGNN to direct the new input
represented by Dtest.

Solution. To solve this problem we use subgraph iso-
morphism and the VF2 algorithm [7] on the two chase
graphs Gtrain and Gtest in order to find a mapping between
the input layers of the trained network and the facts in
Dtest that is an isomorphism. The process of finding the
mapping function can be suitably described by means of
a State Space Representation (SSR). Each state s of the
matching process can be associated to a partial mapping
solution M(s), which contains only a subset of M. M(s)
univocally identifies two subgraphs Gtrain(s) and Gtest(s),
obtained by selecting from Gtrain and Gtest only the nodes
included in M(s), and the edges between them. A tran-
sition from a generic state s to a successor s0 represents
the addition to the partial graphs associated to s in the
SSR, of a pair (n, m) of matched nodes. In our context
the algorithm always produces a mapping between Gtrain

and Gtest, representing the Vadalog program used during
a test scenario. To avoid the possibility of not finding

an isomorphism, we work under the closed-world as-
sumption [16] that let us considers the knowledge base
as complete. This assumption guarantees to have a train-
ing Vadalog program that is always enough descriptive
for every new test program provided. Since Gtest is al-
ways smaller than Gtrain, by construction, then to find
the mapping M is always a case of graph-subgraph iso-
morphism problem. The idea of using the isomorphism
is based on the intuition that, given a fixed domain, facts
from different database instances are similar if they are
pattern-isomorphic, they use the same rules to produce
pattern-isomorphic facts and the same properties are
valid for the facts produced. These properties can be
verified recursively when considering the chase graphs
representing the two different reasoning process. To find
this isomorphism, in addition to the syntactic feasibility
rules presented by Cordella et al. [7], we add semantic
feasibility rules to better represent the knowledge ex-
pressed in the chase graphs, since the performance of the
CGNN is directly coupled to the quality of the isomor-
phism found, and to significantly reduce the number of
possible states that are feasible in the algorithm.

5.1. Improving Isomorphism using
Clustering

The subgraph isomorphism problem is NP complete [17].
In fact, the time complexity of this algorithm in the worst
case is 𝒪(𝑛!𝑛) [7], where 𝑛 is the number of nodes of
Gtest. To minimize the time needed in the average case
we reduce the number of possible candidate pairs in P(s)
at each step of the algorithm.

Computation Step of Candidate Pairs P(s). The main
step of the VF2 algorithm is computing the set P(s) of
all the possible candidate pairs to be added to the cur-
rent state. Let us denote with T1

out(s) and T2
out(s) the

sets of nodes, not yet in the partial mapping, that are
the destination of edges starting from G1(s) and G2(s),
respectively; similarly, with T1

in(s) and T2
in(s), we denote

the sets of nodes, not yet in the partial mapping, that
are the origin of edges ending into G1(s) and G2(s). The
set P(s) is obtained by considering first the sets of the
nodes directly connected to G1(s) and G2(s). In fact the
set P(s) will be made of all the node pairs p(n,m), with
𝑛 ∈ 𝑇 1

out(𝑠) and 𝑚 ∈ 𝑇 2
out(𝑠). If one of these two sets

is empty then the set P(s) is obtained by using all the
node pairs p(n,m) with 𝑛 ∈ 𝑇 1

in(𝑠) and 𝑚 ∈ 𝑇 2
in(𝑠).

All of the above sets may be empty in the presence of
not connected graphs for some state s or if it is the first
step of the algorithm. In this case, the set of candidate
pairs of P(s) will be the set of all the pairs of nodes not
contained neither in G1(s) nor in G2(s).

Clustering for Computation Step of Candidate Pairs
P(s). We compute, using k-means clustering tech-

nique [18], a cluster for each input node 𝑛 ∈ 𝐺train,
namely Cn, based on its embeddings. Then, whenever
there is an input node 𝑚 ∈ 𝐺test to be matched either at
the start of the algorithm or when we are trying to match
a new connected component, the set of candidate pairs
making up P(s) will be the set of all the pairs of nodes
p(n,m) where 𝑚 ∈ 𝐶n. In front of multiple choices, we
choose the pair of input nodes in order of similarity start-
ing from the pair of input nodes that are the most similar
in their embedding, considering it the most promising
pair. The number of clusters is initialized at a high num-
ber based on the number of input nodes in Gtrain. If an
isomorphism is not found, then the number of clusters is
halved, the VF2 algorithm is used again and this process
is repeated until a matching is found. A matching is guar-
anteed to exist under the closed-world assumption when
there is only one cluster. In Example 3 there is an high
level description of the isomorphism matching algorithm
combined with the use of clustering.

PROCEDURE Isomorphism Matching
INPUT : two graphs G1 and G2 .
OUTPUT : t he isomorphism matching between G1

and G2 .
I n i t i a l i z e the number o f c l u s t e r s .
Get a map with an embedding f o r every i n p u t
node ∈ 𝐺1 .
WHILE (i somorphism i s not found)

Compute c l u s t e r s u s i n g i n p u t node ∈ 𝐺1 .
C a l l VF2 matcher p r o c e d u r e with c l u s t e r i n g
t o g e t an isomorphism .
IF isomorphism is found THEN

RETURN i somorphsim
ELSE

Halve the number o f c l u s t e r s .
END IF

ENDWHILE
END PROCEDURE Isomorphism Matching

Example 3: The VF2 algorithm is called multiple times with a
decreasing number of clusters for the input nodes until a match
between Gtrain and Gtest is found.

6. Evaluation in an Economic
Setting

In this section we describe the experimental evaluation
we carried out to test the effectiveness of our model.
We performed a link prediction task [19] in the domain
of company ownership, using a dataset extracted from
DBpedia [20]. The goal is to identify the unobserved true
links in the KG between companies. The evaluation is
presented in the form of an ablation study, in which we
compare the result achieved using only Vadalog and the
result of Vadalog supported by our CGNN.

Figure 5: Precision-Recall curve.

6.1. Experimental Setting
We are interested in predicting related companies, based
on the concepts of ownership, intended in terms of stock
percentage holding, and key person, intended as execu-
tive people, core to the business operations of a certain
company. In the former case we state that a company
c1 is related to another one c2 if c1 owns c2 (the stock
percentage holding is irrelevant and omitted) while in
the latter we state that c1 is related to c2 if they have the
same key person p. We used the DBpedia triples (c1, own,
c2) and (p, isKeyPersonOf, c) to build the facts of D in the
form of own(c1,c2) and keyperson(c,p). The golden set
was obtained by running the program in Example 4 with
Vadalog. The output of the program represents all true
related companies. The chase graph obtained with this
program is made up of a set of components that represent
distinct sub-groups of related companies, causing rules 5
and 6 to contribute minimally to the total of related links
produced. Moreover the dataset used is quite small with
215 own edges and 40 keyperson edges, for a total of 730
related edges. These numbers represent the 20% of the
total dataset, the remaining 80% is used for the training
set (65%) and the validation set (15%). The program used
for validation and testing is composed of a subset of the
rules used in Example 2, namely the rules from 1 to 4.

Σ = {
1 . r e l a t e d (x , y) : − keyperson (x , p) , keyperson (y , p)
2 . r e l a t e d (x , y) : − keyperson (y , p) , keyperson (x , p)
3 . r e l a t e d (x , y) : −own (x , y)
4 . r e l a t e d (x , y) : −own (y , x)
5 . r e l a t e d (x , y) : −own (x , z) , own (z , y)
6 . r e l a t e d (x , y) : −own (y , z) , own (z , x)
7 . r e l a t e d (x , x) : − r e l a t e d (x , y)
8 . r e l a t e d (y , y) : − r e l a t e d (x , y) }

Example 4: Reasoning task to extract the golden set. The related
companies are determined by the following constraints: (i) two
companies are related if the have a key person in common (rule
1 and 2); (ii) two companies are related if the first one owns the
second one or vice versa (rule 3 and 4); (iii) transitive property
of ownership (rule 5 and 6); (iv) reflection property of related
companies (rule 7 and 8).

Figure 6: Comparison between Vadalog and the CGNN. From
left to right the measurements of precision (sand yellow), recall
(green) and F-score (blue).

6.2. Ablation Study and Results
When we compare the result of Vadalog and the result
of Vadalog plus the CGNN with the golden set, we in-
tend to illustrate how much of the facts “related” only
inferable from the rules not used at validation and test
time are recovered with the support of the CGNN. To
produce new facts related we use the embeddings pro-
duced by the CGNN as follows: for each pair (a,b) where
a=related(X1,Y1) and b=related(X2,Y2), if the cosine simi-
larity between the embeddings of a and b is greater than a
threshold, then we produce the new facts related(X1,Y2)
and related(X2,Y1). The threshold was tuned during vali-
dation time. Figure 5 illustrates the precision-recall curve.
Results. The results achieved in term of recall, preci-
sion and F-score, illustrated in Figure 6, highlight that
our neurosymbolic approach was able to retrieve most of
the false-negative related companies discovered by Vada-
log, while maintaining a low number of false-positive,
thus proving its effectiveness in recovering links inferred
through logic rules. In fact, the recall goes from 51.10%
(Vadalog) to 95.75% (Vadalog with CGNN) while main-
taining 88.44% precision. Moreover we must consider
that the 91 false positives of the CGNN could still be true
predictions. In fact the CGNN has the potential to go
over the expressiveness of the rules used to obtain the
golden set and find more related connections. To prove
this assertion we took 26 samples from the false positives
and we manually checked if they were truly unrelated
pairs or not. We found out that 20 out of the 26 samples
were, instead, true predictions, where most of them were
about a company related to banks or investment firms
that were indeed its investors. Therefore, with this new
insights, we can re-evaluate the results achieved by the
CGNN and consider true positives the 77% (20/26) of the
false positives. In this way our approach reaches 97.33%
precision and 95.54 f-score.
Considerations. This data hint that our neurosymbolic
approach has both the potential to go beyond the expres-
siveness of the logic rules and to recover information

from domain rules that have not been made explicit, but
to have confirmation, the same experiments should be
carried out in a much larger scale. In fact there were
plenty of company and person entities in DBpedia that
could contribute to generate the relationships own and
keyperson, but we were forced to not consider a rele-
vant number of them due to not being able to recover a
meaningful text description for their embeddings to use
as input for the CGNN.

7. Conclusion
We showed how to build the Chase Graph Neural Network
(CGNN), a neurosymbolic model, simply by keeping track
of the chase graph produced during the chase procedure.
The CGNN is able to provide embeddings for each fact
inferred during reasoning. We proposed a novel tech-
nique to handle facts with labelled nulls and a novel use
of subgraph isomorphism to handle unseen data when us-
ing the CGNN. We demonstrated the effectiveness of our
approach in a real-world financial domain by using the
embeddings to discover new links in a KG. Despite the
very promising results achieved, the solution presented
is still a prototype. An obvious improvement would be
to make use of the full potential of Datalog± rules by
introducing recursion with the use of Long Short-Term
Memory cells [21] as base structure for the neurons.

References
[1] L. Bellomarini, D. Fakhoury, G. Gottlob, E. Sallinger,

Knowledge graphs and enterprise ai: The promise
of an enabling technology, in: IEEE ICDE, 2019, pp.
26–37.

[2] L. Bellomarini, E. Sallinger, G. Gottlob, The vadalog
system: Datalog-based reasoning for knowledge
graphs, CoRR 11 (2018) 975–987.

[3] A. Calì, G. Gottlob, T. Lukasiewicz, B. Marnette,
A. Pieris, Datalog+/-: A family of logical knowl-
edge representation and query languages for new
applications, in: 2010 25th Annual IEEE Symposium
on Logic in Computer Science, 2010, pp. 228–242.

[4] J. Zhang, B. Chen, L. Zhang, X. Ke, H. Ding, Neural,
symbolic and neural-symbolic reasoning on knowl-
edge graphs, AI Open (2021).

[5] L. C. Lamb, A. S. d’Avila Garcez, M. Gori, M. O. R.
Prates, P. H. C. Avelar, M. Y. Vardi, Graph neural
networks meet neural-symbolic computing: A sur-
vey and perspective, CoRR abs/2003.00330 (2020).

[6] D. Maier, A. O. Mendelzon, Y. Sagiv, Testing impli-
cations of data dependencies, ACM Trans. Database
Syst. 4 (1979) 455–469.

[7] L. Cordella, P. Foggia, C. Sansone, M. Vento, A

(sub)graph isomorphism algorithm for matching
large graphs, IEEE PAMI 26 (2004) 1367–1372.

[8] L. Bellomarini, M. Benedetti, S. Ceri, A. Gentili,
R. Laurendi, D. Magnanimi, M. Nissl, E. Sallinger,
Reasoning on company takeovers during the covid-
19 crisis with knowledge graphs, in: RuleML+ RR,
2020.

[9] L. Bellomarini, M. Benedetti, A. Gentili, R. Laurendi,
D. Magnanimi, A. Muci, E. Sallinger, Covid-19 and
company knowledge graphs: assessing golden pow-
ers and economic impact of selective lockdown via
ai reasoning, arXiv (2020).

[10] T. Gogacz, J. Marcinkowski, A. Pieris, All-instances
restricted chase termination: The guarded case,
CoRR abs/1901.03897 (2019).

[11] G. Bebis, M. Georgiopoulos, Feed-forward neural
networks, IEEE Potentials 13 (1994) 27–31.

[12] T. Kenter, A. Borisov, M. De Rijke, Siamese cbow:
Optimizing word embeddings for sentence repre-
sentations, arXiv (2016).

[13] T. Mikolov, K. Chen, G. Corrado, J. Dean, Efficient
estimation of word representations in vector space,
in: ICLR, 2013.

[14] Q. Le, T. Mikolov, Distributed representations of
sentences and documents, in: ICML, volume 32,
2014, pp. 1188–1196.

[15] J. Pennington, R. Socher, C. D. Manning, Glove:
Global vectors for word representation, in: EMNLP,
2014, pp. 1532–1543.

[16] R. Reiter, On Closed World Data Bases, Springer US,
Boston, MA, 1978, pp. 55–76.

[17] I. Wegener, Complexity theory: exploring the limits
of efficient algorithms, Springer Science & Business
Media, 2005.

[18] J. A. Hartigan, M. A. Wong, Algorithm as 136: A
k-means clustering algorithm, J R Stat Soc Ser C
Appl Stat 28 (1979) 100–108.

[19] A. Rossi, D. Barbosa, D. Firmani, A. Matinata,
P. Merialdo, Knowledge graph embedding for link
prediction, ACM 15 (2021) 1–49.

[20] S. e. a. Auer, Dbpedia: A nucleus for a web of open
data, in: The Semantic Web, 2007, pp. 722–735.

[21] S. Hochreiter, J. Schmidhuber, Long short-term
memory, Neural Computation 9 (1997) 1735–1780.

	1 Introduction
	2 Vadalog Reasoning
	3 Chase Graph Neural Network
	3.1 Neuron Structure
	3.2 CGNN Structure

	4 Embeddings for Facts with Labelled Nulls
	5 Isomorphisms and Unseen Facts
	5.1 Improving Isomorphism using Clustering

	6 Evaluation in an Economic Setting
	6.1 Experimental Setting
	6.2 Ablation Study and Results

	7 Conclusion

