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Abstract
Smart contracts are programs that are stored in distributed ledgers (e.g., blockchains) and are usually written in procedural
languages to encode agreements between parties. Recent proposals focus on using logical languages for the specification and
verification of such agreements. In this paper, in line with recent work, we analyse the usage of DatalogMTL for the creation
of smart contracts. We discuss archetypal use cases and explore the temporal properties of DatalogMTL for formulating
certain specifications.
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1. Introduction
Distributed ledger technologies (for example,
blockchains) provide the foundation and core in-
frastructure for decentralised finance (DeFi), a type
of finance that does not rely on intermediaries like
exchanges, banks or brokers [1]. DeFi applications are
built by utilising smart contracts, which are executable
code that facilitates the process of executing and
enforcing the terms of an agreement between (untrusted)
parties [2].

While agreements naturally follow a human-readable
format (e.g., see Example 1.1), today’s usual way of writ-
ing such smart contracts is by encoding rules in an object-
oriented programming language such as Solidity for the
Ethereum platform. The procedural style of these lan-
guages requires to define what and how certain condi-
tions should be handled, which is an error-prone and
cumbersome process and hard to verify by non-experts
whether the intention is reflected in code.

Example 1.1. I lend you ten Bitcoins with an interest
rate of 3% per year for three years. The interest payment
is monthly.

In an attempt to tackle this issue, researchers sug-
gest the use of logic-based smart contract languages,
which allow to better represent and reason upon the
conditions of a smart contract [2, 3]. Different sug-
gested solutions include the use of Prolog [4, 5], domain-
specific languages [6], finite state machines [7], Active-
U-Datalog [8], or formal contract logic [3].

Let us consider Example 1.1 again. By carefully study-
ing this example, one notices that it contains multiple
temporal specifications (e.g., per month, per three years,
or per year). While temporal reasoning has been used for
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the verification of smart contracts [9], current solutions
for logic-based smart contracts, to the best of our knowl-
edge, do not consider temporal properties at all or in a
sub-optimal way, e.g., by arithmetic or by the introduc-
tion of predicates with a special temporal meaning. This
is an enormous drawback, as many DeFi applications
require some sort of temporal processing1.

Requirements. In the following, we suggest what we
think are the most essential temporal requirements a
logic-based smart contract language has to support to
provide a minimum amount of useful reasoning capabili-
ties for DeFi applications.

1. Validity Interval. It is necessary to represent in-
tervals, i.e., when a specific kind of operation is
valid, not only punctual points. This is necessary
for example in voting contracts, where votes are
exactly allowed between the start and the end of
an interval.

2. Periodicity. It is necessary to specify periodic
patterns that encode repeating agreements. This
is necessary for example to encode that the salary
is paid per month.

3. One Time Event/Delay. It is necessary to encode
single future events. This is necessary for ex-
ample for shopping contracts, where a payment
reminder has to be sent in case the money has
not been paid.

4. Negation. While only indirectly related to the tem-
poral domain, it is necessary to support negation.
This is necessary to encode that something has
not happened in a specific interval as the previous
example highlights.

5. Verification. It is necessary to verify whether a
given model is satisfied for a given set of rules.
This helps for the verification of certain proper-

1We discuss current solutions in the discussion of the related
work (see Section 3)
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ties and is in line with the work of using temporal
logic for verification of smart contracts.

DatalogMTL. A typical language that supports all of
these requirements is DatalogMTL. DatalogMTL extends
Datalog with the Horn fragment of metric temporal logic
(MTL) and allows us to formulate expressions such as
⊟[0,24ℎ]Signal(𝑥) to state that the signal 𝑥 occurred con-
tinuously over the last 24 hours or [1ℎ,2ℎ]Signal(𝑥) to
state that the signal 𝑥 occurred at least once in the penul-
timate hour. It supports intervals (1) and delays (3) out of
the box and provides the handling of periodicity (2) by the
underlying reasoning language Datalog, where recursion
is a fundamental core of the language. The support of
negation (4) is provided by stratified negation (see prelim-
inaries), but more complex forms of negation (i.e., stable
models) have already been considered, if needed [10].

Contribution. In this work, we introduce DatalogMTL
as a suitable language for formulating explainable logic-
based smart contracts. In detail, our main contributions
are:

• We established a set of temporal requirements for
logic-based smart contract languages which we
think are necessary for a variety of agreements.

• We formally define a smart contract language on
top of DatalogMTL which considers the interac-
tion with other smart contracts.

• We provide a case study on real-world examples on
exploring DatalogMTL for Smart Contracts where
we discuss the modelling of smart contracts as
well as the verification.

• We provide throughout the work connections to
the economic sector, targeting exactly the area of
the workshop.

Financial and Economic Context. We briefly want to
relate the work to the financial and economic context.
As already highlighted in the beginning of the introduc-
tion, DeFi will become (or already is) an area with a high
volume of transactions and a high market capitalization.
Current DeFi solutions lack insight and do not provide
explainable systems. We have the opinion that logic-
based smart contracts, and especially DatalogMTL, could
provide the required core for reasoning over DeFi ap-
plications and would be suitable as a basis for building
systems for many economic and financial fields, such as:

• Regulatory Compliance
• Anti-money Laundering
• Financial stability assessment

This paper contributes in two ways to the discussion of
DeFi applications regarding the economic sector. On the
one hand, we identify the need of supporting several tem-
poral properties in logic-based smart contract languages,

which we summarized in the beginning as requirements,
and on the other hand, we suggest the usage of Data-
logMTL as a go-to solution and introduce DatalogMTL
smart contracts for writing DeFI applications.

Organization. The remainder of this paper is organized
as follows: In Section 2 we introduce DatalogMTL and
provide a brief overview on Smart Contracts. In Section 3
we discuss related work in the area of logic-based smart
contracts. We discuss the usage of DatalogMTL as a
modelling language for Smart Contracts in Section 5 and
conclude the work in Section 6.

2. Preliminaries
In this section, we briefly introduce smart contracts and
present the syntax and semantic of DatalogMTL with
stratified negation over the integer timeline.

2.1. Distributed Ledgers and Smart
Contracts

A distributed ledger technology (DLT) is a decentralized,
immutable, and append-only database across different
nodes that is managed by multiple participants. At the
core of the DLT is a consensus mechanism which contains
procedures and rules on how transactions are validated
by the nodes [11].

A blockchain is a form of DLT, where transactions are
recorded and grouped into blocks, where each block in-
cludes a hash of the previous block. Other forms of DLTs
are Tangle [12], built on top of a directed acyclic graph,
or Corda [13], a leading DLT for regulated industries
where the ledger stores per node only the facts the node
is aware of.

Smart Contracts are programs stored on the distributed
ledger technology that run when certain conditions are
satisfied. Usually, smart contracts manage an agreement
(i.e., rules) between multiple parties per code without re-
quiring a third party. They reduce risk due to the tamper-
proof property of DLTs and provide transparency to the
process. Typical smart contract applications include vot-
ing, supply chains, mortgage, copyright protection, or
employment arrangements [14].

2.2. DatalogMTL
DatalogMTL extends Datalog with metric temporal logic.
In this section, we briefly recap the syntax and seman-
tic of DatalogMTL over the integer timeline [15] with
stratified negation [16].

Intervals. An interval is of the form ⟨𝑡1, 𝑡2⟩, where the
left (right) bracket is either ( or [ () or ]) and 𝑡1, 𝑡2 ∈
Z∪{−∞,∞}, such that 𝑡1 ≤ 𝑡2. An interval is positive



if 𝑡1 > 0 and punctual if 𝑡1 = 𝑡2, which we write as 𝑡
instead of [𝑡, 𝑡].
Syntax. We assume a disjoint set of variables and con-
stants. An atom is an expression of the form 𝑃 (𝜏 ), where
𝑃 is a predicate of arity 𝑛 and 𝜏 is a tuple of constants
and variables matching the arity. A literal 𝑀 is an ex-
pression given by the following grammar:

𝑀 ::=⊤ | ⊥ | 𝑃 (𝜏 ) | ⊟𝜚𝑀 | ⊞𝜚𝑀 |
𝜚𝑀 | 𝜚𝑀 | 𝑀 𝒮𝜚 𝑀 | 𝑀 𝒰𝜚 𝑀

where 𝑃 (𝜏 ) is an atom and 𝜚 is a positive interval. A
rule is an expression of the form

𝑀1 ∧ · · · ∧𝑀𝑘 ∧ not𝑀𝑘+1 ∧ · · · ∧ not𝑀𝑘+𝑚 → 𝑀 ′

for 𝑘,𝑚 ≥ 0 and where each 𝑀𝑖 is a literal and 𝑀 ′ is a
literal restricted to the following grammar:

𝑀 ′ ::=⊥ | 𝑃 (𝜏 ) | ⊟𝜚𝑀
′ | ⊞𝜚𝑀

′

The conjunction of 𝑀𝑖 is the body and 𝑀 ′ is the head of
the rule. The literals 𝑀1, . . . ,𝑀𝑘 are positive body lit-
erals of the rule, and 𝑀𝑘+1, . . . ,𝑀𝑘+𝑚 are the negated
ones. A rule is safe, if all variables occur in positive body
literals of the rule, and positive if it contains no negative
body literal. A DatalogMTL program is a finite set of safe
rules. A program Π is stratifiable if there exists a stratifi-
cation of a program Π. A stratification of Π is given as a
function 𝜎 that maps each predicate in Π to positive inte-
gers such that for each rule it holds that 𝜎(𝑃+) ≤ 𝜎(𝑃 )
and 𝜎(𝑃−) < 𝜎(𝑃 ) for 𝑃+ a positive body literal, 𝑃−

a negated body literal and 𝑃 the head of the rule. We say
that an expression is ground if it contains no variables. A
fact is an expression of the form 𝑃 (𝜏 )@𝜚, where 𝑃 (𝜏 ) is
ground and 𝜚 a non-empty interval. A dataset is a finite
set of facts.

Semantics. An interpretation M specifies for each time
point 𝑡 ∈ Z and for each ground atom 𝑃 (𝑎) whether
𝑃 (𝑎) is satisfied at 𝑡, in which case we write M, 𝑡 |=
𝑃 (𝑎). This notion extends to ground literals as follows:

M, 𝑡 |= ⊤ for each 𝑡 ∈ Z
M, 𝑡 |= ⊥ for no 𝑡 ∈ Z
M, 𝑡 |= ⊟𝜚𝐴 iff M, 𝑠 |= 𝐴 for all 𝑠 with 𝑡− 𝑠 ∈ 𝜚

M, 𝑡 |= ⊞𝜚𝐴 iff M, 𝑠 |= 𝐴 for all 𝑠 with 𝑠− 𝑡 ∈ 𝜚

M, 𝑡 |= 𝐴 𝒮𝜚 𝐴′ iff M, 𝑠 |= 𝐴′ for some 𝑠 with 𝑡− 𝑠 ∈ 𝜚

∧M, 𝑟 |= 𝐴 for all 𝑟 ∈ (𝑠, 𝑡)

M, 𝑡 |= 𝐴 𝒰𝜚 𝐴′ iff M, 𝑠 |= 𝐴′ for some 𝑠 with 𝑠− 𝑡 ∈ 𝜚

∧M, 𝑟 |= 𝐴 for all 𝑟 ∈ (𝑡, 𝑠)

M, 𝑡 |= 𝜚𝐴 iff M, 𝑠 |= 𝐴 for some 𝑠 with 𝑡− 𝑠 ∈ 𝜚

M, 𝑡 |= 𝜚𝐴 iff M, 𝑠 |= 𝐴 for some 𝑠 with 𝑠− 𝑡 ∈ 𝜚

An interpretation M satisfies for each literal 𝑀 and
every time point 𝑡 not 𝑀 , written M, 𝑡 |= not 𝑀 , if
M, 𝑡 ̸|= 𝑀 . An interpretation is a model of a ground rule
whenever it satisfies all atoms of the body it also satisfies

the head of the rule, a model of a rule, when it satisfies
all groundings of the rule and a model of a program Π,
written M |= Π, if it is a model of all rules in Π and
the program has a stratification. An interpretation M
is a model of a fact 𝑃 (𝑎)@𝜚, written M |= 𝑃 (𝑎)@𝜚, if
M |= 𝑃 (𝑎)@𝑡 for all 𝑡 ∈ Z within 𝜚, and a model of a
set of facts (e.g., a dataset) 𝐷 if it is a model of all facts in
𝐷. A program Π and a dataset 𝐷 entail a fact 𝑃 (𝑎)@𝜎,
written (Π, 𝐷) |= 𝑃 (𝑎)@𝜎, if 𝑃 (𝑎)@𝜎 for each model
of Π and 𝐷.

3. Related Work
Idelberger et al. [3] suggest the formulation via formal
contract logic, a (deontic) defeasible logic. They suggest
specifying a default state and use superiority relations to
overwrite the state in case a specific event is triggered.
This logic always only derives a single state based on
current triggers that are valid at the current time. They
have not discussed temporal properties at all.

Similarly, Frantz and Nowostawski [6] decompose
institutions into rule-based statements, which are con-
structed from 5 different components (attributes (A), de-
ontic (D), aim (I), conditions (C), or else (O)). An example
is “people (A) must (D) vote (I) every four years (C), or
else they face a fine (O)” and suggest a mapping of the
components to Solidity smart contracts using a domain-
specific language which creates a template that has to be
completed manually.

Stancu and Dragan [5] suggested a Python-to-Prolog
interface on top of BigchainDB and Tendermint to for-
ward Prolog clauses to a Prolog process to verify the
contract.

Suvorov and Ulyantsev [7] suggest to use a LTL speci-
fication and test scenario to create a finite state machine,
which is combined with state and action definitions to
generate a Solidity smart contract. They use LTL to ex-
press possible state transitions in a finite state machine,
but again no temporal properties are explored such as a
duration of a voting period.

Hu and Zhang [8] propose Logic-SC, a smart contract
model based on Active-U-Datalog with temporal exten-
sions. Active-U-Datalog extends Datalog rules with up-
date atoms, which can add or remove relations from
the dataset. The temporal extension is provided by a
pair ⟨[𝑏𝑒𝑔𝑖𝑛, 𝑒𝑛𝑑], 𝑃 ⟩, where 𝑃 is a periodic expression
and [𝑏𝑒𝑔𝑖𝑛, 𝑒𝑛𝑑] denotes the lower and upper bounds
for the intervals in 𝑃 . An example of a periodic ex-
pression is all .Years+{3, 7}.Months ◁2.Months , rep-
resenting intervals starting as third and seven month
of every year and having a duration of 2 months. A
rule for counting the total working hours is given as
follows totalhours(𝑡1), 𝑡2 = 𝑡1 + 1,+Hour(𝑡), 𝑡 ∈
workingTime → −totalhours(𝑡1),+totalhours(𝑡2),



where workingTime is a periodic expression. Critically,
this approach deletes elements which are not valid at the
current time point and adds new elements, and hence
simulates the behaviour of procedural implementations
which also add or remove elements. In comparison, our
approach works per time point and assumes a single ac-
tion per time point. Hence, we explore the concept of
append-only data structures and create a new status for
each new time point.

Ciatto et al. [4] suggest a new language called Ten-
derfone, that is based on Prolog. It offers several entry
points and built-in functions which manage the inter-
action with smart contracts. These functions include
init(args), which gets executed once when the smart
contract is deployed, receive(Msg, Sender) to invoke
the smart contract and send(Msg,Recipient) to call
some other contract. In addition, they offer several tem-
poral predicates. This includes now(T) to get the cur-
rent timestamp, when(T,Msg) to trigger a receive of
the smart contract at time 𝑇 , delay(DT,Msg) which
is equal to when(T + DT,Msg),now(T) and the fact
that periodically(P,Msg), which triggers receive every
𝑃 time units. This suggestion is close to our solution, as
it is the only solution that considers temporal properties.
However, they only consider single time units and do not
cover intervals.

To summarize, related work focused on the formu-
lation of logic-based smart contracts as well as on the
generation of efficient code. This paper will focus only
on the formulation aspect and keeps the generation open
for future work. The solution of Hu and Zhang provide
through the flexibility of Datalog, the possibility to model
certain temporal properties, and the solution of Ciatto
et al. is the only work that actively considers temporal
properties in their proposal. To the best of our knowl-
edge, intervals have not been considered so far in the
study of logic-based smart contract languages.

4. DatalogMTL Smart Contracts
In this section, we formally specify smart contracts with
DatalogMTL. While the introduced program would allow
one to specify the rules of the contract, possible interac-
tion points with different parties and smart contracts as
well as an initial state have to be specified.

Definition 4.1. A smart contract is a quadruple
(𝑁,Π, 𝐷,𝐴) where:

• 𝑁 is a unique name of the contract and can be
seen as a namespace for the contract.

• Π is the DatalogMTL program encoding the rules
of the smart contract

• 𝐷 is the initial dataset encoding the initial state
of the smart contract.

• 𝐴 is the set of activators. This set contains atoms
that expect input from others and act as interac-
tion points, which other smart contracts or parties
may invoke. Per time point, it is only allowed to
fire one activator.

While Π and 𝐷 map directly to the definition of Dat-
alogMTL, 𝑁 and 𝐴 are in addition required for smart
contracts. The namespace provides the possibility to call
other smart contracts by generating an atom, which is
prefixed with a namespace, or accessing data from other
smart contracts. For example, consider a will that man-
ages the transfer of money in case of death, then one can
write a rule of the form

PersonDied(𝑌 ),Token.balance(𝑌,𝑋),Heritage(𝑌, 𝑍)

→ Token.transfer(𝑌, 𝑍,𝑋)

to specify that the whole balance of 𝑌 (accessed from
the token) is transferred (by calling the token) to 𝑌 ’s heir
𝑍 , in case 𝑌 died.

The activators 𝐴 provide input interfaces to the smart
contract. The set contains all atoms in the rules, which
can only be provided by external parties. Only one such
activator is allowed to be fired per time point to ensure
consistency with the rule (i.e., one time point exactly
matches to one state of the contract). This is without loss
of generality, as in case multiple activators are required,
they can be combined by introducing an additional acti-
vator and creating auxiliary atoms for internal use. Note,
in the following examples we use directly the activators
in rule heads for readability, instead of instantiating some
additional atom, i.e., we write rules of the form 𝑃 → 𝑄,
where 𝑄 is an activator, instead of introducing an auxil-
iary atom 𝑅 and map the activator to the auxiliary atom
𝑄 → 𝑅 which is used in the rules as head 𝑃 → 𝑅. We
still ensure that only one external activator is used per
state transition.

Example 4.1. A smart contract in DatalogMTL with
the rule given in Example 1.1 is given as a quadru-
ple (𝑁,Π, 𝐷,𝐴), where 𝑁 is some unique identifier
such as BitcoinLending , the dataset 𝐷 contains the
information regarding the monthly interest payment
𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡(0.0025)@[0,∞), the activator 𝐴 is the atom
Borrow which is called when the lending starts and fixes
the start time point, and the program Π is given as fol-
lows:

Borrow(𝐴,𝐵) → ⊞[0,3𝑦]BorrowDur(𝐴,𝐵) (1)

Borrow(𝐴,𝐵) → ⊞[1𝑚,1𝑚]PayTime(𝐴,𝐵) (2)

PayTime(𝐴,𝐵) → ⊞[1𝑚,1𝑚]PayTime(𝐴,𝐵) (3)

Interest(𝑋),

PayTime(𝐴,𝐵),

BorrowDur(𝐴,𝐵) → Token.transfer(𝐴,𝐵,𝑋) (4)

where Borrow(𝐴,𝐵) specifies that 𝐴 borrows the
money from 𝐵, BorrowDur(𝐴,𝐵) defines the du-
ration of the borrow contract between 𝐴 and 𝐵,
PayTime(𝐴,𝐵) specifies the time points when 𝐴 has



BitcoinLending

Interest(0.025)@[0, ∞]
Borrow(Alice,Bob)@200
BorrowDur(Alice,Bob)@[200,236]
PayTime(Alice,Bob)@201
PayTime(Alice,Bob)@202
….
PayTime(Alice,Bob)@236

Token

Balance(Alice, 999)@200
…
Balance(Alice, 990)@236
Balance(Bob, 100)@200
…
Balance(Bob, 109)@236

[Other facts]

Third party

[Other facts]

BitcoinLending.borrow(Alice, Bob)@200

Token.balance(Alice, 999)@200

Token.transfer(Alice, Bob, 0.125)@200

Figure 1: Calling of borrow by a third party in
BitcoinLending . Accessing data (balance) and calling
(transfer ) of smart contract Token in smart contract
BitcoinLending .

to pay interest to 𝐵, Interest(𝑋) specifies the interest
amount which has to be paid and Token.transfer is a
call to an external smart contract, for example a smart
contract such as given in Section 5.2, where 𝐴 pays 𝐵
the amount 𝑋 .

In detail, Rule (1) specifies the duration of the agree-
ment with three years beginning at the time point where
Borrow gets called. Rules (2) and (3) define the payment
time points. In detail, Rule (2) specifies the first interest
payment as the first month after the time point where
Borrow(𝐴,𝐵) was activated by some party or smart
contract, and Rule (3) extends this to follow-up payments
recursively. Rule (4) executes the token transfer of the
interest amount in case it is payment time and it is valid
(i.e., during the BorrowDur ) by executing the activator
of a different smart contract.

We visualized in Figure 1 the use of activators and names-
paces to access the data of another smart contract of
Example 4.1, where we assume that 𝐴 is Alice, 𝐵 is Bob
and there is some additional rule that requires access to
the balance of 𝐴 (for example, to check whether 𝐴 is
creditworthy or not) to visualize the read direction and
a third party, which could either be Alice, Bob or some
smart contract that start the borrowing transaction at
some time point which gets added as fact to the contract
(marked as blue) and derives all other facts given in the
box according to the rules of the program.

5. Case Study
In the previous section, we introduced DatalogMTL smart
contracts with a simple example. In this section, we study
the use of DatalogMTL together with two real-world
examples. We first consider a widely discussed example
in the area of logic-based smart contracts, and then we
discuss on how to utilize DatalogMTL for writing a smart
contract for a crypto token.

5.1. License Agreement
In this case study, we focus on the specification of a
license agreement[7, 3, 8]. In this section, we want to ex-
plore how such a contract can be written in DatalogMTL.

Example 5.1. Let us consider the following clauses for
the right to evaluate and publish the evaluation results
of a product [3]:

1. The Licensor grants the Licensee a license to eval-
uate the Product.

2. The Licensee must not publish the results of the
evaluation of the Product without the approval
of the Licensor; the approval must be obtained
before the publication. If the Licensee publishes
results of the evaluation of the Product without
approval from the Licensor, the Licensee has 24h
to remove the material.

3. The Licensee must not publish comments on the
evaluation of the Product, unless the Licensee is
permitted to publish the results of the evaluation.

4. If the Licensee is commissioned to perform an
independent evaluation of the Product, then the
Licensee has the obligation to publish the evalua-
tion results.

5. This license will terminate automatically if the
Licensee breaches this agreement.

Apart from the fact that contracts are of natural interest
to the economic sector, changing the stakeholders and
adapting a few sentences directly leads to an economic
example, namely, the golden power check for company
takeovers [17]. In this case, the licensor is the govern-
ment (which has veto/approval power for acquisitions),
the licensee is the “acquiring” company, and the product
is the target company.

We use the atom GrantX (𝐴,𝐵, 𝑃 ) to specify that Li-
censor 𝐴 has granted Licensee 𝐵 the right to do 𝑋 for
product 𝑃 , where 𝑋 is either Use to grant the right
to evaluate, Commission to grant the right to publish
results without approval, Appr to grant the right to pub-
lish the results. We further use Publish(𝐵,𝑃 ) to spec-
ify that 𝐵 has published the results of product 𝑃 and
Comment(𝐵,𝑃 ) to specify that 𝐵 has made a comment
on the evaluation of product 𝑃 , Remove(𝐵,𝑃 ) to spec-
ify that 𝐵 has removed the content and Violation(𝐵,𝑃 )
to specify that 𝐵 has violated the license for product 𝑃
and OblRemove(𝐵,𝑃 ) to specify that 𝐵 is obliged to
remove the license.

The smart contract is then defined as a quadruple
(𝑁,Π, 𝐷,𝐴), where 𝑁 is some unique identifier such as
LicenseAgreement , the dataset 𝐷 is empty, the activa-
tors are given by the set of atoms {Publish , Comment ,
GrantAppr , GrantCommission , GrantUse , Remove}
and the program Π is given by the following rules, where
we omit the terms in the rules for readability:

GrantAppr → ⊞[0,∞)GrantAppr (1)



Publish,¬GrantAppr → OblRemove (2)

OblRemove,¬Remove,

¬⊟[0,24 ] OblRemove → ⊞[1,1]OblRemove (3)

⊟[0,24]OblRemove → Violation (4)

Comment ,¬GrantAppr → Violation (5)

GrantCommission → GrantAppr (6)

GrantUse,¬Violation → ⊞[1,1]GrantUse (7)

Rule (1) specifies that an approval holds forever. Rules
2-4 match clause (2). Rule 2 states that if the results are
published, but they are not approved, then the licensee
is obliged to remove the results. Rule (3) specifies the
duration of the obligation, which is bounded to 24 hours
and extended to the next time point in case no removal
has happened. Note that this rule uses an extended form
of stratified negation, namely, temporal stratified nega-
tion. In this form, the negated facts in recursion only
propagate information from the past to the future. Rule
(4) then triggers a violation in case the maximum time
of 24 hours has been reached. For comments, there is no
exception and hence any comment without approval is
marked as a violation by Rule (5) which matches clause
(3) of the agreement. Rule (6) handles independent evalu-
ations. In case this right is given, then it is also approved.
Rule (7) manages the extension of the license, in case no
violation occurred.
Discussion. From the example, we can see that Dat-
alogMTL allows to express complex contracts without
the need of formulating rules with any form of explicit
time-handling by only using temporal operators. By com-
paring the example with the established requirements
from Section 1, this example gives evidence for require-
ment (1) by rule (1) or (4), requirement (3) by rule (4),
requirement (4) by rules (2), (3), (5) and (7). We do not
cover requirement (2) here, but (2) has been covered in
Section 4. Requirement (5) is usually not part of the con-
tract itself but used to verify that a contract does not
reach a certain state. For example, it can be used to state
that only one activator is fired at most once per time
point or to state that it is not possible to publish a re-
sult without having the license to use the program, as
the program cannot be evaluated. The latter case can be
formulated by a rule of the following form:

Publish,¬ [0,∞)GrantUse → ⊥

5.2. ERC20 Token
In this case study, we analyse how an Ethereum ERC20
token contract [18] can be formalized in DatalogMTL.
The standard provides some read-only functions, such as
what is the current balance of a user, which we do not
consider in the example, as just the atoms of the program
have to be accessed. In the following, we focus on the
functions, which change the state of the contract. The
goal of these functions is to specify when a transfer of
tokens between two parties is allowed and how a transfer
affects the balance of the parties.

Example 5.2. Let us consider the write operations of the
Ethereum ERC20 specification, which are in total three
methods:

• Transfer. Party 𝐴 transfers amount 𝑋 to party
𝐵. Such a transfer is only allowed if the current
balance of 𝐴 is bigger or equal to 𝑋 .

• Approve. Party 𝐴 allows party 𝐵 to withdraw
amount 𝑋 .

• TransferFrom. Party 𝐵 transfers amount 𝑋 from
party 𝐴 to party 𝐶 . Such a transfer is only al-
lowed if the current balance of𝐴 and the approval
value for 𝐵 from 𝐴 are bigger or equal to 𝑋 .

We use the atom Tran(𝐴,𝐵,𝑋) to specify that there is
a request to transfer amount 𝑋 from party 𝐴 to party
𝐵, TranF (𝐴,𝐶,𝑋,𝐵) to specify that there is a request
from party 𝐵 to transfer amount 𝑋 from party 𝐴 to party
𝐶 , App(𝐴,𝐵,𝑋) to denote that party 𝐴 allows party
𝐵 to transfer amount 𝑋 . In addition we specify that
the requested transfer is valid by VTran(𝐴,𝐵,𝑋), and
denote with Bal(𝐴,𝑋) that party 𝐴’s current balance
is 𝑋 .

The smart contract is then defined as a quadruple
(𝑁,Π, 𝐷,𝐴), where the namespace 𝑁 is some unique
identifier such as Token , the dataset 𝐷 contains the
initial balance, which is assigned to one or more peo-
ple, in this case 2000 tokens are assigned to Alice,
Bal(𝐴𝑙𝑖𝑐𝑒, 2000), the activators are given by the set of
atoms {Tran , App, TranF} and the program Π is given
by the following rules

Tran(𝐴,𝐵,𝑋),Bal(𝐴, 𝑌 ),

𝑋 ≤ 𝑌 → VTran(𝐴,𝐵,𝑋) (1)

VTran(𝐴,𝐵,𝑋),Bal(𝐴, 𝑌 ) → ⊞[1,1]Bal(𝐴, 𝑌 −𝑋) (2)

VTran(𝐴,𝐵,𝑋),Bal(𝐵, 𝑌 ) → ⊞[1,1]Bal(𝐵, 𝑌 +𝑋) (3)

App(𝐴,𝐵, 𝑌 ),

TranF (𝐴,𝐶,𝑋,𝐵), 𝑋 ≤ 𝑌 → Tran(𝐴,𝐶,𝑋) (4)

VTran(𝐴,𝐶,𝑋),

App(𝐴,𝐵, 𝑌 ),

TranF (𝐴,𝐶,𝑋,𝐵),

𝑍 = 𝑌 −𝑋 → ⊞[1,1]App(𝐴,𝐵,𝑍) (5)

Bal(𝐴, 𝑌 ),¬VTran(𝐴, _, _),

¬VTran(_, 𝐴, _) → ⊞[1,1]Bal(𝐴, 𝑌 ) (6)

App(𝐴,𝐵, 𝑌 ),

¬VTran(𝐴, _, _) → ⊞[1,1]App(𝐴,𝐵, 𝑌 ) (7)

App(𝐴,𝐵, 𝑌 ),

VTran(𝐴, _, _),

¬TranF (𝐴, _, _, 𝐵) → ⊞[1,1]App(𝐴,𝐵, 𝑌 ) (8)

Rule (1) verifies whether the balance of party𝐴 is enough
for the transfer. Rules (2) and (3) apply a verified transfer
by reducing and increasing the balance of the participat-
ing parties. Rule (4) applies the third-party transfer by
checking whether the party is allowed to transfer the
amount from party 𝐴. In such a case, a usual transfer



is emitted, which is handled by rules (1) to (3). Rule (5)
updates the approval amount in case such a transaction
is successful. Rules (6)-(8) are the housekeeping rules,
which copy the current balance and the approved value
to the next unit, in case nothing changed.

Arithmetic Expressions. In this example, we have used
arithmetic expressions in the rules, which have not been
formally defined in DatalogMTL. We want to point out
that the use of arithmetic in recursion without any re-
strictions yields undecidability in general [19], however
in this case the arithmetic expression is bounded by acti-
vators. A formal definition of arithmetic in DatalogMTL
has not been considered yet and is future work. The
arithmetic operations of this example follow the default
notion of addition and subtraction.

6. Conclusion
In this paper, we introduced DatalogMTL as an option
to model smart contracts. We first derived the essential
requirements for the necessary features in smart con-
tracts, and then introduced DatalogMTL as a basis for a
smart contract language. We explored our language by
discussing two real-world examples. In the first one, we
introduced a widely discussed existing example and high-
lighted the advantages of using DatalogMTL, while in
the second one we discussed how to model tokens with
DatalogMTL. Thereby, we identified the need to have
a formally proved arithmetic extension of DatalogMTL
to support DeFi applications which require arithmetic
operations, which we will consider studying in the future.
In addition, we want to focus on compiling DatalogMTL
smart contracts to existing procedural smart contract
languages such as Solidity to support well-established
blockchains such as Ethereum.
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