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Abstract

We report on a novel work-in-progress system for inferring family links in company ownership graphs. Our system combines
fuzzy observations of possible family links from anagraphic data with MV-Datalog™ , a new framework for many-valued
logical reasoning in Datalog®. With this approach we achieve levels of flexibility and explainability benefits that is difficult
to match by current Machine Learning methods. We describe the key challenges, main components of our approach, and
experimentally illustrate its effectiveness at this early stage in its development.

1. Introduction

Company ownership graphs play a central role for cen-
tral banks, financial authorities and national statistical
offices [1, 2, 3, 4] and represent a valuable tool for solv-
ing a wide range of problems in the context of banking
supervision, credit-worthiness evaluation, anti-money
laundering, insurance fraud detection, economic and sta-
tistical research. One particular such ownership graph
that we consider in this paper is the Enterprise Knowledge
Graph of Ttalian companies [5], in which people and com-
panies are the nodes, while the (labelled) edges represent
the fraction of company shares owned by a person or a
company.

One of the main challenges for detecting regulatory
issues in the Enterprise Knowledge Graph is the obfus-
cation of actual company ownership. Such obfuscation
can be highly problematic. For example, according to
European Central Bank regulations, company Cy, is not
eligible as a guarantor for C;, if it is too “close” to it in
terms of ownership [6]. It is therefore important to iden-
tify potential close links in company ownership graphs
to effectively detect problematic constructs. One particu-
larly common type of potential close link is through fam-
ily ties. Oftentimes, company ownership is distributed
over family members to obfuscate the actual ownership
structure leading to issues as in the example illustrated
in Figure 1.

Consequently, if we detect a family link between a
person P, and a person P, that respectively own a com-
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Figure 1: A typical case of hidden close link where C, cannot
act as guarantor for Cy due to the family relationship between
P, and P,

pany C, and Cy, we can infer that even if C; and Cy, do
not strictly fulfil the definition of close link, we should
prevent both companies from being the guarantor of the
other. However, company ownership graphs often are de-
rived from data where family relationships are not explic-
itly available and must be reconstructed through other
methods. The lack of public data makes the task of finding
family links highly challenging since civil registers can
not share personal data due to privacy regulations. Note
that this lack of ground truth data also severely limits the
applicability of popular Machine Learning techniques for
related problems like Knowledge Graph embedding.

In this paper, we present novel in-progress work on
combining similarity measures that indicate potential
family links with new methods for many-valued reason-
ing over uncertain data in KGs to obtain a unified picture
of potential family links in the Enterprise Knowledge
Graph of Italian companies.

In a first step, we infer connections between persons
based on the information pertaining to company owner-
ship and the available anagraphic data, such as addresses
and names of company owners. For example, given per-
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sons P, and P, with the same surname, both having
shares in the same companies and living in the same
region, we may reasonably infer a family link between
them. This hypothesis is strengthened by the knowledge
of the Italian economic system, where a large number of
companies have families as their major shareholders. We
extend such inference beyond exact matches of data, e.g.,
if P, and P, in the scenario above lived in neighbouring
regions rather than the same region the inference could
still be argued, although with less certainty.

At the same time, family links observe several common
logical properties, such as transitivity or symmetry, that
can be used to detect further family links through logical
reasoning. However, since the similarity metrics produce
uncertain observations, the use of classical logical reason-
ing (which is limited to statements that are either fully
true or false) is severely limited in this setting. Rather
than reducing our uncertain observations to true/false
via thresholds or similar techniques, we propose the use
of MV-Datalog® [7], a recent extension of Datalog® [8]
with many-valued semantics. Many-valued here refers
to the use of degrees of truth, which we use to model
uncertainty, rather than the classical paradigm of every
fact being either absolutely true or false. MV-Datalog™
allows us to combine the uncertain observations with log-
ical reasoning and certain knowledge, such as a company
ownership KG, expert knowledge, or known relation-
ships, in a single framework.

In the following, we discuss how these two compo-
nents can interact to provide a powerful reasoning system
for detecting family links in the Enterprise Knowledge
Graph for Italian companies. While the presentation fo-
cuses on this specific setting, we believe that our methods
can be widely applicable and that uncertain reasoning
systems open up a variety of new opportunities for the
use of KGs. Details of the problem setting and the de-
rived observations of possible links between persons are
presented in Sections 2 and 3, respectively. We discuss
the interaction with MV-Datalog® for unifying and ex-
tending uncertain observations in Section 4. Results of
preliminary experiments are discussed in Section 5. We
conclude with an outlook of planned next steps in Sec-
tion 6.

2. The Enterprise Knowledge
Graph of Italian Companies

a derived extensional component that can be produced as
the result of the application of the inference rules over
the ground extensional component (with the so-called
“reasoning” process).

Our target is the Enterprise Knowledge Graph of Ital-
ian companies, containing the most updated data at our
disposal. We focus on non-listed companies. For each
of them, the graph contains several features including
legal name, registered office address, incorporation date,
legal form, shareholders. A shareholder can be either
a company or a person, with the standard anagraphic
information. Shares can be associated with different legal
rights (e.g., ownership, bare ownership, etc.). We focus
on all forms of ownership and include in the KG compa-
nies having at least one shareholder. The graph counts
11.97M nodes, representing the shareholders, and 14.18M
edges denoting share ownership.

3. Extracting Uncertain Family
Links

In this section, we describe our technique for extracting
uncertain family links from the Italian companies KG.
Considering the complex analysis that we aim to perform,
taking into account all the person nodes in the graph
would lead to the intractability of the uncertain reasoning
inference. Furthermore, most of the nodes would not be
relevant for the scope of our analysis. Thus, spending
computational time over those would not be wise. The
first objective is to reduce the search space in such a way
that it is likely a family connection exists each time two
person nodes are compared.

Our approach is based on the following assumption: peo-
ple owning a similar amount of shares across the same
companies tend to have family connections. According
to these remarks, we consider the following three-step
process in order to extract family links having a degree
of uncertainty. The first two steps aim at reducing the
search space through partitioning techniques. In the last
step, each pair of nodes in the reduced space is compared
to evaluate three different similarity scores. The higher
the scores, the more likely the family connection.

(i) The first step involves the computation of weakly
connected components (WCCs) by exploiting a more com-
plex concept of the traditional ownership that is called
integrated ownership. This is a notion of accumulated
ownership from a company C;, to a company C: it ac-

A Knowledge Graph (KG) is a semi-structured data model [9]counts for the ownership that C, retains of C, along

composed of three components: (i) a ground extensional
component (or simply extensional component), that is, a
set of relational constructs for schema and data, which
can be effectively modelled as a property graph; (ii) an
intensional component, that is, a set of inference rules over
the constructs of the ground extensional component; (iii)

direct and indirect connections. In terms of the flow of
dividends, integrated ownership can be seen as the cumu-
lative flow from C;, to Cy, justified by direct and indirect
shareholding [5].

The graph consists of about 21 million connections based
on the integrated ownership. This amount of relations



takes into account both direct and indirect links. The
number of connections is significantly cut by removing
the ones characterized by an integrated ownership value
O < 0.001. At this point, some of the nodes are no
longer linked to any other node in the graph due to the
removal of related edges.

This diminished graph presents about 1,3 million WCCs,
in average composed by a number of nodes between 3 and
10, see Figure 2! while the largest WCC has more than
1,5 million nodes. All the WCCs composed by a single
node have not been further considered. According to the
WCC properties, a node is only reachable from the nodes
within the same component. This feature fully satisfies
our previous assumption, since two persons could have
a family link only if at least one connection (direct or
indirect) through their companies exists.
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Figure 2: Density distribution of nodes in the WCCs

(ii) In step 2, new partitions are obtained by clustering
the persons having identical surnames in the same WCC.
The largest WCC contains almost 60.000 clusters.
Figure 3 illustrates an example of the resulting clusters.
The bubble colour identifies the WCC. Note that, the same
surname could result in more than one cluster, where
each cluster belongs to a distinct WCC. For instance,
there are 1500 Rossi clusters, each one contained in a
different WCC. Note that this mechanism allows for find-
ing parent-child or sibling relationships only. However,
this technique could be extended to cover other common
cases, for example employing address-based clustering.

!For the sake of visualization the communities with the higher
number of nodes and density next to 0 have been omitted
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Figure 3: An insight of the clustering result

(iii) In step 3, all the pairs of nodes possibly having
a family connection, i.e. all the nodes within the same
cluster, are compared to evaluate the similarity scores.
The final set of candidates is composed of approximately
41 million pairs.

The similarity score based on the amount of shares
across the same companies is computed as follows:

2
Ci;e(CanCy)

> Or,+ > Og,

C;eCq Cc;eCy

Op,, + OP,,i

1

ownp, P, =

Where C and Cj, represent, respectively, the set of com-
panies where a person P, and person P, have a per-
centage of integrated ownership; O Pa, is the share of a
person P, over a company C;. In detail, ownp, p, repre-
sents the ratio between the sum of shares owned by P,
and P, over a set of common companies and the sum of
shares owned over all their companies.

Let us consider an example where three persons P,
P» and Ps have the following shares over the companies
Cz, Cyand C:

Opaw =0.3 Opay =0.2
Osz =04
Op,, =03 Op,, =038

The resulting own scores are:
ownp,p, = 0.77
ownp,p, = 0.37
ownp,p, = 0.46



We can notice that the score increases when there is a
concentration of interests over the same companies. In-
deed, while P, and P, ownership revolves around Cy, P,
has a relevant share of another company, C.. This brings
to lower scores associated with P, P, and, in particular,
P,,P..

The second score takes into account the string similar-
ity between the living addresses. Given two persons P,
and P, having address addressp, and addressp,, the
similarity score is given by the Levenshtein distance [10]
as follows:

addrp, p, = levenshtein(addressp, ,addressp,)
()

Finally the third score evaluates the proximity of the
address postal code, derived from the living address at-
tribute, as:

®)

Where k represents the number of the first common digits
shared by the two postal codes and n is the postal code
length. For instance, the postal codes 00100 and 00198
have the first three digits in common (k = 3,n = 5)and
the resulting similarity is 0.6.

The result of the process is summarized in the follow-
ing table:

k
postalp,p, = —
n

H idp, idp, .. ownp, p, addrp, p, postalp, p, H
a b 0.77 0.6 0.7
a ¢ 0.37 0.5 0.8
b c 0.46 0.1 0
Table 1

Similarity scores table

4. Uncertain Reasoning with
MV-Datalog™*

Datalog and its more recent extension Datalog™ are popu-
lar formal languages for rule-based reasoning. They com-
bine high expressiveness with several important prop-
erties for use in practice. In particular, they allow for
efficient reasoning and explainable answers despite be-
ing expressive enough to capture a number of popular
formalisms, such as the OWL 2 QL and OWL 2 EL profiles
of the OWL 2 for semantic web reasoning, or popular
description logics like DL-Liter or EL [11]. At the same
time, rule-based languages are designed to be easily un-
derstandable and writable by humans, allowing domain

experts to introduce their knowledge in the reasoning
process. Finally, extensive research in the field has also
identified methods and fragments that allow for highly
efficient reasoning in these languages (e.g., [12, 13]).

This confluence of desirable properties has led to a re-
cent surge in the use of Datalog and its derived languages
in complex Data Analysis tasks [14]. Here we make use
of a very recent such extension named MV-Datalog®
[7], which extends Datalog™ to many-valued (or fuzzy)
semantics. That is, instead of the classical dichotomy
between true and false facts, one considers degrees of
truth, expressed as rational numbers in the interval [0, 1]
(cf., [15]). Many-valued logical semantics are interesting
in practice since degrees of truth can be used to naturally
express vagueness or uncertainty that often occurs in real-
world data analysis tasks. Moreover, important benefits
of rule-based reasoning, such as transparency and ex-
plainability, are preserved when moving to many-valued
semantics. For space reasons, we can not recall the se-
mantics of MV—Datalogi in detail here. Intuitively, rules
are interpreted as in Lukasiewicz logic and we find the
model such that no atom can be less true and every rule
is satisfied to some given truth degree. Such minimal K -
fuzzy models are in fact unique and can be computed in
polynomial time in data complexity when there is exiten-
tial quantification in the head of rules. With existential
quantification, current results [7] are restricted to cases
where the oblivious chase is finite. However, in practice,
utilization of termination strategies for chase sequences
- e.g., as used for guarded or warded Datalog™ [12] -
can allow for good approximation of minimal K-fuzzy
models in settings where the plain oblivious chase may
not terminate.

In the application presented in this paper, we use MV-
Datalog™ to reason over the uncertain observations de-
scribed in Section 3. Here we highlight some key ways
in which natural constructs in MV-Datalog® implement
important behaviour in our family link inference system.
Note that the following examples have been simplified
for the sake of presentation and that a full system can
consider much more complex constructs.

Combining Multiple Sources of Uncertainty  Asdis-
cussed in the previous section, we start from some differ-
ent vague observations on similarities between persons.
Ultimately we want to combine these observations into a
single judgement of how certain we are wrt the eventual
family link between two people. By using MV-Datalog®™
we express how to combine these different sources of
vague observations simply through the logical relation-
ships of the observations. Note that in this case these
connections are direct representations of expert knowl-
edge but can also be derived from other sources, e.g., laws
and regulations. For example, from our hypothesis, we
believe that two people who own the same amount of



shares in the same company (the own score interpreted
as a fuzzy predicate from Section 3), and who live in the
same region are related. Using MV-Datalog™ we can ex-
press this directly through the simple rule for the vague
observations own and postal as described above.

related(Pa, Py) < own(Pq, Py), postal(Pa, Pp).

Importantly, if the region and ownership structure of two
people is exactly the same, i.e., the respective own and
postal observations are completely true (truth degree 1),
then the relatedness of the respective persons will be
inferred as completely true. If one or both of the observa-
tions are uncertain, the truth degree of related (P., Py)
is derived through more complex means in a way that is
consistent also with all the other rules.

In a similar fashion, we infer parent/child relationships
for persons living at the same address where one person
is much younger than the other. Again rule-based rea-
soning makes it simple to specify such a rule, but also
to express that the child relationship is a special case of
related:

child(Py, Py)

related(P,, Py) < child(Pa, Py).

This also illustrates how the vague observation addr can
imply relatedness in a significantly different way than
own or postal. The final solution model for the related
relation is then derived from all of these logical relation-
ships and interactions globally through the program to
provide a unified answer that is consistent with the input
observations and the specified logical rules. Furthermore,
it is possible to specify weights for rules to express their
importance relative to one another and can further affect
the solution of MV-Datalog® inference.

Fuzzy Closure over Logical Properties Family re-
lations follow some logical axioms such as symmetry
or transitivity. Naturally, if we detect that persons P,
and P, are related, as well as P, and P., we can deduce
that also P, and P. are related. In rule-based reason-
ing, all such implied connections can be easily deduced
by expressing the respective properties in logical terms.
With uncertain information such situations become more
complex, say we deduce related(P,, P,) with truth 0.7
and, independently, related (P, P,) with truth 0.9, then
it can be unclear how to consolidate this when assum-
ing that related is symmetric. Enforcing such properties
via ad-hoc computation is often highly challenging es-
pecially when trying to reconcile multiple properties at
the same time (such as symmetry and transitivity). MV-
Datalog® offers natural semantics for such situations
in which it will produce the equilibrium where every
rule is as satisfied as possible. This allows us to express
these important properties in simply their natural logical

« age_gap(Pa, Py), addr(Pas, Py).

form as we would in any Datalog program for certain
knowledge:

related(Pa, Ppy) <
related(P,, P.) <

related(Py, Py).
related(Pa, Py), related(Py, Pe).

Explainability and Transparency In a regulatory
context, it is critical to know why a system infers family
links. Many popular Machine Learning methods struggle
to provide such explainability and transparency at the
required level. By inferring family links through logical
reasoning, our system is fully transparent and can pro-
vide full explanations, consisting of the individual steps
of deduction that ultimately led to a link being inferred.

Consider a link between A and B that has been inferred
with truth degree (i.e., level of certainty) 0.78 as a simple
example with explanation (in formal terms):

child(A, O)

related(A, C)
related(C, B)
related(A, B)

« age_gap(A, C), addr(A, C)
« child(A, C)

< own(C, B), postal(C, B)

+ related(A, C), related(C, B)

where the observation postal(C, B) has truth degree
0.8, and addr(A, C) is 0.98 true, and all other input ob-
servations are certain (truth degree 1). A natural reading
of the explanation is that we deduce (with certainty 0.98)
that A is a child of C, making them related with the same
certainty. In this simple example, C and B have the ex-
act same company ownership and live in very similar
regions, hence we deduce they are related with truth
degree 0.8. By transitivity of relatedness, this then also
implies that A and B must be related and by the seman-
tics of MV-Datalog™ ? the resulting fact related(A, B)
has truth 0.78. Note that the truth degree is generally
not derived by simple forward propagation but requires
more complex considerations since different paths of
rule application can lead to the same consequences (say
A and B also had some common ownership). For a formal
definition of the semantics of MV-Datalog® we refer
to Lanzinger et al. [7].

Advanced Data Cleaning MV-Datalog® also allows
for constraints, that is rules with falsum L in their head
which express that the body of the rule shall not be satis-
fied. In a many-valued context, such constraints can be a
valuable tool for data cleaning according to the logical
properties of the domain. For example, if we are worried
about data inaccuracies leading to two persons being in-
ferred as children of each other, we can express that this
is impossible through the following constraint:

L < child(Pa, Py), child(Py, Py)

*In this simple example this works out to the Lukasiewicz t-
norm Truth(a ® B) = max{0, Truth(a) + Truth(8) — 1}
of the two body atoms « and 3.



Constraints semantically behave like all other rules in
our many-valued setting in that the solution model is the
model that globally satisfies all rules as much as possible,
which implies violating all constraints as little as possible.
Again weighting also allows us to specify the relative
importance of each constraint.

Interaction with Classical Knowledge Bases Asa
final point, since MV-Datalog® is an extension of plain
Datalog, it is also well suited for tasks where we want
to combine reasoning over vague inputs with classical
knowledge bases. It would, for example, be natural to
extend our system with various kinds of social graphs.
Interaction with such classical (non-vague) knowledge
bases requires no special interfaces since MV-Datalog*
behaves exactly like plain Datalog on rules where the
inputs are not vague (i.e., have truth 0 or 1).

5. Preliminary Experiments

Here we briefly report on early experiments with a proof-
of-concept system built following the ideas described
above in Sections 3 and 4. We compute fuzzy relations
own, addr, and postal following the methods and cluster-
ing described in Section 3. Additionally, we consider a
(not fuzzy) relation age_gap to specify whether an age gap
between two persons is large enough for a parent/child
relationship. Using these relations as input we use an
early implementation of a MV-Datalog™ reasoner, built
on top of the state-of-the-art KGMS Vadalog [16] as well
as the mathematical optimization solver Gurobi [17], to
infer a fuzzy related relation (including explanations for
every inferred fact) from rules that implement the main
ideas shown in Section 4, including transitive and sym-
metric closure and multi-layered combination of different
fuzzy observations’.

Our preliminary experiments followed two main goals.
Understanding whether the reasoning in MV-Datalog®™
is feasible in acceptable time for our setting and how the
inferred relationships match the intuition and intention
of our rules.

With respect to the performance, we ran tests with a
small and a medium-sized dataset, with each aforemen-
tioned relation containing 1000 or 10000 tuples, respec-
tively. On a standard consumer laptop (8GB Memory, 1.4
GHz Quad-Core Intel Core i5), inference of the related
relation (as well as all corresponding explanations) takes
roughly 10 seconds for the small instance and about 160
seconds for the medium-sized test dataset. Note that due
to the effective partitioning of the search space through
the combined use of WCCs and surname clusters as out-
lined in Section 3, these instance sizes are already repre-

3Integration of additional classical knowledge bases was not
part of the tested program

sentative of many real instances*. We can conclude that
the computational effort required of our system is low
enough for our setting and we expect this to still hold
when further complexity is introduced (see Section 6).
We also expect significant further improvements of these
runtimes with further development of the MV-Datalog®
reasoner, which itself is in an early stage of development.
With respect to the resulting related relation. We infer
almost 1000 tuples for the relation in the small instance
(this includes the tuples resulting from transitive and
symmetric closure), with varying degrees of truth. Simi-
larly, we infer a related relation containing about 9000
tuples for the medium-sized instance. Manual inspec-
tion of results and respective explanations confirm that
the tuples and their inferred degree of truth match the
intentions of domain experts that proposed the rules,
confirming the effectiveness of our proposed approach.

6. Conclusion and Outlook

In this paper, we considered the family link detection
problem in the setting of the Italian companies knowl-
edge graph, described in Section 2. We present a novel
proof-of-concept system based on uncertain predictions
of family links, paired with advanced fuzzy reasoning.
We use graph-theoretic techniques to reduce the search
space significantly and then compute a number of fuzzy
relations that may indicate family links between per-
sons. We discuss how fuzzy reasoning in MV-Datalog™
provides a powerful framework for reasoning on such
relations as an alternative to popular Machine Learning
methods, especially in settings with little to no training
data. Early experiments suggest that this approach can
produce effective systems and in particular so in regula-
tory applications where transparency and explainability
are highly valuable.

The presented system design provides high flexibil-
ity in further development. Further data sources can be
introduced naturally as further input relations with no
additional effort. Adapting and adding rules is a straight-
forward task that can be performed at any time by domain
experts.

One particular promising next step is the introduction
of geocoding in addition to the computation of the score
similarity addrp,,p,. Geocoding overcomes certain lim-
its of traditional methods based on string similarity. In-
deed, it is able to reflect the real proximity of addresses
according to their geographical coordinates. This ad-
dition can make our inference based on location much
more robust, especially when we have two geographically
close addresses with a total diverse nomenclature and in

“Reasoning needs to only be performed on single clusters in
WCCs independently of other clusters and WCCs.



the case where addresses present severe transliteration
errors.

Further planned extensions include the integration
with additional knowledge graphs containing certain
knowledge and in particular social graphs. The com-
plex integration of various sources of certain knowledge
with fuzzy observations will allow us to model family
links in a more detailed way and produce more accurate
inferred related relations.

Finally, the current work focuses on comparisons be-
yond people with the same surnames. Future work will
aim to identify possible links with different surnames
while retaining the computational benefits of the cluster-
ing as far as possible.
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