
Towards Hybrid Logic-based and Embedding-based
Reasoning on Financial Knowledge Graphs
Adriano Vlad

1,2
, Sahar Vahdati

3
, Mojtaba Nayyeri

4
, Luigi Bellomarini

5
and Emanuel Sallinger

1,2

1University of Oxford, Department of Computer Science, Oxford, UK
2TU Wien, Faculty of Informatics, Vienna, Austria
3Institute for Applied Informatics (InfAI), Leipzig University, Leipzig, Germany
4University Of Bonn, Bonn, Germany
5Banca d’Italia, Italy

Abstract
Warded Datalog+/- is a Datalog-based KRR language that guarantees decidability and tractability of the ontological reasoning

task, thanks to its favourable theoretical properties. The Vadalog reasoning system exploits Warded Datalog+/- to provide a

practical implementation of different reasoning tasks via basic isomorphism checks. However, these can be prohibitive in

space and time complexity especially in the economic and financial context which is characterised by extreme-scale data

stores and complex societal network dynamics. Recently, Knowledge Graph Embeddings (KGEs) have gained great interest in

the scientific community and have extensively improved learning and knowledge discovery techniques. In this paper, we

present and provide an experimental evaluation of Vada-ER, a framework that jointly uses logic-based reasoning and KGEs to

provide a scalable alternative to basic isomorphism checks in ontological reasoning. With our work, we aim to improve the

synergy between the reasoning and the embedding technologies and communities.

Keywords
Knowledge Graph Embeddings, Learning and Reasoning, Logic-based Reasoning, Embedding-based Reasoning, Datalog,

Vadalog, Finance, Financial Knowledge Graphs

1. Introduction
Reasoning techniques are applied to a plethora of differ-

ent problems in the computer science realm, especially

in downstream tasks of Artificial Intelligence (AI). Lan-

guages of the Datalog
±

family [1] are used as a common

thread across general-purpose systems for information

integration and extraction, as well as data-oriented com-

puting in general. With the increasing scale of informa-

tion encountered today, new requirements on reasoning

flexibility and scalability have emerged.

Financial Knowledge Graphs. The economic and

financial context in particular are characterised by

extreme-scale data stores and complex societal network

dynamics. These can be modeled and captured using KGs

and analysed with the power of automated reasoning.

These graphs are central objects in corporate economics

[2, 3, 4, 5] and are used by central banks, financial author-

ities and national statistical offices for banking supervi-

sion, creditworthiness evaluation, anti-money launder-

ing, insurance fraud detection, economic and statistical

research and more.

Published in the Workshop Proceedings of the EDBT/ICDT 2022 Joint
Conference (March 29-April 1, 2022), Edinburgh, UK
$ adriano.vlad@gmail.com (A. Vlad); vahdati@infai.org

(S. Vahdati); nayyeri@iai.uni-bonn.de (M. Nayyeri);

luigi.bellomarini@bancaditalia.it (L. Bellomarini);

sallinger@dbai.tuwien.ac.at (E. Sallinger)

© 2022 Copyright for this paper by its authors. Use permitted under Creative

Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

Ontological Reasoning. The ontological reasoning

task, consisting in evaluating a query𝑄 under a database

𝐷 and a set of domain-describing constraints Σ, requires

high scalability to co-exist with sufficient expressive

power. Since the presence of existential quantification

in Σ, essential for high expressive power, leads to unde-

cidability of the reasoning tasks, multiple fragments of

Datalog
±

arose, each adopting different syntactic restric-

tions to guarantee decidability and tractability. A par-

ticularly relevant fragment is Warded Datalog
±

, where

ontological reasoning is PTIME in data complexity [6].

Termination Strategies. From a theoretical point of

view, the semantics of ontological reasoning tasks are

operationally defined via the application of the chase

procedure [7]. In order to answer 𝑄, the chase extends

𝐷 with new facts until all the constraints in Σ—and 𝑄
itself—are satisfied. The chase introduces new fresh sym-

bols, labelled (or marked) nulls, as placeholders for the

“objects” introduced by existential quantification. Prac-

tically, in the presence of recursion, the task could be

non-terminating due to the possible introduction of in-

finitely many new labelled nulls. To cope with this, the

state-of-the-art reasoners such as Vadalog [8] adopt so-

called termination strategies, techniques that prevent the

generation of facts that are superfluous to answer 𝑄 and

yet could lead to non-termination.

Isomorphism Check. The key for guaranteeing termi-

nation of a chase-based procedure in reasoners is, in fact,

mailto:adriano.vlad@gmail.com
mailto:vahdati@infai.org
mailto:nayyeri@iai.uni-bonn.de
mailto:luigi.bellomarini@bancaditalia.it
mailto:sallinger@dbai.tuwien.ac.at
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


defining points at which the chase may be terminated pre-

maturely, by dynamically pruning derivation branches,

while at the same time upholding correctness of the rea-

soning task. For instance, in Warded Datalog
±

the chase

is restricted by isomorphism check, in the sense that

when two facts have the same predicate name, same con-

stants in the same positions and there exists a bijection

between the labelled nulls—i.e., they are isomorphic—just

one of them is created in the process, without loss of infor-

mation for query answering. Yet, standard isomorphism

check could be inefficient, due to the impractical mem-

orisation of all the produced facts, in many situations

prohibitive in space and time. In fact, there are attempts

to limit the search space and so optimise memory us-

age, for instance, with Warded Datalog
±

it is possible to

restrict the search of isomorphic copies to specific por-

tions of the chase derivation graph, individuated by the

fragment characteristics, namely the connected compo-

nents of the warded forest [8]. However, isomorphism

check and this form of local search cannot be effectively

exploited with very high fragmentation of the warded

forest, for example induced by the presence of many joins

on extensional atoms [8].

Knowledge Graph Embeddings. Recently, Knowledge

Graph Embedding models (KGEs) have gained great in-

terest in the scientific community. Achieving state-of-

the-art performance and accuracy, they are used for AI

tasks such as link prediction, question answering, and

recommendation systems. However, despite their poten-

tial, they are mainly employed for knowledge preparation

learning rather than actual logic-based reasoning tasks.

Although there still is a perceived disconnect between the

two areas, injecting logical rules into embedding-oriented

approaches seems promising [9, 10, 11] and beneficial in

terms of both scalability and explainability [12].

Contribution. In this paper we aim to bridge logic and

embeddings to enable faster reasoning over large scale

datasets and provide the following contributions:

• We present Vada-ER, a framework which jointly uses

logic-based reasoning and KGEs to achieve faster and

more efficient query answering.

• We introduce the distance termination strategy which

employs embeddings for chase termination purposes.

We provide an experimental evaluation and show im-

provements in performance.

• We propose a chase graph generator methodology cap-

turing both semantic and pattern features.

• We introduce chase graph embeddings to improve

the traditional logic-based approach and enable

embedding-based reasoning for a novel hybrid solu-

tion for query answering.

2. Preliminaries
In this section, we lay out the preliminary concepts of this

work including: chase, chase graph, query answering,

and knowledge graph embeddings.

Chase. The chase is considered among the fundamental

algorithmic tools for a variety of database problems [13,

14, 15, 16]. We consider a set Σ of tuple-generating

dependencies TGDs [16] of the form ∀�̄�∀𝑦(𝜑(�̄�, 𝑦) →
∃𝑧𝜓(�̄�, 𝑧))where 𝜑 and𝜓 are conjunctions of atoms. Let

us have a database 𝐷 = {ℰ ,ℛ, ℱ𝐷}, where ℰ = {𝑒} is

a set of entities, ℛ = {𝑟𝑛} is a set of 𝑛-ary relations, and

ℱ𝐷 = {𝑓 = 𝑟𝑛(𝑒1, . . . , 𝑒𝑛)|𝑟𝑛 ∈ ℛ, 𝑒𝑖 ∈ ℰ} is a set

of facts. The chase is a procedure 𝒫(Σ,𝒟) that takes in

input a database𝐷 and a set Σ of constraints and applies

the TGDs until all of them are satisfied (if terminating)

and possibly generates nulls (labelled/marked nulls) to

satisfy existential quantification [14]. Each step of the

chase can be referred to as chase step.

A chase graph [14, 15] is the representation of a chase

procedure in the form of a graph. The nodes of the graph

represent the facts ℧ = 𝑟𝑛(𝑒1, . . . , 𝑒𝑛), while the links

represent the application of the rule, the dependency of

the generated facts.

Query answering. Ontological query answering is

one of the fundamental tasks in databases and knowl-

edge representation. Given a set of existential rules Σ
and an n-ary predicate Ans, the evaluation of a query

𝑄 = (Σ,Ans) over a database 𝐷 is defined as 𝑄(𝐷) =
{�̄� ∈ dom(𝐷)𝑛 | Ans(�̄�) ∈ Σ(𝐷)}. Therefore, it is the

problem of answering queries with respect to both 𝐷
and all the facts entailed from 𝐷 via Σ [17].

Knowledge graph embeddings. Embedding-based ap-

proaches obtain low dimensional representation for sym-

bolic data (e.g., vector representation of nodes and edges

in a graph) and aim at preserving the characteristics of

original representation. A Knowledge Graph (KG) is de-

fined as 𝒦 = {ℰ ,ℛ,ℱ}, where ℰ ,ℛ are a set of entities

(e.g. Bob, Apple) and (2-ary) relations (e.g. InvestorIn) re-

spectively, and ℱ = {𝑟2(ℎ, 𝑡) = (ℎ, 𝑟, 𝑡)} ⊂ ℰ ×ℛ×ℰ
is a set of triples/facts.

Embeddings: For a given graph, ≿ is a mapping that

represents nodes as vectors in a 𝑑𝑒-dimensional space

such that≿ : ℰ → 𝑉 𝑑𝑒
𝑒 ,where 𝑉𝑒 can be realR, complex

C etc. The embedding of an entity 𝑒 ∈ ℰ is noted in

boldface form i.e. 𝑒 = ≿(𝑒) where ℎ denotes the head

and 𝑡 the tail entities. Depending on the formulation of

a KGE model, each relation 𝑟 ∈ ℛ can be represented

as a vector 𝑣 : ℛ → 𝑉 𝑑𝑟
, matrix 𝑣 : ℛ → 𝑉 (𝑑1𝑟×𝑑2𝑟),

n-ary tensor 𝑣 : ℛ → 𝑉 𝑑1𝑟×𝑑2𝑟×...×𝑑𝑛𝑟 , (where 𝑉 can be

real R, complex C, etc), or a function (e.g the weights of

a neural network) 𝑣 : ℛ → 𝑉 𝑑𝑟
. We use 𝜃 = {𝜃𝑒, 𝜃𝑟}

(initially randomized) to represent the embeddings of all



entities (𝜃𝑒) and relations (𝜃𝑟 ) in a KG. In case a relation

is represented as a function, 𝜃𝑟 denotes the parameters

of the function.

Other related work. There is, to the best of our knowl-

edge, very little related work in the concrete area of using

embeddings to improve performance of the chase. One

example is [18]. For space reasons, in this short paper,

we refer to [8] for related work on Datalog
±

in general,

and to [19] for related work to embeddings.

3. The VADA-ER Framework
As discussed in the introduction, termination strategies
are a key technique to ensure chase termination in

Datalog
±

languages, such as Warded Datalog
±

, when

the chase starts producing isomorphic copies. We pro-

pose an alternative and novel termination strategy based

on embedding distance instead of isomorphism check.

Distance Termination Strategy. Our embedding-based

chase termination approach relies on the distance be-

tween fact embeddings (i.e. 𝑑𝑖𝑠𝑡(𝑓𝑎, 𝑓𝑏), 𝑓𝑎, 𝑓𝑏 ∈
R𝑑, 𝑓𝑎, 𝑓𝑏 ∈ ℱ , where ℱ is the set of all facts obtained

during the chase) rather than basic isomorphism checks

in ontological reasoning. Given a Vadalog program, our

Vada-ER framework builds the full chase graph and

learns fact embeddings 𝐸 = {𝑓 | 𝑓 ∈ ℱ}. These are

trained to represent semantic and reasoning similarities.

Let us explain the procedure with an example.

Example 1. (isomorphic copies in chase) Program P con-
tains set of entities, relations, facts𝐷 = {ℰ ,ℛ,ℱ𝒟}, rules
Σ and a query 𝑄.

ℰ = {Apple, Bob, Sequoia},
ℛ = {Company, InvestorFrom, InvestorIn},
HasPitched, SuccesfulPitch},

ℱ𝐷 = {Company(Apple), InvestorFrom(Bob, Sequoia),

InvestorIn(Bob,Apple),HasPitched(Apple),

SuccesfulPitch(Apple)}
Σ = {
1 : Company(𝑥), InvestorFrom(𝑧, 𝑦),

InvestorIn(𝑧, 𝑥) → InvestmentOfFrom(𝑥, 𝑧, 𝑦).

2 : InvestmentOfFrom(𝑥, 𝑧, 𝑦) → ∃𝑘 Funding(𝑥, 𝑦, 𝑘).

3 : Company(𝑥) → ∃𝑦 MeetingWith(𝑥, 𝑦).

4 : MeetingWith(𝑥, 𝑦),HasPitched(𝑥) → PitchedTo(𝑥, 𝑦).

5 : PitchedTo(𝑥, 𝑦), SuccesfulPitch(𝑥) → ∃𝑘 Funding(𝑥, 𝑦, 𝑘).}
𝑄 = {Funding(𝑥, 𝑦, 𝑧) → ?.}

In order to answer the query 𝑄 in this example, Vada-

ER generates the query chase graph, sketched on the

left-hand side of Figure 1. For each new fact 𝑓𝑛𝑒𝑤

Figure 1: Distance Termination Strategy

produced during the chase procedure, instead of iso-

morphism check, Vada-ER computes the embedding

distance from every existing fact 𝑓 and sets 𝑑𝑚𝑖𝑛 =
min𝑓∈ℱ𝑖 𝑑𝑖𝑠𝑡(𝑓 ,𝑓𝑛𝑒𝑤) (where ℱ𝑖 is the set of all facts

in the 𝑖th iteration of the chase) as the shortest dis-

tance. If 𝑑𝑚𝑖𝑛 is larger than a certain threshold 𝑇 ,

𝑓𝑛𝑒𝑤 is generated and added to the chase graph. We

observe that the first two rules lead to the generation

of Funding(Apple, Sequoia, 𝑘1). At this point in the

chase, Vada-ER checks if a similar fact was already

generated by calculating the distance from the fact em-

bedding of Company(Apple), InvestorFrom(Bob, Sequoia)
and InvestmentOfFrom(Apple, Bob, Sequoia). The short-

est distance from the already generated facts is still larger

than the threshold and hence the fact can be added to

the chase. However, Funding(Apple, Sequoia, 𝑘2) is pro-

duced in the connected component resulting from rules

3, 4, 5. Its embedding results are very close to the one

produced in rule 2 as they have same predicate name and

constants in the same positions and there is a bijection

of the labelled nulls. Therefore, Vada-ER stops to avoid

generating the duplicate.

To measure whether two fact embeddings are too close

for termination purposes, Vada-ER employs the so called

Distance Threshold which is defined below.

Definition 1. (Distance Threshold) Given a Vada-
log program 𝑃 = {𝐷,Σ} and fact embeddings 𝐸 =
{𝑓 ∈ R𝑑|𝑓 ∈ ℱ} and given a fact 𝑓𝑛𝑒𝑤 to be gen-
erated in the current chase step (𝑖𝑡ℎ step), we define
the distance threshold 𝑇𝑖 as the minimal distance at
which the closest fact to 𝑓𝑛𝑒𝑤 in the embedding space 𝐸
must be so that 𝑓𝑛𝑒𝑤 is generated. Then 𝑓𝑛𝑒𝑤 is gen-
erated when 𝑑𝑖𝑠𝑡(𝑓𝑛𝑒𝑤, 𝑓) > 𝑇𝑖 and dropped when
𝑑𝑖𝑠𝑡(𝑓𝑛𝑒𝑤, 𝑓) ≤ 𝑇𝑖.

Approximating chase trees. In order to decrease the

probability of generating duplicates with the number

of chase steps in our methodology, we propose to use

a cumulative distance threshold which increases by ∆𝑖

(the distance threshold step) in each iteration (𝑖), i.e. 𝑇𝑖 =
𝑇𝑖−1 +∆𝑖. This technique allows us to decrease, at each

chase step, the probability of producing new facts and



obtain a homogeneous approximation of each chase tree.

In order to update the distance threshold at each step, we

propose the equation 𝑇𝑖 = 𝑇0+
∑︀𝑖

𝑛=1 𝑒
−𝑛*𝑇0

where 𝑇0

is the initial distance threshold, chosen as a parameter.

The traditional isomorphism check is performed between

all facts in the same connected component in the warded

forest [8] and, if this has too many connected compo-

nents, this either leaves many isomorphic copies behind

or has to be applied to the whole chase graph, which is

prohibitive in cost. Using the embedding distance instead,

Vada-ER can position facts in a multidimensional space

that, if properly indexed, enables an efficient full check

beyond the mere single connected component and guar-

anteeing low computational complexity, e.g. logarithmic

in case of kd-trees.

Preprocessing Phase. Vada-ER carries out two pre-

processing steps to generate the embeddings used in the

distance termination strategy. These are the Chase Graph
Generator and Embedding Layer. The Chase Graph Gen-
erator layer generates the chase graph for the execution

of a given Vadalog program and a set of facts represent-

ing the underlying knowledge. This step itself includes

the creation of a semantic chase graph and pattern chase
graph which are then unified in a hybrid chase graph. The

latter is to be fed to the Embedding Layer to learn fact

embeddings used for the termination purposes explained

above. Each of these steps is introduced below.

Semantic chase graph. The first step of the preprocess-

ing phase is the Chase Graph Generator which constructs

what we call the hybrid chase graph. In a first step, we

take the standard chase graph 𝐶𝐺 (i.e., where facts are

nodes and rule applications are edges) and enhance it

with the following additional edges: for each rule appli-

cation, all atoms in the body are also connected via edges.

We call this the semantic chase graph 𝑆𝐶𝐺, given that it

improves the semantic understanding of the reasoning

process for the later embedding step.

Pattern chase graph. As this yields separate compo-

nents of the graph for each ground instantiation, and

most embedding methods are not able to learn the con-

nections between such separate components automati-

cally, we supplement it by the following pattern chase
graph 𝑃𝐶𝐺. Two facts are pattern-isomorphic when

they have the same predicate name and there is a bijec-

tion between the constant values and a bijection between

the labelled nulls. Let 𝑓𝑐
denote the isomorphism class

of fact 𝑓 . Then

𝑃𝐶𝐺 = {(𝑓𝑐
𝑎 , 𝑓

𝑐
𝑏 ) | (𝑓𝑎, 𝑓𝑏) ∈ 𝐶𝐺}

Hybrid chase graph. We construct the hybrid chase
graph 𝐻𝐶𝐺 as the union of the semantic and pattern

chase graphs, and in addition connect each node of

the latter representing an isomorphism class with all

of its instantiations in the semantic chase graph. That is,

𝐻𝐶𝐺 = 𝑆𝐶𝐺 ∪ 𝑃𝐶𝐺 ∪ 𝐶𝐶𝐺 with

𝐶𝐶𝐺 = {(𝑓𝑎, 𝑓𝑐
𝑎) | (𝑓𝑎, _) ∈ 𝐶𝐺 ∨ (_, 𝑓𝑎) ∈ 𝐶𝐺}

We call those additional edges 𝐶𝐶𝐺 (as in connecting

chase graph). We annotate each of the edges stemming

from 𝑆𝐶𝐺,𝑃𝐶𝐺 and𝐶𝐶𝐺with edge types 𝑟𝑆 , 𝑟𝑃 and

𝑟𝐶 , respectively – this allows the embedding model to

distinguish such edges.

Embedding Layer. The second step of the preprocessing

phase is performed by the Embedding Layer which takes

in input the hybrid chase graph 𝐻𝐶𝐺 and returns a

vector for each fact 𝐸 = {𝑓 | (𝑓, _) ∈ 𝐻𝐶𝐺∨ (_, 𝑓) ∈
𝐻𝐶𝐺} produced during the chase so that similar facts in

terms of semantic and pattern features are closer in the

embedding space. This is the prerequisite to successfully

use embeddings for reasoning purposes. We obtain an

embedding space in which nodes belonging to the same

chase tree are close to each other, grouped in what we

call reasoning clusters. For this purpose various suitable

state-of-the-art embedding models are DeepWalk [20],

RotatE [21] and TransE [22].

Vada-ER advantages. This methodology has several

advantages compared to the usual termination strategies.

It wins at run time, as the learning procedure is carried

on during the preprocessing steps and the model used

at run time. Moreover, our approach is not only capable

of recognising two isomorphic facts but even finding

semantic and pattern similarity between facts that may

lead to isomorphism in following steps.

4. Experiments on Financial KGs
In our experiments, we measure Vada-ER execution time

and recall using both real-world and complex synthetic

Vadalog programs [8]. Among these are st-Connectivity,

a well known program also in the financial context, and

a synthetic program with which we test our approach

in complex economic and financial settings. On the one

hand, as the input to the st-Connectivity program we

use a graph generated by means of the Barabasi Albert

algorithm with node parameter equal to 100 and 2 at-

tached edges per new node. These parameters lead to

roughly 2 thousand nodes in output and 5.5 thousand

edges. On the other hand, the synthetic program auto-

matically generates its input and has more rules than the

previous program, making it significantly more complex.

It counts 27 recursive linear rules, 63 non-recursive linear

rules, and 10 join rules. It has a prevalence of linear rules

and 20% of the total rules have existential quantifica-

tion. Moreover 30% of the linear and non-linear rules

are recursive.



Figure 2: Impact of the distance threshold step on the distance termination strategy.

In these experiments, we investigate the impact of the

threshold step, the characteristic parameter of our ap-

proach, on Vada-ER execution time. In this setting, the

recall measures how many of the facts that should be

generated are indeed generated and it is computed com-

paring Vada-ER execution with the traditional one that

uses standard isomorphism check. The recall here is not

always total because errors in the embedding model cause

false matches, which can result in expected facts of the

chase not being produced. The recall grows (blue line)

with decreasing threshold steps ∆𝑖. In the synthetic sce-

nario in Figure 2(a), Vada-ER achieves maximum recall

for very small ∆𝑖. The same step in the real-world case

in Figure 2(b) leads to maximum recall in one third of the

time. The execution time (blue line) for the synthetic sce-

nario in Figure 2(c) also grows slightly more than linearly

with decreasing ∆, as smaller values correspond to al-

lowing the generation of more nodes. Vada-ER achieves

a 70% recall in two thirds of the execution time of a clas-

sic logic-based approach (red line) and maximum recall

still remaining faster than traditional methods. The real-

world scenario in Figure 2(d) shows even faster execution

times. In summary, we see how the threshold adjusts the

tradeoff between performance and recall: zero threshold

means total recall, pure isomorphism check, low perfor-

mance; high threshold means approximate check, lower

recall, high performance.

5. Conclusion
This work has taken one foundational step towards bridg-

ing logic-based and embedding-based reasoning, by an-

swering the question: can embedding-based reasoning

speed up logic-based reasoning, and at what cost? We

proposed Vada-ER, a hybrid reasoning framework de-

ployed in the Vadalog system having at its core the in-

jection of logical theories into embedding-oriented ap-

proaches (via the chase) and vice versa (via termination

strategies). Our novel approach improves the chase ter-

mination strategies of logic-based KG reasoning systems

using ML-techniques, achieving both scalability and ex-

plainability, fundamental while reasoning over complex

financial KGs.

References
[1] A. Calì, G. Gottlob, A. Pieris, Advanced processing

for ontological queries, Proc. VLDB Endow. 3 (2010)

554–565.

[2] F. Barca, M. Becht, The control of corporate Europe,

OUP Oxford, 2001.

[3] A. Chapelle, A. Szafarz, Controlling firms through

the majority voting rule, Physica A: Statistical Me-

chanics and its Applications 355 (2005) 509–529.

[4] J. B. Glattfelder, Ownership networks and corporate

control: mapping economic power in a globalized

world, Ph.D. thesis, ETH Zurich, 2010.

[5] A. Romei, S. Ruggieri, F. Turini, The layered struc-

ture of company share networks, in: 2015 IEEE

International Conference on Data Science and Ad-

vanced Analytics (DSAA), IEEE, 2015, pp. 1–10.

[6] G. Gottlob, A. Pieris, Beyond SPARQL under OWL

2 QL entailment regime: Rules to the rescue, in:

IJCAI, 2015, pp. 2999–3007.

[7] D. Maier, A. O. Mendelzon, Y. Sagiv, Testing impli-



cations of data dependencies, ACM Transactions

on Database Systems 4 (1979) 455–468.

[8] L. Bellomarini, G. Gottlob, E. Sallinger, The Vadalog

system: Datalog-based reasoning for knowledge

graphs, arXiv preprint arXiv:1807.08709 (2018).

[9] S. Guo, Q. Wang, L. Wang, B. Wang, L. Guo, Jointly

embedding knowledge graphs and logical rules, in:

Proceedings of the 2016 Conference on Empirical

Methods in Natural Language Processing, 2016, pp.

192–202.

[10] V. T. Ho, D. Stepanova, M. H. Gad-Elrab, E. Khar-

lamov, G. Weikum, Rule learning from knowledge

graphs guided by embedding models, in: Interna-

tional Semantic Web Conference, Springer, 2018,

pp. 72–90.

[11] J. Zhang, J. Li, Enhanced knowledge graph embed-

ding by jointly learning soft rules and facts, Algo-

rithms 12 (2019) 265.

[12] F. Yang, Z. Yang, W. W. Cohen, Differentiable learn-

ing of logical rules for knowledge base reasoning,

in: NIPS, 2017, pp. 2319–2328.

[13] A. V. Aho, Y. Sagiv, J. D. Ullman, Efficient opti-

mization of a class of relational expressions, ACM

Transactions on Database Systems (TODS) 4 (1979)

435–454.

[14] A. Calì, G. Gottlob, M. Kifer, Taming the infinite

chase: Query answering under expressive relational

constraints, JAIR 48 (2013) 115–174.

[15] R. Fagin, P. G. Kolaitis, R. J. Miller, L. Popa, Data

exchange: semantics and query answering, Theo-

retical Computer Science 336 (2005) 89–124.

[16] T. Gogacz, J. Marcinkowski, A. Pieris, All-instances

restricted chase termination, in: Proceedings of the

39th ACM SIGMOD-SIGACT-SIGAI Symposium on

Principles of Database Systems, 2020, pp. 245–258.

[17] A. Calì, G. Gottlob, A. Pieris, Towards more ex-

pressive ontology languages: The query answering

problem, Artificial Intelligence 193 (2012) 87–128.

[18] P. Atzeni, L. Bellomarini, M. Iezzi, E. Sallinger,

A. Vlad, Augmenting logic-based knowledge

graphs: The case of company graphs, in: KR4L,

2021.

[19] P. Atzeni, L. Bellomarini, M. Iezzi, E. Sallinger,

A. Vlad, Weaving enterprise knowledge graphs:

The case of company ownership graphs, in: EDBT,

2020.

[20] B. Perozzi, R. Al-Rfou, S. Skiena, Deepwalk: Online

learning of social representations, in: Proceedings

of the 20th ACM SIGKDD international conference

on Knowledge discovery and data mining, 2014, pp.

701–710.

[21] Z. Sun, Z.-H. Deng, J.-Y. Nie, J. Tang, Rotate: Knowl-

edge graph embedding by relational rotation in

complex space, arXiv preprint arXiv:1902.10197

(2019).

[22] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston,

O. Yakhnenko, Translating embeddings for model-

ing multi-relational data, in: Advances in neural

information processing systems, 2013, pp. 2787–

2795.


	1 Introduction
	2 Preliminaries
	3 The VADA-ER Framework
	4 Experiments on Financial KGs
	5 Conclusion

