
VisualFacts: A Platform for In-Situ Visual Exploration and
Real-time Entity Resolution
George Papastefanatos1, Giorgos Alexiou1,2, Nikos Bikakis1, Stavros Maroulis1,2 and
Vasilis Stamatopoulos1

1ATHENA Research Center, Greece
2Nat. Techn. Univ. of Athens, Greece

Abstract
VisualFacts is an open-source data visualization platform for big geo-located data. VisualFacts combines in-situ visualization
with real-time entity resolution capabilities to address scenarios where users wish to visual explore and efficiently perform
analytic operations directly on raw data files, which are aggregated from multiple overlapping data sources. VisualFacts is
based on an adaptive index for efficiently scaling up to big volumes; it combines a grid with a tree and a blocking-based
structure for efficiently processing spatial, categorical and overlapping data, respectively. It is progressively created based on
the user interaction, adapting to the areas and details of the user exploration. This paper provides the architecture of the
platform and presents a demonstration of its main features.

Keywords
Data Visualization, Visual Analytics, Adaptive Indexing, In-situ Processing, Entity Resolution

1. Introduction
In-situ visual exploration and analysis has become a com-
mon practise due to the availability of big datasets in
raw formats (e.g., csv/json). In-situ techniques attempt to
avoid the overhead of fully loading and indexing the data
in a DBMS, and improve performance by progressively
building an index during data exploration. In this work,
we focus on in-situ visual analysis of data that is collected
and aggregated from multiple sources (e.g., scholarly data,
POIs, etc) and thus they contain dirty/duplicate entities,
i.e., multiple records in the file may refer to the same
real-world entity. Furthermore, the data can be visual-
ized and explored on a 2D layout (e.g., map/scatter plot)
and the types of analysis include faceted filtering over
categorical attributes, spatial clustering of datapoints,
computation of aggregate uni/bivariate statistics which
are visualized in charts and, finally real-time entity res-
olution (ER) [1]. The latter refers to the analysis-aware
detection of matching entities between the data points,
included in the visualized area and the analysis of the
properties, which characterize them as duplicates. Many
commercial and research tools offer the functionality to
visualize data from raw files [2]; however many of them
suffer from large initialization times and poor interac-
tivity performance, when the files become too large to

Published in the Workshop Proceedings of the EDBT/ICDT 2022 Joint
Conference (March 29-April 1, 2022), Edinburgh, UK
� 0000-0002-9273-9843 (G. Papastefanatos); 0000-0002-6307-4053
(G. Alexiou); 0000-0001-6859-1941 (N. Bikakis);
0000-0003-2816-4368 (S. Maroulis); 0000-0002-9044-796X
(V. Stamatopoulos)

© 2022 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

fit in memory or when complex analytic tasks, such as
real-time ER, are employed.

Contribution. In this demo paper, we present VisualFacts,
a visual analytics platform for big geo-located data that
assists users perform analysis of raw data files of varying
quality (with duplicates or missing data) in rich visual
ways. VisualFacts combines in-situ visualization with
real-time ER capabilities. It allows users to use their own
data file(s) and start visually interacting with the data on
a map without loading or indexing the data in a database.
The backbone of the platform is a visual aware in-memory
index, which is constructed on-the-fly and adjusted to
user interaction, as well as an engine which offers on-the-
fly visual ER and clustering of duplicate data. Specifically,
VisualFacts combines and integrates technologies from
RawVis [3] and QueryER [4]. The first is a visual tool for
in-situ visual exploration and the second offers the ER
query engine. The novelty of this work lies in the
extensions we made in the underlying in-situ index
to accommodate new structures that can speed up
real-time ER in visual exploration scenarios, the
integration of the ER query engine in the in-situ
query engine, and finally the novel UI modules that
enhanced VisualFacts to combine visual analytics
on geo-located data with ER analysis tasks. With
these enhancements, the platform can scale up the vi-
sualization, interactive exploration and ER analysis to
millions of data points on a map, using commodity hard-
ware.

VisualFacts as well as the individual technologies are
open source and can be used independently or integrated
into existing data management or visual analysis systems.

https://orcid.org/0000-0002-9273-9843
https://orcid.org/0000-0002-6307-4053
https://orcid.org/0000-0001-6859-1941
https://orcid.org/0000-0003-2816-4368
https://orcid.org/0000-0002-9044-796X
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

2

Offsets to
records

user
interactions

exploratory &
analysis results

Reorganize

parse
file

construct
index

Tile-Block-Tree
Index in Memory

Analytics
Computations

Query
Evaluation

tiles-trees-
blocks

I/O Parts of
Index on

disk

1

Index
Adaptation

* only at first
interaction

Data
Reduction

exploratory
query

A

1

 1 4 8

ok

oj

oi

Visualization

explore analyze
Visual Analytics & Statistics

B C

render pan zoom filter analyzedetails
?

Basic Operations

clean

Frontend Backend
3

4

6 clusters of
duplicates

5
Raw
Data
File

Eviction
Handler

Index
Initialization

Operation
Translation

Result
Aggregator Entity

Resolution

Look up

{R
ES

T
AP

I}

Operation

Query
results

Figure 1: VisualFacts Architecture. Users perform visual operations at the Frontend; Backend evaluates operations on the
index and (when needed) the data files. ER is performed during query evaluation and each query results in index adaptation.

More resources are publicly available on GitHub1 and
the project’s website2.

Related Work. Techniques for progressive loading and
indexing exist for generic in-situ analysis [5, 6, 7, 8],
and visualization [9, 10, 11]. Also, query-driven ER tech-
niques have been proposed [1, 12] in the context of the
generic problem of analysis-aware data processing [13].
To the best of our knowledge, this is the first work and
system that combines these two problems, and considers
real-time ER in in-situ visual analytics settings.

2. Platform Overview

Exploration Scenario and Operations. Fig. 1 provides
an overview of our platform. The exploration scenario
considers that a user visually interacts with data stored
in a single data file A on disk using a 2D visualization
technique (e.g., map, scatter plot) B , and analyzes it us-
ing visual (e.g., bar, line, pie charts, and heatmaps), and
statistical methods C . The file contains records that cor-
respond to duplicate entities and there is no attribute
(e.g., id) that explicitly identifies duplicate records in the
file. Attribute values are numerical, categorical, or tex-
tual. Two of the numerical ones (e.g., longitude, latitude)
are selected explicitly by the user or implicitly by the
system (based on the datatype) for the X and Y axis of
the 2D visualization.

A visual operation performed by the user is character-
ized by a window area and a set of parameters (filters,
analytic operations, requested statistics in charts, etc.).
At the backend, a visual operation is mapped to the query
semantics of our framework. An exploratory query [9] is
an SQL-like expression which includes the data access
operations (e.g., a window selection on the X and Y at-

1https://github.com/VisualFacts
2https://visualfacts.imsi.athenarc.gr/software.html

tributes, filtering conditions on the categorical attributes,
aggregate functions, etc) for evaluating a visual user ac-
tion. It also denotes whether the user has requested to
perform an ER task on the query results.

Architecture Overview. The web-based frontend (Fig.
1) communicates with the backend via REST API calls.
➊ The user selects a data file A and an initial operation
on its contents (e.g., select and render the points within a
specific area on the map) to start the analysis. VisualFacts
parses the file and creates an initial version of the index,
called Tile-Tree-Block Index (Index Initialization). During
the index construction, the results corresponding to the
first user request are also fetched. ➋ The user follows a
sequence of visual exploration and analysis operations
(i.e., interactions), which are sent to the backend and
translated to exploratory queries (Operation Translation).
➌ Queries are evaluated over the index structure (Query
Evaluation) to compute and fetch the results (data objects
evaluated by the query). ➍ The query parameters are
used by the Index Adaptation component to adjust the
index, i.e., re-organize its tile structure and update its
stored statistics. ➎ The results are further processed
(Data Reduction component) and reduced (e.g., via spatial
clustering) such that over-plotting issues are properly
addressed at the frontend visualization. Simultaneously,
the ER component considers the query results to find
and group duplicates into clusters. ➏ The output of
these two components (spatial and duplicate clusters)
are combined at the Result Aggregator component and
sent to the frontend as the final query results. Note that,
during the index construction or the query evaluation,
the index structure may not fit in main memory, in such
cases, the Eviction Handler component stores parts of the
index structure on the disk.

At the frontend, the results are visualized on a map B ,
statistics are rendered in various charts C and duplicate

https://github.com/VisualFacts
https://visualfacts.imsi.athenarc.gr/software.html

clusters are also rendered on the map as well as on sepa-
rate charts. The fontend offers various visual operations
for interacting and analyzing the data. (Sec.3).

Tile-Tree-Block Index. The Tile-Tree-Block (TTB) is an
in-memory index. The TTB index is an extension of the
VETI index [9] with structures that allow real-time ER
analysis. VETI is a grid index, which organizes the data
objects in non-overlapping rectangle tiles. The grid is de-
fined over the domains of the X and Y numeric attributes,
and each tile in the grid is defined from intervals in the
two domains, respectively. Each tile encloses the objects,
whose values for the two axis attributes fall within the
tile intervals. Every tile is associated with a tree, which
organizes the data objects based on values from the cat-
egorical attributes. Each level in the tree corresponds
to a categorical attribute (e.g, assume two categorical
attributes for Country, Gender) and the nodes of a level
correspond to the distinct values found in the objects
contained in this tile (e.g., Greece, Italy are nodes in
Country level). Note that, different values capturing
the same concept (e.g., Greece vs. GR) in a categorical
attribute are not sanitized or resolved in the tree; thus, a
level may contain multiple nodes for the same concept.
The reference to a data object is kept in the leaves and it
is the offset of the record in the data file.

The TTB extends the VETI index with an additional
blocking index per tile which groups the offsets of objects
in a tile in blocks. It considers all the possible attribute
values of the objects in a tile (thus increasing the recall of
the ER) and associates each value (blocking key) with the
list of objects it appears (e.g., Greece: {𝑜1, 𝑜3, ..., 𝑜𝑛} is
the block for ’Greece’ value with reference to the objects
containing this value in the ’Country’ attribute). Block-
ing is a common index structure used in ER Papadakis
et al. [14] [14] for reducing the number of pairwise com-
parisons that need to be performed between entities.

Finally, a global link index is used to store the duplicate
relations between the objects, which are detected within
the exploration session of the user. It is used to avoid
performing comparisons and speed up ER tasks for areas
previously visited by the user.

Index initialization and Query Evaluation. The raw
file is parsed and the index is initialized with an initial
set of tiles. Details on the initialization policy are pre-
sented in [9]. The index progressively adjusts itself to
the user interactions, by splitting visited tiles into more
fine-grained ones. Thus, the grid becomes more dense
in the area that the user explores. The tree and block
indexes are spatially bounded within a tile (which keeps
them small in size) and they are rebuilt when a tile is
split into new ones, during index adaptation.

In brief, an exploratory query is evaluated over the
TTB index as follows: Based on the requested window,
it first identifies the tiles overlapping with the query

window and uses the tree structure within each tile to
evaluate any filter conditions and retrieve the objects
answering the query (details in [9]). These results may
contain duplicate entities, which (in case the user has
requested for ER) are further processed by the ER compo-
nent on the block index of each tile. The objects evaluated
by the query are matched against the tile block index,
and a set of candidate comparisons is formed. This step
allows the selection of objects in the tile that were not
selected by the query but share the same blocks with the
query results. If the number of comparisons is high, a
metablocking [12] step eliminates unnecessary blocks
and redundant comparisons; finally the ER performs the
comparisons between the objects selected by the query
and new objects selected from the block index. For the ac-
tual comparisons, we follow a schema-agnostic approach,
and we compare the values of all corresponding attributes
between object pairs (more details on ER processing in
[4]). In the final step, the resolved records are amended
in the Global Link Map, the query is evaluated, and the
results are sent to front end along with the resolved du-
plicates.

3. User Interface Functionality
This section outlines VisualFacts’s user interface (Fig. 2)
visualizing data about hotels in US (see Section 4). The
basic features include:

Dataset Selection. The user can select to explore one
of the already added datasets or upload a new CSV file
A . For the exploration and analysis of a new CSV file,
the schema (e.g., latitude and longitude fields, categorical
attributes) is automatically detected by the UI and can be
further customized by the user.

Map-based Visual Exploration. The user is able to ex-
plore and analyze data over different geographical areas
using operations like panning and zooming, or focus on a
specific area (e.g., neighborhood) by drawing a rectangle
over the map B . The data objects are clustered on the
map to avoid overplotting issues. By clicking on a green
cluster, the cluster breaks down into an arachnoid of
points, where each point represents a single data object.
By clicking on a single point the user can see the details
about that entity C .

Faceted Filtering. Faceted filtering enables users to de-
fine multiple filters over the categorical attributes via the
Filtering dropdown D . For example, in Fig. 2, the user
has selected to view and analyze the 4-star hotels that
provide fitness facilities. Active filters are summarized
below the filtering dropdown.

Statistics. In the statistics panel E , the user can examine
univariate (e.g., mean, variance, standard deviation) or

A
B

C

D E

FH

G

I

K

Figure 2: VisualFacts UI Overview

bivariate statistics (e.g., the Pearson correlation, covari-
ance). The statistics are computed for the data points
being visible in the entire window or the selected rectan-
gle area and refreshed following every user action on the
map (e.g., pan, zoom). In Figure 2, univariate statistics
are presented for the hotel rating field, and bivariate for
the rating and price fields.

Visual Analysis. The user is able to visually analyze the
data by selecting the most suitable visualization type and
metrics for their analysis F . For example, in Fig. 2, the
user has selected a heatmap to visualize the average hotel
price w.r.t. the type and stars of the hotels. Following
a user action, charts are refreshed following the visible
data points on the map.

Visual-based ER Analysis. The ER analysis is activated
via a toggle button (merge duplicates) G . When enabled,
the ER operation is performed for the visible points on the
map and the duplicate records are clustered. A duplicate
cluster is visualized by a red sign annotated with the
number of duplicates H .

ER Statistics. With data deduplication enabled, the
Statistics E and Analysis F panels on the right are up-
dated to present statistics and metrics evaluated over the
deduplicated data.

Attribute-based ER Analysis. The user can select and
analyze a specific duplicate cluster on the map, examining
its details and the different and common attribute values

that appear in its duplicate objects I . Additionally, a pie
chart presents the percentage of each attribute value over
the objects of the cluster K .

4. Demonstration Outline
In this section, we outline our demonstration scenario.
The tool is available at:

https://visualfacts.imsi.athenarc.gr/platform/visualize/hotels.
The attendees will be able to interact with the tool and

analyze two real-world datasets, regarding Hotels and
the Restaurants, respectively. The Hotel dataset contains
records for hotels in NY (about 180K hotels). Each hotel
is described by several attributes, such as name, address,
price, type. We assume that the dataset contains data
retrieved from different booking platforms (e.g., Booking,
Trivago), so, multiple records for a hotel may be included
in the data. In brief, we generate this dataset by using as
"base" collection, hotel entries retrieved from the public
factual API at 20153. Based on these entries, we generate
duplicate records by using different values for various
attributes (e.g., name of the hotel, price, location), repre-
senting records coming from different booking platforms
(details are omitted due to lack of space). The Restaurant
dataset contains about 180K restaurants from Europe and
is provided by the TripAdvisor4.

3www.factual.com
4www.kaggle.com/stefanoleone992/tripadvisor-european-

restaurants

 https://visualfacts.imsi.athenarc.gr/platform/visualize/hotels
https://www.factual.com
https://www.kaggle.com/stefanoleone992/tripadvisor-european-restaurants
https://www.kaggle.com/stefanoleone992/tripadvisor-european-restaurants

Users will be able to interact with the prototype and
perform several operations such as:

• Interact with the map to pan, zoom in/out to find
areas of interest and filter the visualized objects.

• Focus on and analyze specific areas by using the
rectangle selection functionality.

• Select the statistics to examine during the explo-
ration.

• Select the visualization type, the attributes and
the metrics that will be generated in order to sup-
port their analysis tasks

• Use the ER functionalities to: (1) on-the-fly detect
and visually present clusters of duplicate entries;
(2) examine aggregated statistics w.r.t. the dupli-
cate entities; and (3) analyze the (common and
different) attribute’s values that appear in the du-
plicate entities.

Users will be also presented with specific use case sce-
narios and analytic tasks that will provide better insights
into VisualFacts capabilities. Using the Hotel dataset,
we assume a scenario where a data analyst, working for
a consulting company, assists hotels to advertise their
business and offerings across booking platforms. The
analyst uses data from different booking platforms (e.g.,
Booking, Trivago) and compares them against hotel’s
location, amenities, rating, and prices to match clients’
presence and offerings (e.g., price per night) with the
most appropriate platform. Assuming that the analyst’s
company specializes in 4-stars hotels, the following tasks
are considered. Initially, the analyst gains an overview
of the booking platforms, which have many 4-star ho-
tels. She navigates to the location of interest, filters out
the 4-stars hotels and generates a chart with the number
of the hotels per data source. Then, she inspects in a
heatmap the platforms’ coverage for different types (e.g.,
business, motel) of hotels and amenities and decides the
one(s) which covers most of her clients. Finally, using
the ER functionalities, she detects and analyzes how the
same hotels are presented in different platforms, selects
the hotels she has as clients and investigates on the dif-
ferences and similarities of their offers in the different
booking platforms.

VisualFacts has been assessed by an evaluation study
of 40 users, who were requested to perform visual tasks
similar to the aforementioned and provide their feedback
on the usability and interactivity of the tool. Participants
reported that the tool provides real-time interaction, the
exploratory tasks were easy to perform, and the online
ER task could saved time from manually cleaning and
preparing the data for visualization. Due to lack of space
we omit the details of the study and its findings.

Acknowledgements. The VisualFacts project (1614) has
been funded by the Hellenic Foundation for Research and

Innovation (ELIDEK) and by the General Secretariat for
Research and Technology (GSRT).

References
[1] H. Altwaijry, S. Mehrotra, , D. V. Kalashnikov,

Query: A framework for integrating entity reso-
lution with query processing, in: Proceedings of
the VLDB Endowment, volume 9(3), 2015.

[2] N. Bikakis, Big Data Visualization Tools, in: Ency-
clopedia of Big Data Technologies, Elsevier, 2019.

[3] S. Maroulis, N. Bikakis, G. Papastefanatos, P. Vassil-
iadis, RawVis: A System for Efficient In-situ Visual
Analytics, in: ACM SIGMOD, 2021.

[4] G. Alexiou, G. Papastefanatos, V. Stamatopoulos,
G. Koutrika, N. Koziris, Queryer: A framework for
fast analysis-aware deduplication over dirty data
(2022). arXiv:2202.01546.

[5] I. Alagiannis, R. Borovica, M. Branco, S. Idreos,
A. Ailamaki, Nodb: Efficient Query Execution on
Raw Data Files, in: ACM ACM SIGMOD, 2012.

[6] M. Karpathiotakis, M. Branco, I. Alagiannis, A. Ail-
amaki, Adaptive Query Processing on Raw Data,
PVLDB 7 (2014).

[7] M. Olma, M. Karpathiotakis, I. Alagiannis,
M. Athanassoulis, A. Ailamaki, Slalom: Coasting
through Raw Data Via Adaptive Partitioning and
Indexing, PVLDB 10 (2017).

[8] M. Olma, M. Karpathiotakis, I. Alagiannis,
M. Athanassoulis, A. Ailamaki, Adaptive parti-
tioning and indexing for in situ query processing,
VLDBJ (2019).

[9] S. Maroulis, N. Bikakis, G. Papastefanatos, P. Vas-
siliadis, Y. Vassiliou, Resource-Aware Adaptive In-
dexing for In-situ Visual Exploration and Analytics,
VLDB Journal (2022 - to appear).

[10] N. Bikakis, S. Maroulis, G. Papastefanatos, P. Vassil-
iadis, In-situ Visual Exploration over Big Raw Data,
Information Systems 95 (2021).

[11] S. Maroulis, N. Bikakis, G. Papastefanatos, P. Vas-
siliadis, Y. Vassiliou, Adaptive indexing for in-situ
visual exploration and analytics, in: DOLAP, 2021.

[12] G. Alexiou, G. Papastefanatos, Query driven entity
resolution in data lakes, in: Springer, Cham, volume
International Workshop on Information Search, In-
tegration, and Personalization, 2019, pp. 117–130.

[13] S. Giannakopoulou, M. Karpathiotakis, A. Ailamaki,
Cleaning denial constraint violations through re-
laxation, in: ACM SIGMOD, 2020.

[14] G. Papadakis, G. Alexiou, G. Papastefanatos, ,
G. Koutrika, Schema-agnostic vs schema-based con-
figurations for blocking methods on homogeneous
data, in: PVLDB, 9(4), 2015.

http://arxiv.org/abs/2202.01546

	1 Introduction
	2 Platform Overview
	3 User Interface Functionality
	4 Demonstration Outline

