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Abstract
We propose a middleware-based query rewriting framework called VisBooster to accelerate visualization queries formulated
by Tableau in its live mode. VisBooster intercepts SQL queries by customizing JDBC drivers used by Tableau and uses rules
to rewrite the queries to semantically equivalent yet more efficient queries. The rewriting rules are designed by data experts
who analyze slow queries and apply their domain knowledge and optimization expertise. We demonstrate that VisBooster
can accelerate visualization queries formulated by Tableau up to 100 times faster.
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1. Introduction
As a powerful way for users to gain insights from data
quickly and intuitively, visualization is becoming increas-
ingly important in the Big Data era. With rich func-
tionalities, Tableau [1] is one of the most popular tools
adopted by data analysts to visualize data [2]. Tableau
provides two modes called Extract mode and Livemode [3]
for users when connecting to data sources. The extract
mode [4] stores a snapshot of the data once and up-
dates the snapshot periodically. The live mode uses a
JDBC (Java Database Connectivity) driver to connect to a
database and supports in-situ data visualization by formu-
lating SQL queries executed by the database. Often users
prefer the live mode for several reasons. As an in-situ
visualization paradigm, this mode does not have a long
delay for the initial data-extraction process before the
users consume the data. Since every frontend interaction
using Tableau is a query to the underlying database, users
will see the latest results. Also, with the computation
happening inside the database, users do not need much
additional computing resources for the visualization task.
However, the notoriously poor performance of the live
mode is a main obstacle preventing users from enjoying
these various benefits [3]. In particular, Tableau purely
relies on the database to answer queries, and the database
cannot guarantee the best performance for all queries
due to the difficulty of query optimization [5]. In our ex-
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periments (as discussed in Section 4), the query latency
can be as much as tens of seconds, which significantly
impairs the productivity of users [6].

In this demo, we show a middleware-based query-
rewriting framework called VisBooster to solve this per-
formance problem. As shown in Figure 1, VisBooster is
between the Tableau application and a backend database.
It treats both layers as black boxes, so it requires no code
modification to them. It is especially useful in the cases
where such changes are not possible. By replacing the
original JDBC driver provided by the database vendor
with a lightly customized driver, VisBooster intercepts
SQL queries formulated by Tableau, and uses rules to
rewrite them to semantically equivalent yet more effi-
cient SQL queries. To develop rewriting rules for a given
database, VisBooster adopts a human-involved approach.
First, a database expert analyzes slow queries to identify
rewriting rules, then introduces these rules to a query
rewriter. The rewriter then applies these rules on new
queries formulated by Tableau. In this way, the database
expert continuously improves the performance of queries
by identifying more slow queries and introducing new
rewriting rules. As an example, we use VisBooster to vi-
sualize 30 million tweets on top of a PostgreSQL database
using a commodity laptop. For specific visualization
queries formulated by the Tableau live mode, VisBooster
makes these queries up to 100 times faster. In particular,
for a query that takes 30 seconds originally, VisBooster
generates a new query that runs within 0.3 seconds.

2. Related Work
Recently, various techniques have been proposed to ac-
celerate visualization queries.
Pre-computation-based approaches. Datacube tech-

niques [7, 8] that predefine cube intervals cannot support
visualization queries with arbitrary numerical range con-
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ditions, while VisBooster does not have such restrictions
on query shapes. View-based techniques such as [9, 10]
that utilize materialized results to accelerate queries re-
quire additional storage overhead. Prefetching-based
techniques such as [11, 12] utilize cached results to accel-
erate visualization queries. VisBooster is orthogonal to
these techniques, and it can be used together with them
to further improve query performance.
Query rewriting-based approaches. Bao [13] is a re-

cent technique that learns to choose a good hint for a
query to accelerate query execution. The proposed Vis-
Booster framework is not limited to any specific type
of rewriting rules. For rewriting rules that involve only
query hints, VisBooster can also use Bao as part of the
rewriting process. In addition, database vendors provide
query rewriting functionalities (e.g., PostgreSQL [14] and
MySQL [15]). These functionalities allow users to define
their own rewriting rules, and the database will automat-
ically use these rules to rewrite queries. However, these
functionalities only support cases where a materialized
view can be used, while the proposed VisBooster can
support more rewriting cases where a more efficient plan
is desired.

Compared to these existing techniques, VisBooster has
the following uniqueness:

• It adopts a human-in-the-loop approach that fully
leverages human intelligence, including domain-
specific knowledge and database-optimization ex-
pertise.

• It treats both the application (Tableau) and the
backend database as black boxes and requires no
code modification. It can significantly improve
the user experience in the Tableau live mode with-
out changing the existing software and services.

• It is a general framework that supports many
types of rewriting rules such as predicate trans-
formation, query hints, and etc.

3. VisBooster Overview
Figure 1 shows the architecture of VisBooster. Using the
Tableau live mode on top of a database, a frontend user
interacts with a dashboard of visualization worksheets
(e.g., line charts, bar charts, scatterplots, choropleth maps,
etc.) to analyze data. For each frontend interaction (such
as clicking, dragging, and zooming), Tableau formulates
a SQL query (denoted as 𝑄) for each visualization work-
sheet and sends the query to the database through a JDBC
driver (step 1). Without VisBooster, the JDBC driver
just forwards the original query 𝑄 to the database. The
database executes the query and returns the result back
to the JDBC driver (step 4). Tableau then consumes the
result and produces the final visualization (step 5).
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Figure 1: Overview of the VisBooster framework.

WithVisBooster, after step 1, the modified JDBC driver
invokes the Query Rewriter to rewrite 𝑄 to a semanti-
cally equivalent but more efficient SQL query, denoted as
𝑄′ (step 2). The new query 𝑄′ is sent to the database for
execution (step 3). A challenge of the rule-based query
rewriter is that for a given query 𝑄, it needs to decide
what rewriting rules should be applied to generate a new
query 𝑄′. In the VisBooster framework, a database ex-
pert analyzes the log of slow queries from the backend
database (step 6). By using the knowledge about the
database, the expert identifies rewriting rules and adds
them to the query rewriter (step 7). With the rewrit-
ing rules applied to new visualization queries and more
slow queries identified by the expert, the framework can
iteratively improve the performance of queries.

4. Demonstration Scenarios
In this section, we present several scenarios to demon-
strate the efficacy of the VisBooster framework for vari-
ous visualization queries on different databases, including
PostgreSQL and MySQL.

4.1. Case 1: Accelerating choropleth map
queries on PostgreSQL

In case 1, suppose Emily is a data analyst who wants to
study the temporal and spatial distributions of social me-
dia discussions about iPhone using a table of 30 million
tweets. She builds a dashboard in Tableau connected to
PostgreSQL in the live mode.

The dashboard in Figure 2 consists of three modules.
On the top is a textual filter that allows users to input a
keyword and filters tweets containing the keyword as a
substring in their texts. A state-level choropleth map in
the middle shows a geo spatial distribution of the filtered
tweets grouped by states. A quarter-level bar chart at
the bottom shows a temporal distribution of the filtered
tweets grouped by quarters. Both the choropleth map
and the bar chart change as the user further explores
the results. For example, after the user types in iphone



Figure 2: An example dashboard (including a text filter, a
choropleth map, and a bar chart) on a Twitter dataset using
PostgreSQL.

in the input box, the bar chart’s first three quarters in
2017 attract Emily’s attention due to their higher number
of results than other quarters. She selects those quar-
ters in the bar chart to zoom into the tweets published
within the time range. As Figure 2 shows, tweets are
selected using two conditions: text contains iphone and
published within the first three quarters of 2017. The
choropleth map is redrawn based on the newly filtered
results. Tableau formulates a corresponding SQL query
for each interaction and sends it to the database to com-
pute the visualization result. The corresponding query
for the current choropleth map is shown in Figure 3.

SELECT SUM(1) AS "cnt:tweets",
CAST("state_name" AS TEXT) AS "state_name"

FROM "tweets"
WHERE CAST( DATE_TRUNC('QUARTER',

CAST("created_at" AS DATE))
AS DATE) IN (
(TIMESTAMP '2017-01-01 00:00:00.000'),
(TIMESTAMP '2017-04-01 00:00:00.000'),
(TIMESTAMP '2017-07-01 00:00:00.000'))

AND STRPOS(CAST(LOWER(
CAST(CAST("text" AS TEXT) AS TEXT))

AS TEXT),
CAST('iphone' AS TEXT) ) > 0

GROUP BY 2;

Figure 3: Original query 𝑄1 for the choropleth map. (Red
shows bottleneck clauses.)

Rewriting rule 1: Removing type casting. Although
there is a B+ tree index on the attribute created_at
in the filtering expression DATE_TRUNC(’QUARTER’,
“created_at”), PostgreSQL generates a physical plan
that does a sequential scan instead of using the index, re-

sulting in a long execution time of 32 seconds, as shown
in Figure 5(a). The long delay of the dashboard queries
significantly impairs Emily’s productivity, so she asks a
database expert, Bob, for help.

After analyzing the original query sent to PostgreSQL
and the physical plan, Bob realizes that those type-casting
expressions (e.g., CAST(“created_at” AS DATE)) pre-
vent PostgreSQL from choosing a more efficient index-
scan plan. The reason why Tableau adds those type-
casting expressions is to prevent computational overflow
errors [16]. However, in this case, with the knowledge
about the underlying data, Bob can remove those type-
casting expressions without worrying about such failures.
Thus, he introduces the following rewriting rule:

Rule-1: CAST( ⟨exp⟩ AS ⟨type⟩ ) ⇒ ⟨exp⟩ .

After applying this rule on 𝑄1, we have the new query
𝑄′

1 in Figure 4.

SELECT SUM(1) AS "cnt:tweets",
CAST("state_name" AS TEXT) AS "state_name"

FROM "tweets"
WHERE DATE_TRUNC('QUARTER', "created_at") IN (

(TIMESTAMP '2017-01-01 00:00:00.000'),
(TIMESTAMP '2017-04-01 00:00:00.000'),
(TIMESTAMP '2017-07-01 00:00:00.000'))

AND STRPOS(LOWER("text"), 'iphone') > 0
GROUP BY 2;

Figure 4: The rewritten SQL query 𝑄′
1 with Rule-1 applied

on 𝑄1. (Blue shows the modifications.)

As expected, PostgreSQL generates a much more ef-
ficient plan using the B+ tree as shown in Figure 5(b),
which takes 10 seconds to compute the results.

Rewriting rule 2: Replacing substring match with
LIKE. Seeing the 10s response time, Emily is still not sat-
isfied with the performance for the interactive visualiza-
tion frontend. After a closer look at the available indexes,
Bob finds that a trigram index on the “text” attribute in
PostgreSQL supports wildcard filtering predicates such
as LIKE and ILIKE. However, PostgreSQL fails to use
this index because the wildcard predicate formulated by
Tableau is STRPOS(LOWER(“text”), ’iphone’) >
0, which is equivalent to “text” ILIKE ’iphone’. To
address this issue, Bob introduces another rewriting rule:

Rule-2: STRPOS(LOWER( ⟨exp⟩ ), ‘ ⟨literal⟩ ’ ) > 0

⇒ ⟨exp⟩ ILIKE ‘% ⟨literal⟩%’.

With both rules applied to 𝑄1, we obtain a new rewrit-
ten query 𝑄′′

1 shown in Figure 6. For the new query,
PostgreSQL chooses to use both indexes as shown in
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Figure 5: Query plans and execution times of (a) the original Tableau formulated SQL query 𝑄1, (b) the rewritten query 𝑄′
1

by applying Rule-1, and (c) the rewritten query 𝑄′′
1 by applying both Rule-1 and Rule-2. 𝑄′′

1 is semantically equivalent to 𝑄1

with a 100 times faster performance. (Red shows 𝑄1’s bottleneck and blue shows 𝑄′
1 and 𝑄′′

1 ’s improvement.)

SELECT SUM(1) AS "cnt:tweets",
CAST("state_name" AS TEXT) AS "state_name"

FROM "tweets"
WHERE DATE_TRUNC('QUARTER', "created_at") IN (

(TIMESTAMP '2017-01-01 00:00:00.000'),
(TIMESTAMP '2017-04-01 00:00:00.000'),
(TIMESTAMP '2017-07-01 00:00:00.000'))

AND "text" ILIKE '\%iphone\%'
GROUP BY 2;

Figure 6: The rewritten SQL query 𝑄′′
1 with both Rule-1 and

Rule-2 applied on 𝑄1. (Blue shows the modifications.)

Figure 5(c). It takes 0.28 seconds to compute the results,
which is 100 times faster than the original 𝑄1.

Rewriting Rule 3: Adding hints. Emily continues
to explore the dataset with more interactions. She no-
tices that the iphone-related tweets present a very low
frequency in recent months. To further investigate the
reason, she expands the bar chart to a monthly level and
selects the recent 7-month bars in late 2021 as a new
temporal filter (shown in Figure 7).

Figure 7: A temporal filter that selects tweets published
within the last 7 months in 2021.

The corresponding SQL query is 𝑄2. Figure 8 shows
the rewritten query 𝑄′′

2 after applying both Rule-1 and
Rule-2 to 𝑄2.

Interestingly, PostgreSQL only uses the trigram index

SELECT SUM(1) AS "cnt:tweets",
CAST("state_name" AS TEXT) AS "state_name"

FROM "tweets"
WHERE DATE_TRUNC('MONTH', "created_at") IN (

(TIMESTAMP '2021-06-01 00:00:00.000'),
(TIMESTAMP '2021-07-01 00:00:00.000'),
(TIMESTAMP '2021-08-01 00:00:00.000'),
(TIMESTAMP '2021-09-01 00:00:00.000'),
(TIMESTAMP '2021-10-01 00:00:00.000'),
(TIMESTAMP '2021-11-01 00:00:00.000'),
(TIMESTAMP '2021-12-01 00:00:00.000'))

AND "text" ILIKE '\%iphone\%'
GROUP BY 2;

Figure 8: The rewritten SQL query 𝑄′′
2 with both Rule-1 and

Rule-2 applied on 𝑄2. (Blue shows the modifications.)

/∗+ BitmapScan(tweets idx_tweets_monthly_created_at) ∗/
SELECT SUM(1) AS "cnt:tweets",

CAST("state_name" AS TEXT) AS "state_name"
FROM "tweets"
WHERE DATE_TRUNC('MONTH', "created_at") IN (

(TIMESTAMP '2021-06-01 00:00:00.000'),
(TIMESTAMP '2021-07-01 00:00:00.000'),
(TIMESTAMP '2021-08-01 00:00:00.000'),
(TIMESTAMP '2021-09-01 00:00:00.000'),
(TIMESTAMP '2021-10-01 00:00:00.000'),
(TIMESTAMP '2021-11-01 00:00:00.000'),
(TIMESTAMP '2021-12-01 00:00:00.000'))

AND "text" ILIKE '\%iphone\%'
GROUP BY 2;

Figure 9: The rewritten SQL query 𝑄′′′
2 with all three rules

applied on 𝑄2. (Blue shows the modifications.)

on text in the physical plan but fails to use the inter-
section of both indexes on both text and created_at,
resulting in a long execution time of 6.5 seconds. After
an empirical study, Bob finds a pattern that whenever the
number of operands in the IN operator for the filtering
condition on the created_at attribute exceeds six, Post-



greSQL always picks one of the two available indexes
for scanning instead of doing an intersection after two
index scans. In addition, for the specific 𝑄2, using the B+
tree index on created_at is more efficient than using
the index on text. Thus, Bob introduces the third rule,
which adds a hint to 𝑄2 to suggest PostgreSQL to use
the B+ tree on created_at. The new rewritten query
𝑄′′′

2 is shown in Figure 9.
The execution time of query 𝑄′′′

2 is 2.5 seconds, more
than two times faster than the previous rewritten query
𝑄′′

2 . These examples show that by rewriting queries for-
mulated by the Tableau live mode, VisBooster can signif-
icantly reduce the response time of visualization queries
and improve the user experience.

4.2. Case 2: Accelerating Queries on
MySQL

In case 2, we use a similar example as case 1 to show how
the proposed framework accelerates visualization queries
formulated by Tableau in its live mode connecting to a
MySQL database. We first show that a rule similar to
Rule-1 for PostgreSQL also applies to MySQL, i.e., remov-
ing type-casting expressions in the filtering clauses can
help the database generate an index-based plan. How-
ever, for MySQL, the syntax of type-casting expressions
formulated by Tableau differs from that for PostgreSQL.
In the demonstration, we will use a scatterplot query to
show how the database expert Bob introduces a rule to
remove type-casting. Different from PostgreSQL, MySQL
does not support trigram indexes. Thus for such queries,
a rule similar to Rule-2 does not help for MySQL. This
observation also shows the value of human involvement
in the proposed framework because human knowledge
about a specific database should be considered in the life
cycle of query rewriting.

5. Open Problems
There are open research challenges related to using
rewriting rules in VisBooster to solve the scalable in-situ
data visualization problem in this middleware architec-
ture. For example, how to help the database experts iden-
tify the rewriting rules? How and when to apply them
(e.g., different query hints should be applied to different
queries)? In what order should the rules be applied? We
plan to address these challenges in our future work.
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