CEUR-WS.org/Vol-3135/darliap_paperll.pdf

Predicting job execution time on a high-performance
Computing cluster using a hierarchical data-driven

methodology

Paolo Bethaz!, Bartolomeo Vacchetti’, Enrica Capitelli?, Vladi Nosenzo?, Luca Chiosso® and

Tania Cerquitelli’

!Department of Control and Computer Engineering, Politecnico di Torino, Italy

?Iveco Group, Torino, Italy
3NPO Torino Srl, Torino, Italy

Abstract

Nowadays, evaluating the performance of a vehicle before the production phase is challenging and important. In the
automotive industry, many virtual simulations are needed to model the vehicle behavior in the best possible way. However,
these simulations require a lot of time without the user knowing their runtime in advance. Knowing the required time in
advance would allow the user to manage the simulations more effectively and choose the best strategy to use the available
computational resources. For this reason, we present an innovative data-driven method to estimate in advance the execution
time of simulations. Our approach integrates unsupervised techniques, such as constrained k-means clustering, with
classification and regression algorithms based on tree structures.

In this paper, we present an innovative and hierarchical data-driven method for estimating the execution time of jobs.
Numerous experiments were conducted on a real dataset to verify the effectiveness of the proposed approach. The experimental

results show that the proposed method is promising.

Keywords

Execution-time prediction, data-driven model, hierarchical model

1. Introduction

Today, more and more manufacturing industries rely
on either online data centers or physical HPC clusters
to run a large variety of tasks to perform analyses and
simulations. These tasks, or jobs, range from simulating
individual mechanical components to analyze entire man-
ufacturing processes. In this way, it is possible to shorten
the time to market of the final product while reducing the
number of errors made during the process. However, the
execution of these jobs often requires resources that may
not be immediately available, thus delaying the job exe-
cution and increasing the time needed to obtain the final
results. In this paper, we present a data-driven methodol-
ogy for predicting the jobs’ execution time. We focus on
predicting the execution time of simulations and analysis
because it directly affects the waiting time of other jobs
before they are submitted and the problem of unknown

Published in the Workshop Proceedings of the EDBT/ICDT 2022 Joint
Conference (March 29-April 1, 2022), Edinburgh, UK

Q paolo.bethaz@polito.it (P. Bethaz);
bartolomeo.vacchetti@polito.it (B. Vacchetti);
enrica.capitelli@external.cnhind.com (E. Capitelli);
vladi.nosenzo@ivecogroup.com (V. Nosenzo);
luca.chiosso@external.nposervices.com (L. Chiosso);
tania.cerquitelli@polito.it (T. Cerquitelli)

@ 0000-0001-5016-8635 (P. Bethaz); 0000-0001-5583-4692
(B. Vacchetti); 0000-0002-9039-6226 (T. Cerquitelli)
Common Dot Ao 0 merton CC BTy
[== CEUR Workshop Proceedings (CEUR-WS.org)

waiting time can lead to wasted cluster resources.

Since the number of analysis and simulations that must
be performed for a single product is considerable, it is
important to find a method to avoid wasting cluster re-
sources and increasing delays. This issue is relevant in
the context of software application development for the
industrial domain and we want to address it by relying
on an innovative methodology based on data analysis
and machine learning techniques. In order to predict
the execution time of jobs, we have taken into account
not only the HPC resources required by the different
jobs, but also the settings of the different solvers, that
are the various kind of software used for analysis and
simulation. Each simulation is characterized by a series
of parameters (specific for each solver) that describe its
configuration. These parameters are inserted manually
from the user in phase of submission of the job and are
then extracted in automatic way from the server used for
running the simulations. The proposed approach is based
on a hierarchical classification model. Our methodology
is based on three separated models. The first model does
a preliminary binary classification and then it divides the
data accordingly. The other two models classify the two
different portions of data, one portion of data for each
model. In this way we are able to classify the data into
four different classes while reducing the complexity of
the task from a multiclass problem to a binary one at
each step.

mailto:paolo.bethaz@polito.it
mailto:bartolomeo.vacchetti@polito.it
mailto:enrica.capitelli@external.cnhind.com
mailto:vladi.nosenzo@ivecogroup.com
mailto:luca.chiosso@external.nposervices.com
mailto:tania.cerquitelli@polito.it
https://orcid.org/0000-0001-5016-8635
https://orcid.org/0000-0001-5583-4692
https://orcid.org/0000-0002-9039-6226
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

The rest of the paper is divided as follows. Section
2 deals with the literature review related to HPC, from
resource allocation to runtime prediction. Section 3 deals
with the proposed methodology, while Section 4 presents
our results so far. Finally, in Section 5, we discuss our
methods and future steps to continue this research.

2. Literature Review

There are several approaches and studies investigating
how to improve HPC resource allocation. Research ac-
tivities can be classified as: (i) predicting job failures,
(ii) developing scheduling algorithms based on machine
learning techniques, and (iii) using simulation execution
time estimation to predict the waiting time of jobs that
have yet to be submitted.

The first research strand’s goal is to estimate if a specific
job will fail or complete its execution. The intent is to
stop prematurely those jobs that are predicted by the
algorithms as failures [8, 6, 9]. By learning which jobs
are more likely to fail and stopping them the HPC is able
to improve its performance, while saving energy that
would be wasted[12, 7]. However this type of approach
requires a lot of data in order to identify a pattern be-
tween the attributes and the target variables. The most
significant variables can be extracted in different ways,
either through some feature engineering process or from
different databases. Even so, parsing and transformation
operations have been proven very useful in order to im-
prove the prediction results [5] are extremely useful to
obtain better prediction results. The issue here is related
to the fact that some failures are rare, hence they are not
easy to predict, but still consume a lot of resources [10].
For example, Liu et al. [8] integrated two algorithms in
order to estimate whether a job fails or not. The first
algorithm is a clustering one. It measures the correla-
tion among jobs from different contexts. The other one
is a multitask learning algorithm trained on correlated
jobs. Since our data is not enough to achieve meaningful
results in this paper we do not tackle this problem.
Another research approach focuses on the optimization
of the available resources performed by a scheduler. Af-
ter analyzing the behavior of successful and failed jobs,
Jassas et al. [6] investigated scheduling algorithms in-
tended to optimize the reliability and availability of cloud
applications. Since the number of resources cannot be
unlimited, large-scale HPC exploit waiting queues. How-
ever it has been proved by Nurmi et al. [11] that regard-
less of the performance of a resources scheduler one of
the main factor that impacts the prediction efficiency is
the amount of time that a job has to wait before being
submitted. Following this idea, also authors in [2] try
to predict the waiting time of a job using a hierarchi-
cal classification approach. However, the estimation of

the waiting time is impacted by many factors, such as
HPC specifics. Technical specifics aside, one factor that
impacts the waiting time of every simulation is the exe-
cution time of the job that are running on the HPC. Some
studies have focused on this approach, such as [4, 14].
While we agree on the centrality of the execution time
we have adopted a different strategy compared to the
studies mentioned before. As a matter of fact we use
pretty much the same toolbox, i.e. clustering for data
preprocessing and classification and or regression to esti-
mate the execution time, however, as far as we know, we
differentiate ourselves from previous work through the
use of a hierarchical approach, which will be explained
in detail in the following section.

3. Data-driven methodology

The building blocks of the proposed methodology, shown
in Figure 1, are as follows: i) data cleaning, ii) model
building and iii) model evaluation. Each of these steps is
adequately described in the related subsection.

After the data collection phase, the generated dataset
contains a record for each submitted job. These jobs may
have been executed by different solvers. Here with solver
we mean the software used to run the simulation, each
of which is characterized by different model variables.
Due to the different parameters that characterize each
solver, and due to very different execution times between
solvers, we decided to consider only one solver at a time,
thus avoiding working with a dataset too sparse.

50m
ﬂ Classification %
= & =
N gy

Model
Regression

E
Model
Evaluation

Original
Dataset

Data Cleaning
Building

Figure 1: Schema of the proposed methodology

3.1. Data cleaning

Since the parameters characterizing each job are entered
manually by the user during the job submission phase, it
is essential to check the correctness of the available data
before using them for subsequent analysis.

The data cleaning phase started with a collaboration with
domain experts, who, thanks to their knowledge, helped
us to define the admissibility ranges for each collected
variable, including the execution time. This phase helped
us to better understand the available data, and led us

to the decision of eliminating all those jobs associated
with anomalous values of execution time. Specifically,
all jobs with an execution time that was too low or too
high compared to the execution time of other jobs run
by the same solver were eliminated. To define when an
execution time should be considered too high or too low,
we tried using the following three approaches to define
appropriate thresholds, beyond which a point must be
considered an outlier [15]:

Interquartile Range (IQR): IQR is the difference be-
tween the values ranking in 25% (Q1) and 75% (Q3) in a
data set. IQR thresholding strategy calculates the thresh-
old as follows:

« min threshold: Q1 - (1.5*IQR)
« max threshold: Q3 + (1.5*IQR)

95th centile: the minimum threshold is set by taking the
value ranking in 5% and the maximum threshold is set
by taking the value ranking in 95%;

99th centile: the strategy is identical to that described in
the previous point, but here the thresholds are defined so
that fewer outliers are identified. The minimum threshold
is set by taking the value ranking in 1% and the maximum
threshold is set by taking the value ranking in 99%.

We compared the number of jobs labeled as outliers with
each of the 3 approaches, and in subsequent experiments
we tried to evaluate how the performance of a predictive
model varies depending on the preprocessing used.

3.2. Model Building

The task of our model is to predict the execution time
of a simulation running on a HPC. Since the goal is to
predict a time that is a continuous value, this could be
tagged as a regression task. However, the experimental
results obtained by treating this task as a regression one
led to poor results. This behavior can be justified by the
fact that the data collection phase is quite recent, so the
available data at the moment are not numerous. For this
reason, we decided to treat it like a classification problem;
this was made possible by categorizing the available run-
times, dividing them into classes representing contiguous
time intervals. After this categorization, a classification
algorithm can then try to predict in which range of val-
ues the execution time of the analyzed job will fall. In
other words we have a multiclass problem. However, due
to the scarce amount of data in our possession, the per-
formance of our initial model was not enough. Since the
amount of data is limited it is difficult for a classification
algorithm to make good predictions in a multiclass con-
text. On the other hand we did not want to oversimplify
the problem by reducing the number of classes consid-
ered. Thus by implementing a classification hierarchical
approach we were able to improve the goodness of the
predictions without sacrificing too much quality. The

good results obtained with the hierarchical classification
approach pushed us to also try a mix between classifi-
cation and regression algorithms. However the results,
while in some cases were better than the normal regres-
sion approach, were not satisfying. This led us to choose
the hierarchical classification approach. The following
subsections describe in more detail which the structures,
the algorithms and the techniques that were used, for
both regression and classification approaches. Due to the
fact that the amount of data in our possession is limited
we have decided to rely on the XGBoost method with
both the mixed regression and the classification approach.
The XGBoost is a tree model that relies on the Extreme
Gradient Boosting technique [3].

3.2.1. Classification Approach

Unlike a single level classification where the model is
trained only once on all available data, in the hierarchical
approach a binary tree structure is used, in which each
node of the tree corresponds to a binary classification
where a model predicts to which of the two classes the
job belongs. The depth of the tree depends on the number
of total classes that we want to obtain (each of which
represents a temporal range of values). The hierarchical
binary structure we used in this methodology has two
levels of depth, to which correspond 3 predictive mod-
els (nodes) and 4 total classes (leaves). Solutions with
different depths have also been tested experimentally,
but the one with four classes has demonstrated to be
the best compromise between good models’ performance
and enough detailed classes. An example of how the
structure looks is reported in Figure 2. In this way every
classifier has to deal with a binary classification problem,
but overall the classes considered are four.

First Level
Condition

1st CLASSIFIER

Left SubClass
Condition

Right SubClass
Condition

/.

/ \ _3rd CLASSIFIER
e N U CLASSIFE
/ \ / AN

1% N ¥ N
Class 1 Class 2 Class 3 Class 4

2nd CLASSIFIER __/
CLASSIEER _ 2

Figure 2: Hierarchical Structure Schema

From the figure, it is evident that the key of the en-
tire structure are the three conditions that determine in
which sub-branch the obtained prediction must go. To
each of these conditions corresponds a subdivision of the
dataset (or of a portion of it), in two classes that represent
different time intervals of the execution time of the jobs.
The overall performance of the classification method is

greatly influenced by the identified thresholds, so it is
important to try to define them as best as possible. To do
this, two different approaches have been tested:

« balanced approach: in each division of the iden-
tified hierarchical structure, the available data
is divided into two classes, each containing the
same number of jobs. This technique prevents
any unbalanced class problem, allowing the pre-
dictive model to be trained on balanced classes;

+ k-means approach: the classes to use for training a
predictive model in each node of the structure, are
chosen in an automatic way through a clustering
algorithm. In particular, the k-means algorithm
is used, with K=2. In addition, to prevent the
proposed solution from leading to an unbalanced-
classes problem, we used a constrained version of
the k-means algorithm, in which a minimum size
for each cluster can be specified. In particular,
the constraint we used here is that each identified
class had to contain at least 40% of the total jobs.

3.2.2. Mixed Approach

Several regression algorithms (XGBoost [3], RandomFor-
est [1], Lasso [13]) were tested and compared with each
other, evaluating their performance based on the R2 value
obtained. The Lasso Regression is a regression analysis
method that enhance its prediction accuracy by com-
bining variable selection and regularization techniques;
while RandomForest and XGBoost are both tree-based al-
gorithms exploiting several decision trees, differing from
each other on how the trees are constructed and how the
results are combined.

Using a regression algorithm has the advantage of yield-
ing a punctual value of the estimated runtime. However,
due to limited availability of initial data, the obtained
predictive model built on a single level is not very robust.
For this reason, we have decided to test a mixed hier-
archical regression approach. With mixed approach we
mean that there is a combination between classification
and regression. At the first prediction layer we have a
classifier, while at the second prediction layer we have
used two regressors. Thus the two regressors at the sec-
ond prediction layer have to estimate the execution time
of jobs that belong to two different time intervals, one
for each model. In this way we simplified the problem
while keeping the final prediction as a continuous value.
Figure 3 shows the scheme of the proposed mixed ap-
proach. Regarding the techniques used to obtain the two
classes in the first level of classification, both approaches
described in the previous classification case were tested.

First Level
Condition

1st CLASSIFIER

Left SubClass
I

Right SubClass

1st REGRESSOR 4 _\ 2nd REGRESSOR
L]

Left SubClass
Prediction

Right SubClass
Prediction

Figure 3: Mixed Approach Structure

3.3. Model Evaluation

For the evaluation of every algorithm used in all the per-
formed experiments, we exploited the Leave-One-Out
Cross Validation (LOOCV) technique. Even if it is a com-
putationally expensive technique, LOOCV results in a
reliable and unbiased estimate of model performance.
Moreover, this method turns out particularly useful when
the data available are limited, like in our case in which
the phase of data collection is begun recently.

LOOCYV is an extremization of k-fold validation, where
the value of k is equal to the number of available items
(N). Its operations can be summarized in the following
steps:

1. Split the dataset into N disjoined groups, where
each group contains a single element;
2. For each group:

« Take the element in the considered group
as test set

« Take the remaining N-1 groups as training
set

« Fita model on the training set and evaluate
it on the test set

+ Retain the evaluation of the model and
then discard it

3. The model performance is estimate as the average
of the N experiments executed

4. Preliminary experimental
results

The experiments presented here show the actual results
obtained and that motivate us to rely on the hierarchical
classification approach. Section 4.1 offers insight on the
data that we have used to train our models. Section 4.2
discusses the effectiveness of the proposed techniques
to correctly identify outliers and how they impact the
selectivity of the dataset cardinality. Section 4.3 shows

the performance of classifier models, both normal and
with the hierarchical structure. Section 4.4 presents the
results obtained with different regression algorithms and
the hierarchical mixed approach.

4.1. Dataset Description

Our data was extracted from a PBS (Portable Batch Sys-
tem) server used to run simulations of various nature,
from aerodynamics to virtual crash tests, related to the au-
tomotive context. Our data belong to two main categories,
i.e. explicit and implicit jobs. The implicit methods use
an algorithm "step by step”, in which an appropriate con-
vergence criterion allows the analysis to continue or not,
reducing the time increment, depending on the accuracy
of the results at the end of each step. Using the explicit
methods does not have problems of non-convergence,
since in this case the time increment is defined at the
beginning and remains constant during the calculation.
After the data collection phase, the dataset contains about
6000 records, each of which represents a job submitted
in the cluster. Jobs can be performed by five different
solvers, depending on the type of analysis to be run. A
summary of the solvers contained in our dataset is given
in Table 1. Due to the different parameters that character-
ize each solver, and due to very different execution times
between solvers, the analyses described below consider
only one solver at a time.

0.00012 Solver
"adams”
0.00010 “optistruct”
- 0.00008
w
$ 0.00006
[s]
0.00004
0.00002
0.00000
—10000 0 10000 20000 30000 40000 50000 60000

Seconds

Figure 4: KDE plot for execution times of two different solvers

As a demonstration of the differences between the
solvers, Figure 4 shows the kernel density estimate (KDE)
plot for the execution times of an explicit solver (Adams)
and an implicit solver (Optistruct). KDE represents the
data using a continuous probability density curve and
the x-axis in the figure show how the jobs belonging to
the two solvers occupy very different ranges of execution
times, with much greater times for the explicit solver.

Table 1

Solvers
Type ‘ Solver name ‘ Application Field
Explicit Adams Multi body approach
Explicit Radioss Crash Simulation
Implicit Abaqus Linear/Non linear analysis
Implicit Nastran FE Analysis
Implicit Optistruct FE Analysis and optimization

4.2. Data Cleaning

In this preprocessing phase we tried to remove all the
jobs having an anomalous execution time compared to
the runtimes of the other jobs. To do this, 3 different
methodologies were tested as discussed in Section 3.1,
based on: i) interquartile range (IQR), 95th centile, 99th
centile. The percentage of jobs labeled as outliers by each
of the three techniques, separately by solver, is shown in
Table 2.

Table 2
The number of outlier jobs for each solver

Solver IQR | 95th centile | 99th centile
Adams 14% 10% 2%
Radioss 1% 10% 2%
Nastran 1% 10% 3%
Optistruct 8% 1% 3%
Abaqus 1% 10% 2%

Since we can not know in advance which of the 3
techniques will lead to greater benefits, in the following
analysis we compared the results obtained with different
preprocessing techniques, evaluating then the best of
them. However, from Table 2 we can see that the IQR
and 95th centile techniques show rather similar results
(with an average difference of about 3%); instead the 99th
centile technique often identifies a very low percentage
of outliers compared to the other techniques. For this
reason, in the following analyses we will consider only
the IQR and the 99th centile techniques, comparing the
results obtained with these two different approaches.

4.3. Classification Model Evaluation

We have conducted a series of experiments with the pro-
posed hierarchical approach, testing different preprocess-
ing techniques and different strategies for identifying
thresholds.

Table 3 contains the F-score values obtained using the
99th centile as preprocessing step and the k-means for
thresholds identification, since it is the configuration
with which the best results were obtained. For each
solver, the first column of the table shows the results

Table 3
F-score for Hierarchical Classification
1st level 2nd Tevel
classification classification
Solver 1 2 1 2 3 4
Adams 0.90 0.82 0.91 0.86 0.82 0.66
Radioss 0.71 0.72 0.76 0.25 0.79 0.61
Nastran 0.85 0.79 0.89 0.86 0.93 0.90
Optistruct 0.91 0.94 0.89 0.81 0.82 0.64

Abaqus 0.82 0.69 0.81 0.67 0.88 0.80

for the first classification level (where the first two
classes are identified), while the second column contains
the F-score values obtained in the second level of
classification (classes 1 and 2 for the left sub-branch,
classes 3 and 4 for the right sub-branch). To better
illustrate our methodology, a focus on a specific solver is
also represented in Figure 5, that shows the hierarchical
approach specifically for the Nastran solver, indicating
the relevance of the identified classes in a real context.
The predictive model used in all the nodes is the XGBoost
and on the figure are indicated the F-Score values for
each prediction. Here, the implemented model is able to
predict quite efficiently whether the execution time of an
analyzed job will be less than 8 minutes, between 8 and
16 minutes, between 16 and 30 minutes, or greater than
30 minutes. For solvers with different characteristics
obviously different thresholds will be obtained; however
the results in the Table 3 indicate that, except for the
Radioss solver (where the results obtained are below the
average behavior), for all solvers we are able to predict
quite accurately which class a job should belong to.

1st XGB CLASSIFIER 6010

F-score: 0.85 <8MIN <30 MIN F-score: 0.79

YES/ YO YEs / \ N0
2nd XGB CLASSIFIER o e ____
96 jobs 70 jobs 66 jobs, 40 jobs

Class 2

Class 1 Class 3 Class 4

‘ F-score: 0.89 ‘ ‘ F-score: 0.86 ‘ ‘ F-score: 0.93 | ‘ F-score: 0.90

Figure 5: Nastran Hierarchical Approach

In order to validate the results obtained with the hi-
erarchical approach, we conducted also a series of ex-
periments with a more traditional methodology and we
compared them with our results. The traditional method-
ology consists in a "single" level approach, in which the
algorithm used is always an XGBoost, but there is no a hi-
erarchical structure. The results in Table 4 represent the

baseline against which we want to compare our method-
ology. The table shows the results obtained with both
the two preprocessing techniques (IQR vs 99th centile)
and with both the strategies to define the subdivision in
classes (k-means vs balanced approach). For reasons of
space, each solver has been indicated in this table only
by its initials (Ad, R, N, O, Ab); moreover, 'K-M’ stands
for k-means, while "Bal’ indicates the balanced approach.
Comparing the f-score values obtained in the two method-
ology, it is evident how the hierarchical structure allows
to obtain better performances than the baseline approach,
whatever preprocessing technique is used.

Table 4
Baseline Classification F-score
IQR 99%
Solver 1 2 3 4 1 2 3 4
Ad. K-M 0.79 0.52 0.28 0.75 0.80 0.63 0.46 0.60
Ad. Bal 0.75 0.64 0.49 0.72 0.78 0.71 0.59 0.71
R. K-M 0.44 0.44 0.23 0.14 0.44 0.48 0.23 0.62
R. Bal 0.26 0.55 0.54 0.57 0.21 0.35 0.42 0.64
N. K-M 0.66 0.49 0.87 0.57 0.85 0.75 0.66 0.57
N. Bal 0.83 0.83 0.73 0.67 0.79 0.69 0.71 0.65
0. K-M 0.67 0.84 0.68 0.68 0.67 0.64 0.73 0.84
0. Bal 0.64 0.60 0.56 0.76 0.72 0.54 0.70 0.77
Ab. K-M 0.56 0.77 0.58 0.55 0.76 0.45 0.65 0.75
Ab. Bal 0.60 0.61 0.57 0.62 0.55 0.69 0.60 0.64

4.4. Mixed Model Evaluation

In the approach that exploit regression algorithms to
estimate the execution time, the output of the predictive
model is a continuous numerical value that indicates
the runtime of the considered jobs. Table 5 contains
the R2 values obtained with three different Regressors:
RandomForest Regressor (RF), XGBoost Regressor and
Lasso Regressor. The results obtained with RandomForest
and XGBoost are very similar, both of them much better
than the results obtained with a Lasso Regressor, which
does not perform well. Furthermore, from the baseline
table, we see that the results obtained after removing the
outliers through the 99th centile, are on average higher
than those obtained using the IQR. For this reason we
use the 99th centile technique for testing our approach.
Currently, the mixed approach is still an experimental
approach and for now it has been tested on only one
solver. The results are shown in Figure 6, where the
considered solver is Nastran and the algorithm used is the
XGBoost (both for classification and regression). We can
see that the first classification level is the same obtained
in Figure 5, with the same values of F1-score. Then, unlike
the classification approach, in the mixed approach we
used two regression models in the second level (one for
each sub-branch), able to predict the value of execution
time of the considered job.

By having a first classification level that can distin-

Table 5
Baseline Regression R2
RF XGBoost Lasso
Solver IQR 99% | IQR 99% | IQR 99%
Adams 0.31 0.70 0.36 0.69 0.23 0.27
Radioss 0.27 0.27 0.27 0.28 0.09 0.12
Nastran 0.38 0.39 0.40 0.37 0.08 0.09
Optistruct | 063 045 | 0.60 044 | 040 043
Abaqus 0.36 0.41 0.38 0.42 0.10 0.09

guish two categories of jobs, the R2 values obtained in
the second regression level are now higher than those
obtained with the Nastran solver using the baseline
approach. Moreover, the mean absolute error (MAE)
values shown in Figure 6, indicates that the average error
associated with jobs that last less than 16 minutes is just
over one minute (69 seconds), therefore an acceptable
error in our use-case. Regarding instead the mean
absolute error associated with jobs that last longer than
16 minutes, this one turns out to be about 11 minutes, so
a bit more impactful.

<16 MIN

XGB CLASSIFIER

Left SubClass Right SubClass

XGB REGRESSOR

R2:0.44
MAE: 666.83

R2:0.63
MAE: 69.73

Figure 6: Nastran Mixed Approach

The error grows as execution times increase. So, for
the considered solver, the better choice could be to adopt
techniques of regression in order to estimate low execu-
tion times; and to use instead a classification approach in
order to predict the classes to which the job will belong
when it deals with longer execution times.

5. Discussion and Future Research
direction

We have presented a classification hierarchical model
which is able to address a multiclass problem by dividing

its complexity among multiple prediction layers. In this
way every classifier has to deal with a binary classifica-
tion problem, instead of a multiple classification. Even if
the amount of data in the considered use case is limited
our approach has shown a promising performance also
compared to single prediction level approaches. Espe-
cially in the classification context the hierarchical ap-
proach performs better than the normal approach. We
have also tried some experiments in which more than
one solver is taken into account. However, due to the
fact that every solver takes into account a different set of
variables the resulting dataset is very sparse. This issue
combined with the limited amount of data leads to poor
predictions with both the hierarchical approach and a
single prediction level method. Once that the data in
our possession has reached a higher numerosity, it will
allow us to investigate whether or not our hierarchical
approach can outperform more classical approaches in
a more complex environment. A higher amount of data
means that the impact of the different variables taken into
account will be reduced. Currently we are still working
on this project and we already have different improve-
ments that we want to address. We will keep gathering
more data that will allow us to build more stable and
robust models. We also intend to further investigate the
possibility of building a model that is able to make pre-
dictions on the whole set of solvers, instead of relying on
a different model for every solver. Finally we intend to
integrate our model inside the HPC structure in order to
help it assess the pending time of newly submitted jobs.

References

[1] Leo Breiman. 2001. Random forests. Machine learn-
ing 45, 1 (2001), 5-32.

Fabio Carfi, Enrica Capitelli, Vladi Massimo
Nosenzo, and Tania Cerquitelli. 2021. Estimating
the job’s pending time on a High-Performance Com-
puting cluster through a hierarchical data-driven
methodology. In DOLAP. EDBT 2021, Nicosia,
Cyprus.

Tiangi Chen and Carlos Guestrin. 2016. XGBoost:
A Scalable Tree Boosting System. In Proceedings of
the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD ’16).
Association for Computing Machinery, New York,
NY, USA, 785-794. https://doi.org/10.1145/2939672.
2939785

Mariza Ferro, Vinicius P Kl6h, Matheus Gritz, Vitor
de S4, and Bruno Schulze. 2021. Predicting Runtime
in HPC Environments for an Efficient Use of Com-
putational Resources. In Anais do XXII Simpésio em
Sistemas Computacionais de Alto Desempenho. SBC,
WSCAD 2021 — XXII Simpoésio em Sistemas Com-

(2]

https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785

(5]

(6]

(7]

(8]

(9]

putacionais de Alto Desempenho, Belo Horizonte,
72-83.

S. Ganguly, A. Consul, A. Khan, B. Bussone,]J.
Richards, and A. Miguel. 2016. A Practical Approach
to Hard Disk Failure Prediction in Cloud Platforms:
Big Data Model for Failure Management in Datacen-
ters. In 2016 IEEE Second International Conference
on Big Data Computing Service and Applications
(BigDataService). 2016 IEEE Second International
Conference on Big Data Computing Service and
Applications, Oxford, United Kingdom, 105-116.
https://doi.org/10.1109/BigDataService.2016.10

M. Jassas and Q. H. Mahmoud. 2018. Failure Anal-
ysis and Characterization of Scheduling Jobs in
Google Cluster Trace. In IECON 2018 - 44th An-
nual Conference of the IEEE Industrial Electronics
Society. IECON 2018 - 44th Annual Conference of
the IEEE Industrial Electronics Society, Omni Shore-
ham, United States, 3102-3107. https://doi.org/10.
1109/IECON.2018.8592822

P. Li, B. Zhang, Y. Weng, and R. Rajagopal. 2017.
A Sparse Linear Model and Significance Test for
Individual Consumption Prediction. IEEE Trans-
actions on Power Systems 32, 6 (2017), 4489—-4500.
https://doi.org/10.1109/TPWRS.2017.2679110
Chunhong Liu, Liping Dai, Yi Lai, Guinbing Lai, and
Wentao Mao. 2020. Failure prediction of tasks in the
cloud at an earlier stage: a solution based on domain
information mining. Computing 102 (2020), 2001-
2023. https://doi.org/10.1007/s00607-020-00800- 1
C. Liu, J. Han, Y. Shang, C. Liu, B. Cheng, and
J. Chen. 2017. Predicting of Job Failure in Com-
pute Cloud Based on Online Extreme Learning Ma-
chine: A Comparative Study. IEEE Access 5 (2017),
9359-9368. https://doi.org/10.1109/ACCESS.2017.
2706740

J. M. Navarro, G. H. A. Parada, and J. C. Duefias.
2014. System Failure Prediction through Rare-
Events Elastic-Net Logistic Regression. In 2014 2nd
International Conference on Artificial Intelligence,
Modelling and Simulation. IEEE, Madrid, Spain, 120-
125. https://doi.org/10.1109/AIMS.2014.19

D. Nurmi, A. Mandal, J. Brevik, C. Koelbel, R. Wol-
ski, and K. Kennedy. 2006. Evaluation of a Work-
flow Scheduler Using Integrated Performance Mod-
elling and Batch Queue Wait Time Prediction. In SC
’06: Proceedings of the 2006 ACM/IEEE Conference
on Supercomputing. IEEE, Tampa, FL, USA, 29-29.
https://doi.org/10.1109/SC.2006.29

A. Rosa, L. Y. Chen, and W. Binder. 2017. Failure
Analysis and Prediction for Big-Data Systems. IEEE
Transactions on Services Computing 10, 6 (2017), 984—
998. https://doi.org/10.1109/TSC.2016.2543718
Robert Tibshirani. 2011. Regression shrinkage
selection via the LASSO. Journal of the Royal

Statistical Society Series B 73 (06 2011), 273-282.
https://doi.org/10.2307/41262671

Hao Wang, Yi-Qin Dai, Jie Yu, and Yong Dong. 2021.
Predicting running time of aerodynamic jobs in
HPC system by combining supervised and unsuper-
vised learning method. Advances in Aerodynamics
3(03 2021). https://doi.org/10.21203/rs.3.rs-360961/
vl

[15] Jiawei Yang, Susanto Rahardja, and Pasi Frénti.

2019. Outlier Detection: How to Threshold Outlier
Scores?. In Proceedings of the International Confer-
ence on Artificial Intelligence, Information Processing
and Cloud Computing (AIIPCC ’19). Association for
Computing Machinery, New York, NY, USA, Arti-
cle 37, 6 pages. https://doi.org/10.1145/3371425.
3371427

https://doi.org/10.1109/BigDataService.2016.10
https://doi.org/10.1109/IECON.2018.8592822
https://doi.org/10.1109/IECON.2018.8592822
https://doi.org/10.1109/TPWRS.2017.2679110
https://doi.org/10.1007/s00607-020-00800-1
https://doi.org/10.1109/ACCESS.2017.2706740
https://doi.org/10.1109/ACCESS.2017.2706740
https://doi.org/10.1109/AIMS.2014.19
https://doi.org/10.1109/SC.2006.29
https://doi.org/10.1109/TSC.2016.2543718
https://doi.org/10.2307/41262671
https://doi.org/10.21203/rs.3.rs-360961/v1
https://doi.org/10.21203/rs.3.rs-360961/v1
https://doi.org/10.1145/3371425.3371427
https://doi.org/10.1145/3371425.3371427

	1 Introduction
	2 Literature Review
	3 Data-driven methodology
	3.1 Data cleaning
	3.2 Model Building
	3.2.1 Classification Approach
	3.2.2 Mixed Approach

	3.3 Model Evaluation

	4 Preliminary experimental results
	4.1 Dataset Description
	4.2 Data Cleaning
	4.3 Classification Model Evaluation
	4.4 Mixed Model Evaluation

	5 Discussion and Future Research direction

