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Abstract

Personalized ranking continues to be an important aspect of many information systems and personalization systems. Neural
networks and deep learning continue to gain popularity because of their success in different fields of artificial intelligence
such as computer vision and natural language processing. Recently, researchers began to apply deep learning to personalized
ranking with success. Most personalization systems exploit historical preference data for users and items in warm-start
scenario. A major challenge in personalized ranking occurs in the cold-start scenario which arises when there is little to no
historical preference information. Content information is sometimes available and it can be used to alleviate the cold-start
problem.

We propose a solution that involves transfer learning from a deep model to a shallow model for both warm-start and cold-start
personalized ranking. We corroborate our proposal with experiments on publicly available datasets in comparison with other

baseline and state-of-the-art techniques.
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1. Introduction

Personalized ranking with adequate historical prefer-
ence is referred to as warm-start while recommendation
with inadequate historical preference is referred to as
cold-start. We subsequently refer to personalized rank-
ing as ranking except otherwise clearly stated. We pro-
pose a machine learning solution called Neural Transfer
Learning for warm-start personalized ranking, otherwise
referred to as NeuTraL. We then propose a cold-start ver-
sion of NeuTraL referred to as NeuTraL-C. NeuTraL and
NeuTraL-C use neural networks and transfer learning
for warm-start and cold-start item ranking respectively.
Item cold-start personalized ranking involves ranking
cold-start items while user cold-start personalized rank-
ing involves ranking cold-start users. There is also the
full cold-start entity personalized ranking problem where
both the user and item entities have no historical prefer-
ence information. Although we focus on cold-start item
personalized ranking in this work, we believe the concept
is extensible to both user cold-start and full cold-start per-
sonalized ranking problems. Entity content information
is sometimes used to compensate for the lack of historical
preference information by learning from content infor-
mation and existing preference information. Ranking can
be done for implicit or explicit feedback [1]. We focus on
implicit feedback in this work due to its more prevalent
nature. The contributions made in this work include:
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« We propose a unique approach to extracting pre-
trained user latent factors from a state-of-the-art
(SOTA) personalization model.

« The transfer of the pre-trained user latent factors
to a renowned personalization model for warm-
start and cold-start ranking respectively.

+ We provide thorough evaluation and conduct
experiments comparing our proposed solutions
with other SOTA and baseline techniques.

The remainder of this paper is organized as follows:
in Section 2, we highlight related work. We provide
pertinent background and notations for the rest of this
work in Section 3. We describe our approach in Section 5.
In Section 6, we describe our experiments and discussed
the results in section Section 6.3.3. We conclude with
potential directions for future work in Section 7.

2. Related Work

Personalized ranking techniques typically belong in one
of the following categories: collaborative filtering (CF),
content-based or a hybrid of the aforementioned tech-
niques. Different CF techniques ranging from matrix
factorization (MF) [2, 3] to k-Nearest Neighbor (kNN) [4]
have seen success in personalization systems research.
In recent years, deep learning has also been successfully
applied for personalization. He et al. replaced the typical
dot product of user and item latent features with a deep
learning model in their technique referred to as neural
collaborative filtering, NCF [5]. NCF performs better than
the vanilla MF because the non-linearity of the deep learn-
ing model captures complex interactions between users


mailto:rotunba@gmu.edu
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

and items better. Deep representation models such as
autoencoders and restricted Boltzmann machines (RBM)
have been used for personalization [6, 7, 8]. These tech-
niques have been successfully applied and demonstrated
on a variety of real world data, but they are known to
suffer from the cold-start problem. Content-based tech-
niques are typically used to tackle the cold-start prob-
lem by incorporating entity attributes [9, 10]. Entity at-
tributes are sometimes combined with CF to compensate
for the weakness in CF [11, 12] for the cold-start scenario.
To alleviate the cold-start problem, some deep learning
techniques have been developed with the use of content
information, e.g., the deep content-based music recom-
mendation work proposed by Oord et al. [13]. Most of the
deep learning personalization systems proposed for cold
start are hybrid in that they combine historical preference
and content information [14, 15, 16, 17, 18, 19]. Some of
the cold-start personalization systems [20] adopt active
learning. However, there are situations where active feed-
back from users for the cold start items are unavailable.
Transfer learning has also been used in personalization
systems research [21, 22].

3. Background & Notations

The set of users and items are denoted by U and I, re-
spectively. A measure of preference is recorded as a
positive feedback from some set P or as a negative feed-
back recorded as 0. When explicitly provided, P could
be a set of values e.g.,, {1, 2, ..., 5}. When implicitly pro-
vided, typically P = {0,1}. The matrix of user-item
interactions is denoted by:

Y € ({0} u PV 1)

where an interaction refers to an observable action by a
user e.g., the purchase of an item. User vector for user u
in Y is denoted as y,,. Conversely, item vector for item ¢
inY is denoted as y . The implicit feedback for a user
u € Uonanitems € [ is:

~_ )1, ifuinteracted with ¢; @

Yui = 0, otherwise.
I} = {set of items interacted with by user u}.  (3)
I, =1-1If )

U+, U™, and U are user sets analogous to the def-
initions in Equations 3— 4. AV and A’ represent the
m-dimensional user-attribute and n-dimensional item-
attribute matrices, respectively.

AY e RIVIX™ (5)

Al e RIIX™, (6)

Let a7 be the vector of user attributes 1. ..m for user
u, and a! be the vector of item attributes 1 . .. n for item
i, so that al, is the k-th item attribute value and al}, is
the k-th user attribute value. a);, = 0 when the attribute
is unavailable. Sets U and I are represented by latent
feature matrices U and I respectively where

U e RIVIX"
IGR‘”XT,

™
®)

where r is the number of latent features. User u and
item i are represented by u and i, respectively. Content
data would sometimes contain only user attributes, item
attributes or both. User attributes include demographic
information such as age and gender, education level, etc.
Social network data can also be mined for user attributes.
Item attributes include physical attributes, time of pro-
duction, location, etc. The task of item ranking is to
estimate the relative ranking of the items for each user.
We denote the predicted ranking of item ¢ for user u as
U from an inference function f:

©

where 6 denotes the model parameters learned during
training. Equation 9 shows ¢,,; is a function of the input
and learned model parameters. Model parameters are
typically learned via optimization such that an objective
loss function is minimized or a utility function is maxi-
mized. Objective loss function minimization is expressed
as:

~ U . I
Yui = f(u7au317ai70)7

fr = argmin £(6;Y), (10)
0

where 6 is learned from observation matrix Y to optimize
the estimate function 0 that predicts 7,,;. Learning is
usually done with machine learning techniques such as
gradient descent (GD) [23] or its variants e.g., Adaptive
Moment Estimation (Adam) [24] on carefully sampled
user-item pairs.

4. NeuTraL: Neural Transfer
Learning for Personalized
Ranking

We provide further background on pertinent information
that will aid the understanding of NeuTraL.
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Figure 1: NeuTral: Left side shows the pre-trained Auto-Encoder with the transfer to MPR

4.1. MPR: Multi-Objective Pairwise
Ranking

MPR is of the pairwise ranking function family where
the optimization task is with respect to the actual and
predicted values for a pair of items by a user. For item
ranking, the pairwise prediction function for a user u, a
preferred item ¢ and a less preferred item j is expressed
as

@u(z‘,j) = Yui — Z?uj: (11)
while the actual value is
Yu(ig) = Yui — Yuj- (12)

Conversely, for user ranking, the pairwise prediction
function for an item f preferred by user v but not pre-
ferred by user w is expressed as

Upww) = Vg0 = Yfuw> (13)
while the actual value is
Yfwaw) = Yfv — Yfw- (14)

MPR combines item ranking and user ranking. The opti-
mization function is expressed as:

(15)

ST Lui) + LG sn)s

weU jert jery

and the objective function £ is the log-sigmoid function:

L(z) =lno(x), (16)
and
o(z) = H% (17)

Uy is estimated from a MF model learned with GD. §,,;
is the dot product of the user latent vector u and the item
latent vector 3.

Gui=u’ i (18)
Assume
u={ui,uz,...,ur} (19)
and
i:{i1,i2,...,ik}. (20)



Component uy of u represents user u’s affinity for an
item factor k. Component ij, of ¢ represents the concen-
tration of factor £ in item 3.

(1)

T . . . .
U -1 =UL ¥ +U2*12..., Uk * 1k

Each component product uy * i represents user u’s
affinity for factor k in item . We subsequently refer to
this component product as latent vector product (LVP)
for ease of reference.

4.2. Transfer Learning

Transfer learning [25] is premised on the idea that a
related pre-trained model can serve as an initializer for
a main model. This initialization can be beneficial by
speeding up learning and/or improving accuracy on the
main task as seen in Figure 4. Transfer learning is similar
to multi-task learning (MTL) with the main difference
being the sequential versus simultaneous nature of the
two techniques, respectively. Transfer learning has been
successful in image processing [26] and natural language
processing [27] among other areas of machine learning.

4.3. Auto-Encoders & Personalization

Auto-encoders have been successfully applied in person-
alization systems [7, 6]. Auto-encoders derive their name
from the ability to encode input data with un-supervised
learning. The utility of auto-encoders include dimension-
ality reduction of input while ignoring noise in the input
optimally. For the purpose of personalization, entity vec-
tor data is passed as input with missing entries. The goal
is to recover the original input in the output including
the missing entries. To the best of our knowledge, the
pioneer research work in this area is AutoRec [7]. User
vectors ¥y, or item vectors y; can serve as input where
each vector component is the actual preference value or
a missing entry. However, the authors of AutoRec stated
that user vector inputs performed better than item vector
inputs, and we observed the same in our experiments.
Perhaps this is due to the peculiar characteristics of the
datasets used, e.g., number of users and items, ratings
per item and ratings per user. Wu et al. presented a
more sophisticated auto-encoder personalization tech-
nique, Collaborative Denoising Auto-Encoders (CDAE)
[6] which incorporates denoising with dropout [28] and
an extra identifier input. Dropout can be seen as a form
of noise introduction [29].

Deep learning techniques have the advantage of being
able to model linear and non-linear complex interactions
between users and items. Auto-encoders for personal-
ization are depicted in Figure 1. We denote the nodes in
the input layer as ¢, hidden layer as ¢/, and the output
layer as /> where

W2 = folyu,w), (22)

and f is a concatenation function. The nodes vector in
the hidden layer are:

Yo = Fr (W - 59 + ba). (23)

W1 is the g x h weight matrix between the input and
hidden layers. g and h are the number of nodes in the
input and hidden layers respectively. b: is the bias for
the hidden layer. f; is an activation function.

vu = F2(W2 - 31,)-
Wy is the h x g weight matrix between the hidden and
output layers. fs is an activation function. We use sig-
moid activation functions since they produced optimal
results. Wi, W5 and b1 are model parameters. There
are also hyper-parameters such as learning rate, batch
size and objective function that should be tuned during
training with validation. We use the binary cross-entropy
cost function.

(24)

= Yutiyy MYui; — (1 = Gy ) (1 — Yuiz).  (25)

and backpropagation to update the model parameters.

4.4. NeuTraL Algorithm

The development of NeuTraL as depicted in fig:NeuTraL
begins with the supposition that a more representative
user embedding model could improve performance in
the MF for personalized ranking. A pre-trained neural
network model may be appropriate since we are aware
of the success of deep learning models in personalization
systems. It has also been shown that neural networks are
better at modelling complex non-linearity in user-item
interactions than MF models [5]. We chose CDAE as our
pre-training model based on its proven improvement over
AutoRec. User latent features in MF can be considered a
form of dimensionality reduction for the user preference
vector in Y. A close look at both CDAE and MF reveals
that the hidden layer nodes of CDAE are analogous to
user latent features as smaller dimension versions of the
original user vectors in Y. This analogy implies we can
use a pre-trained |U|  k matrix C' of hidden layer node
values as the user latent feature matrix model which
forms the basis for our contribution. We subsequently
refer to C' as the transfer matrix. In other words, we
transfer user vector ¢, from C as the latent vector for
user u. We leave out the algorithm for NeuTraL since it
is essentially the same as the MPR algorithm with the
use of the pre-trained user embedding from CDAE.
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Figure 2: NeuTral-C: Left side shows the pre-trained Auto-Encoder with the transfer to ATM-MPR

5. NeuTralL-C: Neural Transfer
Learning for Cold-Start
Personalized Ranking

We provide further background on pertinent information
that will aid the understanding of NeuTraL-C as depicted
in fig:NeuTraL-C.

5.1. Item Attribute-to-Feature Mappings

Cold-start items have little to no historical preference
information to exploit for personalized ranking. Hence

recommending cold-start items pose a different challenge.

However, both warm-start and cold-start items have item

attributes that can be exploited for recommendations.
An item Attribute-to-Feature Mapping (ATM) as a frame-
work capable of providing item latent features from item
attributes i.e., a function that accepts item attributes as
input and produces item latent features as output. The
output can then be used in conjunction with user latent
features for prediction. We consider the ATM technique
presented by Gantner et al [12] referred to as ATM-BPR
in this work. ATM-MPR is an extension of the ATM-BPR
technique for cold-start personalization.

5.1.1. ATM-MPR

ATM-MPR adds cold-start capability to MPR by learning
a shallow linear model of latent features and attributes.



The main differences between MPR and ATM-MPR is the
derivation of the item latent vector 7« where

i = M(al), (26)
and M is a mapping function.
M(aj) = M -aj, (27)

where M is a mapper matrix to be learned similar to how
U and I are learned in MPR with GD. MPR optimizes the
NeuTraL-C optimization criterion which is the same as
neutral-opt.

However, the respective prediction functions for user
ranking and item ranking in NeuTraL-C are different.
We subsequently describe the item ranking prediction
function but the user ranking prediction function is anal-
ogous. The item ranking prediction function is expressed
as:

Yoy = (W' - M-af)— (u"-M-aj). (28

With transfer learning, the prediction function becomes:

@u(z‘,j) = (cf M - af) - (CZ M - a§). (29)

~ I I
Jugiymi = cq(ai — ajz). (30)

Hence, M is updated in GD with the following expres-
sion:

M = M + a (Neu-C-OPTM), (31)
OLWusn) PWaies
M=M u(%,j . u(i,7) _ M
o ( Oy oM M)
32)

and Ay is a regularization hyper-parameter.

5.2. NeuTralL-C Algorithm

The NeuTraL-C algorithm is listed in alg-neutral-c

6. Experiments
We proceed to address the following research questions:

+ how does NeuTraL compare with other SOTA
warm-start item personalization systems.

« how does NeuTraL-C compare with other SOTA
cold-start item personalization systems.

We begin by describing our experiment setup. We
subsequently describe our experiments on warm-start
personalized ranking followed by cold-start.

Algorithm 1 NeuTraL-C(U, M, A)
1: Output: Optimized matrices U and M
2: initialize U with the extracted hidden layer matrix C
from CDAE
. initialize a,, 7 and M
repeat
draw u, 4, j from U, I, , I, uniformly
u 4 u—nx* Neu-C-OPTu
M < M —n* Neu-C-OPTM wrt af and a}
draw f, v, w from I, U,:“, U, uniformly
88 M <+ M —nx* Neu-C-OPT M wrt v and w
v 4 v —n%* Neu-C-OPTv
w <+ w — N * Neu-C-OPTw
9: until convergence or maximum number of iterations

>y o

3

10: return U M

6.1. Experimental Repeatability

Experiment Artifacts (software, datasets, etc.) for this
work are available on demand. These artifacts will be
made publicly available with publication. All of the tech-
niques use GD and/or Adam for training as is the case in
NeuTraL where we use Adam for pretraining CDAE but
use GD for actual training in the ATM-BPR framework.
The benchmarks will converge differently during train-
ing based on hyperparameters but 1 factor that affects
the space and time requirements during each epoch is
the size of model parameters. Avoidance of bias forms
the basis for model design and other hyperparameter se-
lections throughout our experiments. We use one hidden
layer in the deep models. We use 100 factors in the MF
models. We also have the number of nodes in the deep
learning model amount to 100. We used the tower archi-
tecture for the deep learning models. We used learning
rates between 0.00001 — 0.01 and batch sizes of 10000.
We tuned model hyperparameters and stopped training
early with validation.

6.2. Evaluation metrics

Evaluation is done with 5-fold cross validation. We use
3 popular information retrieval metrics: MRR, NDCG
and AUC which are described further in subsequent sub-
sections. We evaluate the techniques on their ability to
rank items relative to 9 and 99 other items. The rank-
ing metrics relative to 9 other items are denoted as @10
e.g., MRR@10 measures MRR score for a technique when
ranking 1 of 10 items for a user.



Table 1 Table 2
Datasets Movielens results on warm-start items
[ Dataset #Users | #ltems | #Ratings | ’ Metrics ‘ IPop ‘ NCF ‘ BPR ‘ MPR ‘ NeuTralL ‘
Movielens TM 6,040 3,706 1,000,209
Eachmovie 72,916 1,628 2,811,983 MRR@10 | 0.246 | 0.409 | 0.400 | 0.421 0.437
Pinterest 55187 | 9916 | 1,500,809 NDCG@10 | 0.310 | 0.485 | 0.480 | 0.497 | 0.515
Goodreads 10,000 5,000 647,458
MRR 0.270 | 0.424 | 0.415 | 0.435 0.451
NDCG | 0.417 | 0.548 | 0.542 | 0.557 | 0.570
6.3. Experiments for warm-start ranking
AUC 0.853 | 0.921 | 0.923 | 0.924 0.929
6.3.1. Datasets
We performed experiments on four publicly available
datasets. A summary of these datasets is provided in 10 3
Table 1. The datasets contain explicit ratings for users  pinterest results on warm-start items
on items but we convert the ratings to implicit feedback
by treating ratings greater than 0 as positive feedback. Metrics ‘ IPop ‘ NCF ‘ BPR ‘ MPR ‘ NeuTral ‘
Our focus in this work is implicit feedback but we believe MRR@10 | 0.111 | 0.475 | 0.465 | 0.487 | 0.492
NeuTraL is applicable to explicit feedback.
NDCG@10 | 0.151 | 0.566 | 0.559 | 0.578 0.584
« Movielens 1IM: Movielens dataset of different MRR 0.138 | 0.483 | 0.475 | 0.496 0.501
datasets [30] are made publicly available by the
GroupLens Research lab at the University of Min- NDCG 0.298 | 0.600 | 0.595 | 0.611 | 0.615
nesota. We use the Movielens 1M dataset. The AUC 0.724 | 0.947 | 0.955 | 0.958 0.960
data is extracted from the Movielens website
which is a free website that provides personal-
ized movie recommendation to users.
Table 4

« Eachmovies dataset: This dataset [31] is made
available by the Digital Equipment Corporation
(DEC) Systems Research Center at Compagq. The
research center ran a CF service for experimen-
tal purposes and made the data available for re-
search.

« Goodreads dataset: This dataset [32] was col-
lected from goodreads.com, a book social network
and recommendation website.

« Pinterest Dataset: This is a dataset of implicit
feedback representing whether a user pinned an
image on their board on the pinterest platform at
https://www.pinterest.com.

6.3.2. Benchmarks

We compare our NeuTraL technique with 3 SOTA cold-
start personalization systems and a baseline item popu-
larity (IPop) technique. IPop recommends items based
on popularity. The benchmarks will converge differently
during training based on hyperparameters but 1 factor
that affects the space and time requirements during each
epoch is the size of model parameters. We select model
parameters to avoid bias throughout our experiments.
The SOTA benchmarks used are described below:

+ BPR: we described BPR in bpr.

Books results on warm-start items

Metrics ‘ IPop ‘ NCF ‘ BPR | MPR ‘ NeuTralL ‘

MRR@10 | 0.087 | 0.170 | 0.167 | 0.239 0.245
NDCG@10 | 0.114 | 0.224 | 0.217 | 0.302 0.309
MRR 0.112 | 0.197 | 0.193 | 0.262 0.268
NDCG 0.266 | 0.353 | 0.348 | 0.410 0.415
AUC 0.590 | 0.793 | 0.770 | 0.829 0.834

+ Multi-objective pairwise ranking (MPR) [33]:
MPR is a MTL technique that combines item rank-
ing and user ranking tasks. MTL learns from his-
torical preference data from item and user rank-
ing perspectives. MTL was demonstrated to able
to improve item ranking accuracy by learning
from both perspectives.

« Neural Collaborative Filtering (NCF) [5]: NCF is
an ensemble recommender that combines MF and
deep learning. NCF was demonstrated to achieve
superior performance compared to other SOTA
techniques.


https://www.pinterest.com

Table 5
Eachmovies results on warm-start items

Metrics ‘ IPop ‘ NCF | BPR ‘ MPR ‘ NeuTralL ‘

MRR@10 | 0.123 | 0.284 | 0.261 | 0.275 0.293
NDCG@10 | 0.159 | 0.357 | 0.329 | 0.349 0.368
MRR 0.149 | 0.305 | 0.284 | 0.296 0.313
NDCG 0.303 | 0.449 | 0.430 | 0.442 0.456
AUC 0.646 | 0.861 | 0.841 | 0.857 0.862

6.3.3. Results

We record the best average results observed dur-
ing experiments for each dataset and depict them in
movielens-table,eachmovie-table. NeuTraL significantly
out-performs the other techniques based on a Wilcoxon
signed-rank test with a p-value < 0.01. The winning
algorithm per metric is emboldened in each row of all
tables. We assume a margin of error of 0.005, hence
the winning algorithm has to be greater than the next
winner by at least a margin of 0.005. All techniques are
emboldened in the case of a tie on a metric. Techniques
within the margin of error of the highest score are also
emboldened.

6.4. Experiments for cold-start ranking

6.5. Datasets

We performed experiments on 3 of the 4 publicly avail-
able datasets used for warm-start experiments in sec-
tion warm-start-datasets. We used the datasets with
item attributes, hence their suitability for our experi-
ments. A summary of these datasets is provided in warm-
datasetstable. The 3 datasets used for cold-start person-
alization experiments are highlighted below:

« Movielens 1M: Item attributes in the dataset in-
clude release year and genre. The genre attribute
is one-hot encoded into 18 dimensions because
we have 18 possible genres. The year is an addi-
tional dimension.

« Eachmovies dataset: The items/movies in this
dataset are a subset of the items in the Movielens
dataset, hence we are able to us the same attribute
feature engineering as described for Movielens.

+ Goodreads dataset: We use the genres as book at-
tributes for cold-start personalization. The genre
attribute is one-hot encoded into 10 dimensions
because we have 18 possible genres.

6.5.1. Benchmarks

We compare our NeuTraL technique with 4 state-of-the-
art cold-start personalization systems. NeuTraL-C, Dro-
pouNet and ATM-BPR require pre-training. The bench-
marks used are described below:

« Multi-layer perceptron (MLP): The MLP baseline
used here predicts output from interactions be-
tween user embedding and item attributes with
deep learning. The first hidden layer is the in-
put combination layer that combines user embed-
ding input and item attributes. The combination
model is the piece-wise product since this has
been demonstrated to outperform concatenation
or adot product [34]. The dot product also doesn’t
allow us assign different weights to the combined
nodes. The output from this combination layer
are propagated through extra hidden layers. More
hidden layers can be added as needed before the
final output.

+ ATM-BPR The ATM-BPR technique used a base-
line here is described in atm-bpr except the pre-
trained user embedding is extracted from BPR
instead of an CDAE recommender which is used
in NeuTraL-C.

+ DropoutNet: Addressing Cold Start in Recom-
mender Systems DropoutNet [22] is a state-of-the-
art deep learning based personalization system.
DropoutNet is analogous to NeuTraL and ATM-
BPR. DropoutNet adopts a different transfer learn-
ing procedure compared to NeuTraL. Dropout-
Net transfers a pre-trained shallow model to a
deep model while NeuTraL transfers a pre-trained
deep model to a shallow model. We use the
MLP model described here as the deep learning
model. DropoutNet allows the use of different pre-
trained models but we use pre-trained user latent
features from CDAE similar to NeuTraL-C i.e. the
DropoutNet implementation used here is a com-
bination of the extracted user latent factors from
CDAE and MLP. Although DropoutNet is primar-
ily a cold start recommender but it is expected to
perform relatively well on warm start recommen-
dations with the appropriate dropout rate. We
use a maximum input dropout rate of 1.00 for our
experiments with DropoutNet to maximize per-
formance on cold-start because that is the focus
of this research work. DropoutNet also allows
inference transform but we do not apply it in our
experiments because we do not consider the case
of incremental item preference data collection as
described in their work. We refer to DropoutNet
as D-Net to conserve space in the results tables.

+ W&D: Wide & Deep Learning for Recommender
Systems W&D [19] combines generalization and



Table 6
Movielens results on cold-start items

Metrics ‘ W&D ‘

MLP ‘ ATM-BPR ‘ D-Net ‘ NeuTralL-C

MRR@10 0.043 | 0.050 0.070 0.053 0.083
NDCG@10 | 0.053 | 0.059 0.100 0.063 0.117
MRR 0.083 | 0.089 0.097 0.093 0.109
NDCG 0.244 | 0.249 0.257 0.252 0.269
AUC 0.604 | 0.610 0.629 0.617 0.656
Table 7
Goodreads results on cold-start items
Metrics ‘ W&D ‘ MLP ‘ ATM-BPR ‘ D-Net ‘ NeuTralL-C
MRR@10 | 0.030 | 0.036 0.057 0.054 0.077
NDCG@10 | 0.037 | 0.045 0.088 0.067 0.114
MRR 0.067 | 0.076 0.083 0.101 0.107
NDCG 0.228 | 0.238 0.245 0.264 0.271
AUC 0.570 | 0.603 0.588 0.672 0.689

memorization capabilities of recommender sys-
tems for more robust personalization. They used
deep learning for its demonstrated superior gener-
alization capability. However, deep learning tends
to over-generalize when the input is too sparse
and high-rank. On the other hand, generalized
linear models are highly capable of memorization
of feature interactions through cross product fea-
ture transformations. Hence, the combination of
a deep learning and a cross product model (wide)
in W&D for personalization.

6.5.2. Evaluation metrics for cold-start

We measured how well a recommender system is able to
rank a preferred cold-start item relative to other items.
The evaluation is similar to the evaluation for warm-start
items. The main difference is the absence of test items in
the training dataset for cold-start personalized ranking.

6.5.3. Results

We record the best results observed during experiments
for each dataset and depict them in movielens-table-cold-
start,eachmovies-table-cold-start. NeuTraL-C performs
best overall and we subsequently discuss the results fur-
ther. The winning algorithm per metric is emboldened

in each row of all tables. We assume a margin of error
of 0.005, hence the winning algorithm has to be greater
than the next winner by at least a margin of 0.005. All
techniques are emboldened in the case of a tie on a met-
ric. Techniques within the margin of error of the highest
score are also emboldened.

6.6. Discussion

We begin our discussion with the results of the warm-
start experiments. We stated that NeuTraL performed
best overall because of its highest number of wins which
corresponds to the number of times a technique has the
highest score per dataset. We also validated this observa-
tion with a significance test. IPop has the worst perfor-
mance overall. This is not surprising since it is merely a
baseline technique that ranks items based on popularity.
The ranking produced by IPop is not personalized as it
does not take personal attributes, context or historical
preference into account. We expect a decent personal-
ized ranking technique to out-perform IPop. This is the
case as least performing personalized ranking technique
is BPR but it ourperforms IPop. NCF performs better
than BPR. This was already demonstrated by the creators
of NCF in their research work [5]. NCF combines both
deep learning (MLP) and piecewise product of interac-
tions between user and item embeddings in a generalized



Table 8
Eachmovie results on cold-start items

Metrics ‘ W&D ‘

MLP ‘ ATM-BPR ‘ D-Net ‘ NeuTralL-C

MRR@10 | 0.031 | 0.032 0.052 0.032 0.055
NDCG@10 | 0.037 | 0.038 0.072 0.038 0.068
MRR 0.065 | 0.065 0.076 0.065 0.075
NDCG 0.221 | 0.222 0.232 0.221 0.237
AUC 0.490 | 0.492 0.507 0.481 0.525

matrix factorization (GMF). BPR uses a dot product of
user and item embeddings to represent the interactions.
Dot product assigns equal weights to the LVPs as de-
scribed in dot-product while the GMF component of NCF
learns different weights for the LVPs with a neural net-
work. The MLP component of NCF also learns different
weights for user and item embedding combinations. This
results in more complex representation of interactions
between users and items and better performance. MPR
out-performs NCF. The MTL nature of MPR gives it an
advantage. NeuTraL’s superior performance butrresses
the effectiveness of transfer learning since it is essentially
MPR combined with transfer learning but it outperforms
MPR. We surmise that transfer learning improved the
performance of NeuTraL. We also believe that the type of
pre-trained model that is transferred is significant. Our
experiment here reveals that the extraction mechanism
from an autoencoder based model like CDAE is effective.

We subsequently discuss the results of our experiments
on cold-start personalization. We stated that NeuTraL-C
performed best overall because of its highest number of
wins which corresponds to the number of times a tech-
nique has the highest score per dataset. We also validated
this observation with a significance test. ATM-BPR is
the next best performing technique. Both ATM-BPR and
NeuTraL-C adopt transfer learning. However, NeuTraL-
C uses a different pre-trained model. NeuTraL-C uses a
pre-trained model extracted from CDAE as described in
section:NeuTraL while ATM-BPR uses pre-trained user
embedding from BPR. This shows that it is not enough
to just apply transfer learning but the meticulousness of
implementation is as important. The type of pre-trained
model is pertinent in such design. NeuTraL-C and ATM-
BPR also differ in how they learn the "mapping func-
tion". NeuTraL-C uses MPR while ATM-BPR uses BPR.
DropoutNet performs next best to ATM-BPR. Dropout-
Net also uses transfer learning. We used user embed-
ding from CDAE in DropoutNet. However, it uses deep
learning to learn the interaction between the transferred
embedding and item attributes. The complex nature of
DropoutNet deteriorated performance somewhat. For

instance, the transferred user embedding is propagated
through hidden layers before combination with the item
attributes. The output of the hidden layers is a tainted
version of the user embedding. The mapping learned by
DropoutNet is between this tainted version and the item
attributes. We believe this is the reason for a poorer per-
formance compared to ATM-BPR and NeuTraL-C. It is not
too surprising that MLP performed less than DropoutNet
since it is DropoutNet without transfer learning. Once
again, this shows the effectivenes of transfer learning.
WD performed the least of all cold-start personalization
systems. It does not use transfer learning and we be-
lieve the complexity of deep learning in WD deteriorated
performance due to overfitting.

A common theme throughout or experiments is the
benefit of our neural transfer learning approach. We
believe that the transferred user embedding is more rep-
resentative of the users as latent factors compared to the
user embedding in the other models. We show a chart
of loss minimization in NeuTraL with and without trans-
fer learning in 3 on the Movielens data. 3 shows the
speed-up achieved with transfer learning in the form of
lower initial loss. 3 also shows the overall lower loss with
training. We know that ATM-BPR and DropoutNet adopt
transfer learning as well but are outperformed by Neu-
TraL. As stated earlier in section:cdae, dropout is a vital
component of CDAE, hence we investigated the effect
of dropout when pre-training on the final results. The
results show that dropout slightly enhances the effect of
the transferred user embedding in NeuTraL.

7. Conclusion

We presented a novel personalization system based on
transfer learning from a state-of-the-art deep personaliza-
tion system to a linear cold-start personalization model.
This system is applicable to warm-start and cold-start
items and users. The results of our experiments show the
effectiveness of our proposed method and we discussed
the results. Although the results are promising, there is
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Figure 3: Effect of Transfer Learning with NeuTralL-C on
Movielens dataset.

room for future work and improvements. Potential future
research work include the extension of our techniques
to user cold-start, full cold-start and warm-start rank-
ing. Other potential future work includes investigation
of additional attributes and optimum fusion strategy of
those attributes. We believe experimentation with more
datasets and context attributes such as time and location
would also be worthwhile.
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