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Abstract
Despite the fact that financial institutions (FIs) apply data governance strategies and use the most advanced state-of-the-art
data management and data engineering software and systems to support their day-to-day businesses, their databases are
not free from some faulty data (dirty and duplicated). In this paper, we report some conclusions from an ongoing research
and development project for a FI. The goal of this project is to integrate customers’ data from multiple data sources -
clean, homogenize, and deduplicate them. This paper, in particular, focuses on findings from developing customers’ data
deduplication process.

Keywords
data quality, data cleaning, data deduplication pipeline

1. Introduction
Financial institutions (FIs) apply data governance strate-
gies and use the most advanced state-of-the-art data man-
agement and data engineering software to manage data
collected by their day-to-day businesses. Unfortunately,
the application of advanced technologies does not pre-
vent from collecting and storing some faulty data - mainly
erroneous, outdated, and duplicated, e.g., [1]. Such data
mainly concern customers, both individuals and institu-
tions.

Duplicated and outdated data cause economic loses,
increase customer dissatisfaction, and deteriorate a repu-
tation of a FI. For these reasons, data integration, cleaning,
and deduplication of customers’ is one of the processes
in data governance.

In the research literature, a base-line data deduplica-
tion pipeline has been proposed, e.g., [2, 3, 4]. It has
become a standard pipeline for multiple data dedupli-
cation projects. The pipeline includes four basic tasks,
namely: (1) blocking (a.k.a. indexing), which arranges
records into groups, such that each group is likely to
include duplicates, (2) block processing (a.k.a. filtering),
which eliminates records that do not have to be com-
pared, (3) entity matching (a.k.a. similarity computation),
which computes similarity values between record pairs,
and (4) entity clustering, which creates larger clusters of
similar records.
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In this paper, we outline our experience and findings
from designing a deduplication pipeline for customers’
data (Section 2). We discuss approaches that are possi-
ble for each task in the pipeline and present particular
solutions that were proven to be adequate to solve the
addressed problem. Final conclusions are presented in
Section 3. Notice that this paper presents findings from
a real R&D project, and therefore, not all details can be
revealed, as they are treated as the company know-how.

2. Deduplication pipeline in the
project

Inspired by the aforementioned base-line data dedupli-
cation pipeline (BLDDP), in the described project, we
apply an adjusted pipeline that suits the goals of our
project. There are three basic differences between our
pipeline and the BLDDP. First, in our pipeline, we ex-
plicitly included all steps that we found to be crucial for
the deduplication process on customers’ data, whereas
in the BLDDP some steps are implicit. Second, the last
task in our pipeline allows to further merge some groups
of similar records (cliques), whereas the BLDDP, to the
best of our knowledge, does not include this task. Third,
our pipeline accepts dirty customers data, whereas the
BLDDP assumes that input data were cleaned beforehand.

Our pipeline includes the following tasks (cf. Figure 1),
which are outlined in the remainder of the paper: [T1]
selecting grouping attributes, [T2] selecting attributes
used to compare record pairs, [T3] choosing a method for
comparing records, [T4] selecting similarity measures for
comparing values of attribute pairs, [T5] defining weights

mailto:robert.wrembel@cs.put.poznan.pl
https://orcid.org/0000-0001-6037-5718
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


of attributes to compute records similarities and choosing
similarity thresholds, [T6] building pairs of records hav-
ing high similarity value, [T7] building cliques of similar
records, [T8] further merging cliques of similar records.
[T1] realizes blocking in BLDDP; [T3] realizes block pro-
cessing and entity matching; [T2], [T4], and [T5] realize
entity matching; [T6] and [T7] realize entity clustering.

2.1. Pipeline implementation
environments

Tasks [T1] to [T6] were implemented in parallel in two
alternative environments. The first one is a typical data
engineering environment, based on the Oracle DBMS as a
data storage and the PL/SQL programming language for
implementing the deduplication pipeline; this environ-
ment is a standard one in the FI running the project. The
second environment is a typical data science environment,
based on csv files as a data storage and Python (Anaconda
or Jupyter-lab, data science packages) for implementing
the pipeline.

2.2. Tasks in the pipeline
2.2.1. T1: Grouping attributes

The main challenge in grouping records is to select such a
set of grouping attributes that would allow to identify the
highest number of potentially duplicate records. Even
though, in the research literature there were proposed 14
different blocking methods [5], there is no single univer-
sal grouping method suitable for all application domains
[6].

Inspired by [7], we proposed a method based on statis-
tical characteristics of customers attributes: (1) the num-
ber of 𝑛𝑢𝑙𝑙𝑠 to the number of 𝑛𝑜𝑡𝑛𝑢𝑙𝑙 values of an at-
tribute, (2) the number of 𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒𝑑 values to the num-
ber of 𝑛𝑜𝑡𝑛𝑢𝑙𝑙 values of an attribute, (3) the number of
𝑛𝑜𝑡𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒𝑑 to the number of 𝑛𝑜𝑡𝑛𝑢𝑙𝑙 values of an at-
tribute, (4) the number of (𝑛𝑜𝑡𝑛𝑢𝑙𝑙−𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡)/𝑛𝑜𝑡𝑛𝑢𝑙𝑙
values of an attribute. These characteristics are com-
puted for every attribute being a candidate for grouping.
Additionally, (1) a diversity of values of each attribute
is modeled by means of the Gini Index and (2) the size
of a record group is penalized by means of a quadratic
function with a negative value of coefficient a.

Notice that the initial set of potential grouping at-
tributes was selected based on expert knowledge. It in-
cluded 20 attributes. Next, the candidate attributes were
processed by means of our method and their statistical
characteristics were computed. The obtained ranking
of attributes was verified by domain experts. Based on
their input, the final set of attributes was selected for
arranging (grouping) records.

2.2.2. T2: Attributes for comparing record pairs

Having ordered records by the attributes from the rank-
ing obtained from task [T1], the next task is to select
attributes whose values will be compared in record pairs,
to compute the similarity of records in each pair. Poten-
tial candidates for comparison are attributes that: (1) are
record identifiers, (2) do not include nulls, (3) include
cleaned values, e.g., no typos, no additional erroneous
characters, (4) include unified (homogenized) values, e.g.,
no abbreviations, the same acronyms used throughout
the whole data set.

Unfortunately, in real cases, such attributes often do
not exist. As it concerns record identifiers, in FI appli-
cations, natural identifiers are typically used, but their
values are frequently artificially generated (in cases when
natural identifiers cannot be used, i.e., a customer is not
able to provide it). Thus, in some cases, artificially gener-
ated IDs may have the same values as the natural ones.
Notice that the financial sector is strictly regulated by
means of European law, national law, and recommenda-
tions issued by institutions controlling the sector. As a
consequence, procedures aiming at improving the qual-
ity of data in this sector are strictly controlled. For this
reason, possibilities of applying data cleaning processes
are limited.

In the described project, the set of attributes selected
for comparing record pairs is based on the aforemen-
tioned preferable attribute characteristics and on expert
knowledge. The set includes 18 attributes describing
individual customers (e.g., personal data and address
components) and 24 attributes describing institutional
customers (e.g., institution names, addresses, type of busi-
ness run).

2.2.3. T3: A method for comparing records

Based on the ranking of grouping attributes obtained
from task [T1] (cf. Section 2.2.1), records need to be
arranged into groups. Next, in each group records are
compared in pairs. The literature proposes two popular
techniques for grouping, namely: hashing, e.g., [8, 9] or
sorting - know as the sorted neighborhood method, e.g.,
[10, 11].

The sorted neighborhood method accepts one parame-
ter that is the size of a sliding window in which records
are compared. The larger the window size is the more
potential duplicates can be found, but the longer record
comparison time is, since more records have to be com-
pared each time. Some experimental evaluations of the
window size from the literature discuss a typical size that
ranges from 2 to 60 records [10].

The sorted neighborhood method is intuitive, has an
acceptable computational complexity, and is available in
one of the Python libraries. For this reason, it was applied



in the project. We run a series of experiments in order
to determine the best window size. Our experiments
showed that the size has to be adjusted experimentally for
a particular data set being deduplicated. For comparing
individual customers’ records we used the window of 20
records, whereas for comparing institutional customers
we used a variable window size with the maximum of
200 records.

2.2.4. T4: Similarity measures for text attributes

The literature on data deduplication and similarity mea-
sures lists well over 30 different similarity measures for
text data, e.g., [12, 13]. One may find in the literature
suggestions, supported by experimental evaluations, on
the applicability of different measures to different text
data, e.g., [14, 15, 16, 12].

In our project, we evaluated 44 measures available in
Python packages. Some measures, e.g., Levenshtein, Jaro,
Jaro-Winkler exist in a few different implementations
(packages), thus we evaluated these implementations as
well. The evaluation was run on three different real data
sets, i.e., (1) customers’ last names of average length of
10.9 characters, (2) street names of avg length of 16 chars,
and (3) institution names of avg length of 45.5 chars.
Customers’ names included 98% of 1-word names and 2%
of 2-word names, which reflected a real distribution of
such types of names in our customers’ population. All
test data represented true positives, but with typical real
errors found by data profiling.

From the evaluation we draw the following conclu-
sions:

• for short strings, like last names and street names
(composed of 7 to 28 characters), the Overlap,
Jaro-Winkler, and StrCmp95 similarity measures
gave the highest similarity values;

• for long strings, like institution names (composed
of 46 to 116 characters and up to 12 separate
words) the Overlap, Sorensen, and StrCmp95 mea-
sures gave the highest similarity values, there-
fore they were recommended for comparing such
kinds of data.

2.2.5. T5: Attribute weights and similarity
thresholds

In task [T5], we applied an iterative process of tuning
weights of attributes used to compute records’ similarity,
with the support of domain experts. Additionally, rules
had to be defined to decide whether to compare values
of a given attribute. Let us assume that a pair of records
𝑟𝑚 and 𝑟𝑛 is compared to compute their similarity value.
Some cases handled by the rules include:

• when 𝑟𝑚 has a defined value of attribute 𝐴 and
the value of 𝐴 of 𝑟𝑛 is null, then the values of 𝐴

cannot be compared; in this case, 𝐴 is not con-
sidered for computing record similarity for pair
(𝑟𝑚, 𝑟𝑛);

• when records IDs are compared but the value
of the ID for 𝑟𝑚 is artificially generated and the
value of the ID for 𝑟𝑛 is real, then such values
cannot be compared; in this case, such an ID is
not considered for computing record similarity
for pair (𝑟𝑚, 𝑟𝑛);

• if IDs can be compared (i.e., they include real
values), then a binary similarity value is assigned
of either 1 (IDs are equal) or 0 (IDs are not equal)
for a compared pair of IDs.

On top of the rules, for institutional customers we
used equal weights for each attribute being the subject of
comparison. Whereas for individual customers, higher
weights were set for ID and last name attributes. These
weights were set based on an iterative experimentation
process and evaluation of the results by domain experts.

Based on the weighted values of similarities between
pairs of individual attributes of records 𝑟𝑚 and 𝑟𝑛, a to-
tal similarity of (𝑟𝑚, 𝑟𝑛) was computed. Let us denote
it as 𝑟𝑠𝑖𝑚. Based on its value, a given pair of records
was classified either as similar (matches) or non-similar
(non-matches), or undecided. For this kind of classifica-
tion, the so-called similarity thresholds had to be defined.
Again, in practice, these thresholds are defined based on
the analysis of the obtained record pairs and based on
knowledge of domain experts [12, 17].

In our project we applied the same approach. Based on
the knowledge of the FI experts, the lowest value of 𝑟𝑠𝑖𝑚
(i.e., for similar records) was set to 0.8 and the highest
value for non-similar was set to 0.6.

2.2.6. T6: Building pairs of similar records

The sorted neighborhood method produces pairs of similar
records with: (1) their overall value of 𝑟𝑠𝑖𝑚 and (2) sim-
ilarity values for each attribute being compared. These
data are stored in a repository, cf. Section 2.1 and visual-
ized in a spreadsheet for expert verification.

2.2.7. T7: Building cliques of similar records

Since similar records’ pairs may form larger sets, to find
such sets, all similar pairs have to be combined in a graph,
with records representing nodes and labeled edges repre-
senting similarities between records. In such a graph, a
group of similar records forms a maximal clique. Thus,
the problem of finding sets of similar records transforms
to finding maximal cliques in a graph. In general, it is
a NP-hard problem [18]. This problem becomes compu-
tationally less expensive for sparse graphs, e.g., [19, 20],
which is the case of a graph created from similar records.



For finding maximal cliques a few fast algorithms were
developed.

One of them is the Bron-Kerbosh algorithm [21], which
we decided to use for the following reasons. First, it is
frequently used in the community working on graph
processing. Second, it is implemented in multiple pro-
gramming languages, including Python. Third, its worst
case computational complexity is 𝑂(3𝑁/3), where 𝑁 de-
notes the number of graph nodes. For sparse graphs the
complexity is lower.

The algorithm was used for finding cliques in a graph
composed of 2228580 customers’ nodes. This evaluation
confirmed its efficiency in terms of processing time and
its applicability to the deduplication problem (confirmed
by the experts from the FI).

2.2.8. T8: Merging cliques of similar records

If the number of similar records is larger than the size
of a sliding window in sorted neighborhood, then a few
cliques are created and all of them contain records that
are similar to each other. Therefore, the final step is to
merge cliques that include a certain number of common
records (currently the Jaccard coefficient is used to decide
which cliques to merge). We are also experimenting with
a variable, automatically adjustable window size.

3. Final observations
In this paper, we reported our experience from a R&D
project for a FI on deduplicating customers’ data. The
project is ongoing (two out of four stages have been al-
ready realized). In the project, we adapted the standard
deduplication pipeline from the literature to the partic-
ular characteristics of data being deduplicated and to
the project requirements. The whole pipeline was im-
plemented and verified by domain experts. The results
obtained so far were accepted by the FI.

It must be stressed that the reality of the discussed
project differs from the one assumed in the research lit-
erature, i.e., (1) the assumption on the cleanness of data
being deduplicated, (2) the sizes of deduplicated data
sets, (3) the availability of tagged data for ML algorithms,
and (4) neglecting data aging process. Neither of these
assumptions is true in our project, as outlined in the
following sections.

3.1. Data cleanness
The base-line data deduplication pipeline [22, 2, 3, 23, 4]
assumes that data delivered to the pipeline are clean
(e.g., no null values, no spelling errors, homogenized full
names and abbreviations). Unfortunately, this assump-
tion in real projects cannot be guaranteed, especially in

the financial sector. There exist some typos, missing val-
ues, inconsistent values in attributes storing personal
data, institution names, and addresses. Moreover, not all
natural IDs are reliable. By regulations, even known dirty
customers data cannot be cleaned without an explicitly
permission of a customer. Getting such permissions from
millions of customers in a finite time frame is impos-
sible. For this reason, only simple cleaning is possible,
like removing leading or trailing erroneous signs from
customers addresses. For this reason, in practice the
deduplication pipeline has to be applied to data that has
undergone only basic cleaning.

3.2. Data size
Most of the methods used in the base-line data deduplica-
tion pipeline were verified on either small real data sets,
e.g., bibliographical with 32000 records [6, 24, 25, 17, 26],
restaurants - 500 records [24, 25], movies - 5000 records
[26], or patients - 128000 records [27], or on data sets
generated artificially [6, 7].

Whereas, in this paper we reported our experience
on deduplicating customers’ data of much larger vol-
umes, i.e.,: (1) 2228580 records describing individual cus-
tomers and (2) 1185290 records describing institutional
customers. The final goal of the reported project is to ap-
ply the developed pipeline and techniques to a database
storing more than 11 million of customers’ records (since
the project is ongoing, this stage will be run at the end
of the project).

3.3. Tagged data for ML
Some tasks in the deduplication pipeline can be run
with the support of machine learning (ML) techniques,
e.g., blocking [28, 29], selecting similarity measures and
thresholds [30], matching similar records [31, 32]. If the
pipeline applies ML for the entity matching task, it is
assumed that there exists a set of training records tagged
as true positives and true negatives. Unfortunately, in
a large FI it is impossible to create such a set of train-
ing data because of the volume of data to be processed
by the pipeline. For an original data set composed of
several million of customers, a training data set of a rea-
sonable size should include at least several thousands of
tagged training records. In reality, such a large number
of training records is impossible to be created by experts.
For this reason, in practice, training data are frequently
unavailable for ML algorithms.

In order to overcome this difficulty, unsupervised learn-
ing techniques are used, e.g., [33, 34]. Some publications
report on applying active learning techniques to a dedu-
plication process, e.g., [35, 36, 37, 38, 39] and this direc-
tion will also be investigated in the project. Currently



we are experimenting with weakly supervised learning
[40] with the support of the snorkel library.

3.4. Data aging
An inherent feature of some types of data, is their aging.
For example, customers’ last names, identification doc-
uments, different types of postal addresses, and contact
data (phone numbers, emails) have this feature. Outdated
data impact the possibility to discover duplicate records.
For this reason, for a deduplication process it would be
profitable to know which pieces of compared data are
likely to be outdated.

Building data aging models has not been researched
so far (the only approach addressing a related problem is
[41], but in the context of temporal data). Including aging
models into a deduplication pipeline seems to be totally
unexplored field of research either. In the last stage of our
project we aim at developing data aging models based
on ML algorithms.

3.5. Working with experts
While designing the deduplication pipeline and evaluat-
ing its results, we have benefited from the help of experts.
Their knowledge was used to determine an initial set of
attributes used for comparing records and choosing simi-
larity thresholds. The pipeline was tuned in an iterative
way, each time being based on the input from the experts
evaluating the obtained results.

In particular, grouping clients into clicks turned out to
be very useful - it provided a holistic view of customers’
representations and allowed to clearly identify duplicates.
In general, the proposed deduplication approach al-
lowed for the proper implementation of FI business goals.
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